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Maximum likelihood localization: When does it fail?✩
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Abstract

Maximum likelihood is a criterion often used to derive localization algorithms. In particular, in this paper we focus on a distance-based
algorithm for the localization of nodes in static wireless networks. Assuming that Ultra Wide Band (UWB) signals are used for inter-node
communications, we investigate the ill-conditioning of the Two-Stage Maximum-Likelihood (TSML) Time of Arrival (ToA) localization algorithm
as the Anchor Nodes (ANs) positions change. We analytically derive novel lower and upper bounds for the localization error and we evaluate them
in some localization scenarios as functions of the ANs’ positions. We show that particular ANs’ configurations intrinsically lead to ill-conditioning
of the localization problem, making the TSML-ToA inapplicable. For comparison purposes, we also show, through some examples, that a Particle
Swarm Optimization (PSO)-based algorithm guarantees accurate positioning also when the localization problem embedded in the TSML-ToA
algorithm is ill-conditioned.
c⃝ 2016 The Korean Institute of Communications Information Sciences. Production and Hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Nowadays, wireless indoor localization is an interesting
topic in many applications [1]. Indoor positioning systems
aim at providing precise position estimates inside buildings,
which is a particularly tricky task, due to phenomena such
as non-line-of-sight and multipath, caused by walls and ob-
stacles. In particular, time-based positioning techniques rely
on inter-nodes distance estimates evaluated from the times of
flight of signals traveling between pairs of nodes. Given the
pair-wise distance estimates between a few nodes, denoted as
Anchor Nodes (ANs), and a Target Node (TN), the TN’s po-
sition can be estimated [2]. Among the wide variety of local-
ization algorithms which have been proposed in the literature,
in this paper we focus on the Two-Stage Maximum-Likelihood

∗ Corresponding author.
E-mail addresses: stefania.monica@unipr.it (S. Monica),

gianluigi.ferrari@unipr.it (G. Ferrari).
Peer review under responsibility of The Korean Institute of Communica-

tions Information Sciences.
✩ This paper is part of a special issue entitled “Positioning Techniques and

Applications” guest edited by Prof. Sunwoo Kim, Prof. Dong-Soo Han, Prof.
Chansu Yu, Dr. Francesco Potorti, Prof. Seung-Hyun Kong and Prof. Shiho
Kim.

http://dx.doi.org/10.1016/j.icte.2016.02.004
2405-9595/ c⃝ 2016 The Korean Institute of Communications Information Scienc
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
(TSML) Time of Arrival (ToA) algorithm proposed in [3]. This
is a well-known algorithm, based on inter-node distance esti-
mates, which yields a closed-form position estimate and can
attain the Cramer–Rao Bound [2]. Unfortunately, despite its
quasi-optimality, depending on the nodes’ relative positions
the localization problem “embedded” in the TSML-ToA algo-
rithm can become ill-conditioned, leading to far inaccurate po-
sition estimates. This is detrimental in practical applications
(e.g., industrial localization), where ANs may not be freely
positioned.

In this paper, we investigate the limits of maximum
likelihood-based localization techniques. More precisely, we
first derive novel lower and upper bounds for the distance be-
tween the true TN position and its estimate, i.e., the localization
error. For comparison, we investigate the localization accuracy
of a Particle Swarm Optimization (PSO)-based localization al-
gorithm. It will be shown that the PSO allows accurate local-
ization even in those scenarios where the TSML-ToA algorithm
fails.

This paper is organized as follows. In Section 2, novel
lower and upper bounds for the TN localization error are
analytically derived. In Section 3, the values of these bounds are
evaluated in a few illustrative scenarios. Section 4 concludes the
paper.
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2. Problem localization conditioning

We assume to know the positions of three ANs, denoted as
{si = [xi , yi ]

T
}
3
i=1 and we aim at localizing a TN with co-

ordinates u = [x, y]
T . In the following, without leading the

generality of the derivation, we assume that x ≠ 0 and y ≠ 0.
Given the three exact distances {ri }

3
i=1 = {∥si −u∥}

3
i=1, the TN

position could be determined by simply intersecting the three
circumferences centered in {si }

3
i=1 with radii {ri }

3
i=1, respec-

tively. In the following, the TSML-ToA algorithm is first briefly
outlined and, then, lower and upper bounds for the positioning
error are derived.

2.1. The TSML-ToA algorithm

The first phase of the TSML-ToA algorithm involves the so-
lution of the system of equations:

G ω = h (1)

where: ω = [x, y, n], n , ∥u∥
2,

G ,

x1 y1 −0.5
x2 y2 −0.5
x3 y3 −0.5

 h ,
1
2

K1 − r2
1

K2 − r2
2

K3 − r2
3

 (2)

and {Ki }
3
i=1 , {∥si∥

2
}
3
i=1. Observe that G is ill-conditioned

when: (i) the three ANs lie nearly on the same line (correspond-
ing to two columns nearly linearly dependent); (ii) at least two
ANs are very close (namely, two rows are similar).

Since the true distance measurements {ri }
3
i=1 are not avail-

able, one can only rely on their noisy estimates, which will be
denoted as

r̂i , ri + δri i ∈ {1, 2, 3} (3)

where {δri }
3
i=1 are the estimation errors. Hence, instead of (1),

one is left with

G ω̂ = ĥ (4)

where ω̂ , ω + δω and ĥ , h + δh. Observe that, from (3), it
follows that

δh = −

r1δr1 + 0.5(δr1)
2

r2δr2 + 0.5(δr2)
2

r3δr3 + 0.5(δr3)
2

 ≃ −

r1δr1
r2δr2
r3δr3

 (5)

where the last approximation has been obtained neglecting
quadratic perturbations—the approximation holds if the pertur-
bations are sufficiently small.

The second phase of the TSML-ToA algorithm is meant to
take into account the dependence of n on the other two un-
knowns of (1) and involves solving:

G ′ φ = h′ (6)

where:

G ′ ,

1 0
0 1
1 1

 φ ,


x2

y2


h′ ,

ω2
1

ω2
2

ω3


and ω j , j ∈ {1, 2, 3}, denotes the j th component of ω. Assum-
ing that only ω̂ is known, one is left with

G ′ φ̂ = ĥ
′

(7)

where φ̂ , φ + δφ, ĥ
′
, h′

+ δh′, and

δh′
=

2ω1δω1 + (δω1)
2

2ω2δω2 + (δω2)
2

δω3

 ≃

2ω1δω1
2ω2δω2

δω3

 (8)

where {δωi }
3
i=1 denote the i th component of δω. The last ap-

proximation in (8) has been obtained, as in (5), neglecting
quadratic perturbations.

The final position estimate û is û = U


φ̂ where U =

diag(sign(ω̂1)) [3]. Denoting as δu = û − u the error on the
position estimate, we derive lower and upper bounds for the
localization error ∥δu∥.

2.2. Bounds for position estimation error

First, lower and upper bounds for the norms ∥δω∥ and ∥δφ∥

of the errors on the solution of (4) and (7), respectively, are
derived. The results are then combined together to finally obtain
bounds on the norm of the localization error ∥δu∥.

From (4) and (1), one obtains G δω = δh and taking the
norm of both sides, it follows:

∥G δω∥ = ∥δh∥ ≤ ∥G∥ ∥δω∥. (9)

Assuming that G is not singular, one can conclude that:

∥δω∥ = ∥G−1 δh∥ ≤ ∥G−1
∥ ∥δh∥. (10)

Finally, from (9) and (10), the following bounds for ∥δω∥ can
be derived:

∥G∥
−1

∥δh∥ ≤ ∥δω∥ ≤ ∥G−1
∥ ∥δh∥. (11)

From (7) and (6), one obtains G ′ δφ = δh′ and, taking the
norm of both sides, one derives:

∥G ′ δφ∥ = ∥δh′
∥ ≤ ∥G ′

∥ ∥δφ∥. (12)

Moreover, defining

H , G ′T G ′ δℓ , G ′T δh′ (13)

one obtains δφ = H−1 δℓ and, hence,

∥δφ∥ ≤ ∥H−1
∥ ∥δℓ∥. (14)

Finally, from (12) and (14), the following bounds can be
derived:

∥G ′
∥
−1

∥δh′
∥ ≤ ∥δφ∥ ≤ ∥H−1

∥ ∥δℓ∥. (15)

From (13):

δℓ = G ′T δh′
=


2ω1δω1 + δω3
2ω2δω2 + δω3


= C δω (16)
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where

C ,


2x 0 1
0 2y 1


.

From (16) it holds that

∥δℓ∥ ≤ ∥C∥∥δω∥. (17)

From (8),

δω = B δh′ (18)

where (recall that x ≠ 0 and y ≠ 0 in our assumptions) matrix
B is defined as

B ,


1

2x
0 0

0
1

2y
0

0 0 1

 .

Hence, from (18):

∥δh′
∥ ≥ ∥B∥

−1
∥δω∥. (19)

From (15), using (17), (19) and (11), one obtains

∥δφ∥ ≥ ∥G ′
∥
−1

∥B∥
−1

∥G∥
−1

∥δh∥

∥δφ∥ ≤ ∥H−1
∥∥C∥∥G−1

∥ ∥δh∥.
(20)

Denoting û , [x̂, ŷ]
T

= [x + δx, y + δy]
T , one can write:

δφ =


x̂2

− x2

ŷ2
− y2


=


2xδx + (δx)2

2yδy + (δy)2


. (21)

Neglecting non-linear perturbations in (21), one obtains:

δφ ≃


2xδx
2yδy


=


2x 0
0 2y


δu = A δu. (22)

From (22), it can be concluded that

∥δφ∥ ≤ ∥A∥∥δu∥. (23)

Moreover, since A is not singular,1 from (22) it can be derived

that δu = A−1δφ so that

∥δu∥ ≤ ∥A−1
∥∥δφ∥. (24)

Inserting (20) into (23) and (24), the following lower bound
(LB) and upper bound (UB) for the norm of the positioning
error δu are found

LB , ∥A∥
−1

||∥G ′
∥
−1

∥B∥
−1

∥G∥
−1

∥δh∥

UB , ∥A−1
∥∥H−1

∥∥C∥∥G−1
∥ ∥δh∥.

(25)

As expected, the novel bounds in (25) depend on: the
distance errors {δri }

3
i=1 (through ∥δh∥); the ANs’ coordinates

(through G); the TN’s coordinates (through A, B, and C).
Such bounds are not necessary to perform localization,
but they are useful to investigate the ill-conditioning of the
considered ML approach.

1 This is true if x ≠ 0 and y ≠ 0, as assumed before.
Fig. 1. System configuration.

3. Numerical results

The considered (very general) system configuration is shown
in Fig. 1. The TN’s coordinates (dimension: [m]) are u =

[1, 1]
T and the coordinates of the first AN are s1 = [2, 1]

T . The
positions of the remaining ANs have the following expressions

si = u + [ri cos θ
(k)
i , ri sin θ

(k)
i ]

T i ∈ {2, 3} (26)

where: r2 = 2 m; r3 = 3 m; the values of {θ
(k)
i }

3
i=2 vary in

[0, 2π) according to {θ
(k)
i }

3
i=2 = 2kπ/180, k ∈ {0, . . . , 179}.

In other words, {θ
(k)
i }

3
i=2 vary, at steps multiple of π/90,

between 0 and 2π − π/90. We assume that the inter-node
distance estimates are based on UWB signaling and the distance
estimation errors {δri }

3
i=1 can be modeled as δri = 0.016ri −

0.15 [m], as shown in [4].
The values of LB and UB as functions of θ

(k)
2 and θ

(h)
3 are

shown in Fig. 2(a) and Fig. 2(b), respectively. From Fig. 2(a),
it can be observed that the values of LB are always smaller
than 5 cm and are approximately constant. At the opposite,
the values of UB strongly depend on the ANs’ positions and
reach values up to 10 m, as shown in Fig. 2(b). For each pair
(θ

(k)
2 , θ

(h)
3 ), we also perform localization using the TSML-ToA

algorithm: in Fig. 2(c) the pairs (θ
(k)
2 , θ

(h)
3 ) corresponding to

∥δu∥ > 2 m are shown: the agreement with the derived UB in
Fig. 2(b) is evident.

In order to overcome the errors due to ill-conditioned topolo-
gies, a PSO-based approach to localization can be considered.
The PSO algorithm is iterative and does not suffer from ill-
conditioning as it does not involve matrix calculations. The
reader is referred to [5] for a detailed description of the use of
the PSO algorithm for localization purposes. We now consider
a few illustrative ANs’ configurations which lead to position
estimates with ∥δu∥ > 2 m. With these ANs configurations,
we estimate the TN positions using the PSO algorithm. The ob-
tained values of ∥δu∥ are shown in Table 1. Observe that, in
all cases, the values of ∥δu∥ obtained with the PSO algorithm
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a b c

Fig. 2. (a) LB and (b) UB as functions of θ
(k)
2 and θ

(k)
3 for r2 = 2 m and r3 = 3 m; (c) values of θ

(k)
2 and θ

(k)
3 which correspond to ∥δu∥ > 2 m (blue dots) in (b).

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 1
The values of δu are shown when using the TSML and the PSO algorithms

(third and fourth columns) for different values of θ
(k)
2 and θ

(h)
3 (first and second

columns).

θ
(k)
2 θ

(h)
3 ∥δu∥ — TSML [m] ∥δu∥— PSO [m]

π 0 5.99 · 1014 0.19
3π/2 π/4 49 0.13
0 π 8.40 · 1014 0.25

are sufficiently accurate for many applications, whereas TSML-
ToA algorithm fails.

4. Conclusion

In this paper, we have studied the conditioning of the TSML-
ToA localization algorithm. Using norm inequalities, we have
derived novel lower and upper bounds for the positioning
error. Then, we have considered scenarios with different ANs’
positions and we have shown how the lower and upper bounds
behave as functions of the ANs’ positions. Moreover, for each
ANs’ configuration, we have solved the localization problem by
means of the TSML-ToA algorithm, showing that the obtained
position estimates can be far inaccurate. Finally, we have
shown that the localization errors obtained with the TSML-ToA
algorithm can be avoided using a localization approach based
on the PSO algorithm.
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