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Experimentally induced autoimmune encephalomyelitis (EAE) in mice provides an animal model that shares
many features with human demyelinating diseases such as multiple sclerosis (MS). To what extent the
cerebral cortex is affected by the process of demyelination and how the corollary response of the
oligodendrocyte lineage is explicated are still not completely known aspects of EAE. By performing a detailed
in situ analysis of expression of myelin and oligodendrocyte markers we have identified areas of subpial
demyelination in the cerebral cortex of animals with conventionally induced EAE conditions. On EAE-affected
cerebral cortices, the distribution and relative abundance of cells of the oligodendrocyte lineage were assessed
and compared with control mouse brains. The analysis demonstrated that A2B5+ glial restricted progenitors
(GRPs) and NG2+/PDGFR-α+ oligodendrocyte precursor cells (OPCs) were increased in number during
“early” disease, 20 days post MOG immunization, whereas in the “late” disease, 39 days post-immunization,
they were strongly diminished, and there was an accompanying reduction in NG2+/O4+ pre-oligodendro-
cytes and GST-π mature oligodendrocytes. These results, together with the observed steady-state amount of
NG2−/O4+ pre-myelinating oligodendrocytes, suggested that oligodendroglial precursors attempted to
compensate for the progressive loss of myelin, although these cells appeared to fail to complete the last step of
their differentiation program. Our findings confirm that this chronic model of EAE reproduces the features of
neocortex pathology in progressive MS and suggest that, despite the proliferative response of the
oligodendroglial precursors, the failure to accomplish final differentiation may be a key contributing factor
to the impaired remyelination that characterizes these demyelinating conditions.
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Introduction

Experimental autoimmuneencephalomyelitis (EAE) is awidely used
animal model characterized by inflammatory demyelination of the
central nervous system (CNS), as occurs in the human disease multiple
sclerosis (MS). Disease heterogeneity in terms of clinical course and
neuropathology is characteristic of MS (Lucchinetti et al., 2000) and is
also a feature of EAE. In fact, in the latter, depending upon the species,
strain, immunizationprotocol anddosage of the immunogen, relapsing–
remittingor chronicmodels canbe reproduced (Berard et al., 2010;Gold
et al., 2006). In patients with progressive MS the brain is globally
affected, as a consequence of the persistent and diffuse inflammatory
process, showing diffuse demyelination, axonal loss and microglial
activation in normal appearingWM as well as in deep and cortical grey
matter (GM) (Bø et al., 2003; Bø, 2009; Kidd et al., 1999; Kutzelnigg
et al., 2005; Peterson et al., 2001; Rudick and Trapp, 2009). Although
only a marginal correlation between focal WM lesions and cortical
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pathology has been described, demyelination within cortical GM areas
may contribute to disease progression and also play a role in the
emergence of cognitive deficits (Chen et al., 2004; De Stefano et al.,
2003; Geurts et al., 2009; Kutzelnigg et al., 2005; Lazeron et al., 2000;
Stadelmann et al., 2008). Conventional EAE mouse models, including
MOG-induced EAE, have been most commonly adopted to focus on
spinal cord inflammation/demyelination (Gold et al., 2006), while
neocortex demyelination has been primarily described in specifically
designed experimental models (Pomeroy et al., 2005; Merkler et al.,
2006; Storch et al., 2006). Data on cortical lesions were reported by
Rasmussen et al. (2007) in relapsing–remitting rodent EAE induced by
PLP and only very recently, forebrain demyelination has been
demonstrated in chronic EAE, induced by MOG in C57BL/6 mice, that
mimics primary and secondary progressiveMS (Mangiardi et al., 2011).

Concurrently with destructive events, regenerative processes take
place inMS and EAE demyelinated lesions ofWM, including attempts by
nervous tissue to remyelinate the damaged areas (Albert et al., 2007;
Blakemore, 1974; Bunge et al., 1961; Franklin and ffrench-Constant,
2008; Patani et al., 2007; Prineas et al., 1993). The heterogeneity
observed in the degree of remyelination in samples collected from
autopsies and biopsies could be related to patients' age and MS clinical
subtypes (Frohman et al., 2006; Lassmann et al., 1997; Goldschmidt
et al., 2009; Patrikios et al., 2006). It has been demonstrated that some
chronic MS lesions contain immature oligodendrocytes, which can be
involved in the phenomenon of remyelination (Chang et al., 2000, 2002;
Wolswijk, 1998, 2002), but a comprehensive analysis of the sequential
maturation stages of oligodendrocyte lineage during chronic evolution
of the disease is still lacking.

In the perinatal period of normal brain development, oligoden-
drocytes arise from precursors that differentiate through a series of
stages identified by specific markers: glial restricted progenitors
(GRPs) recognized by the phenotypemarker A2B5 which corresponds
to a specific group of gangliosides (Cameron and Rakic, 1991; Kundu
et al., 1983; Liu et al., 2002; Steiner et al., 2007; Strathmann et al.,
2007), oligodendrocyte precursor cells (OPCs) identified by NG2
(nerve-glial antigen 2) chondroitin sulphate proteoglycan and by
PDGFR-α (platelet derived growth factor receptor-α), molecules both
involved in cell proliferation and migration (He et al., 2009; Heldin
and Westermark, 1999; Chekenya et al., 2008; Kucharova and
Stallcup, 2010; Makagiansar et al., 2007), pre-oligodendrocytes also
expressing NG2 and identified by the phenotype marker O4, which
recognizes specific glycolipids and cholesterol (Bansal et al., 1989;
Baumann and Pham-Dihn, 2001; Cai et al., 2006; Guardia Clausi et al.,
2010; Probstmeier et al., 1999; Sommer and Schachner, 1981),
myelinating oligodendrocytes that express myelin-associated pro-
teins, MBP and MOG, and specific enzymes, CNPase and GST-π
(Baumann and Pham-Dihn, 2001; Quarles, 1997; Tansey and Cammer,
1991). In the adult CNS, NG2-expressing cells, OPCs/polydendrocytes
and pre-oligodendrocytes are still present. Polydendrocytes are
morphologically and antigenically indistinguishable from OPCs but
in normal conditions they represent a non-proliferating, stable cell
population (Butt et al., 2005; Fruttiger et al., 1999; Goldman, 2005;
Levine et al., 1993; Nishiyama et al., 1996, 2009).

Although several studies have described the presence of cells of
the oligodendrocyte lineage in EAE demyelinating lesions of the spinal
cord, relatively little is known about the situation in the cerebral
cortex (Di Bello et al., 1999; Gensert and Goldman, 1997; Keirstead
et al., 1998; Papadopoulos et al., 2010; Polito and Reynolds, 2005;
Reynolds et al., 2002). Considering that the origin, identity and degree
of maturation of the cells that may play an effective role during the
remyelination process remain of primary interest, also in view of
observations made on human MS lesions, in this study we have
analyzed the presence and distribution of oligodendrocyte lineage
cells in the cerebral cortex of MOG-induced chronic EAE. The antigenic
phenotype of oligodendroglia precursors and myelinating oligoden-
drocytes has been revealed by a broad panel of cell-specific markers
during “early” and “late” stages of the disease with the aim of defining
the mode, extent, and course of the oligodendrocyte response in
relation to the neocortex demyelination events.

Materials and methods

EAE induction and clinical evaluation

Procedures involving animals and their care were conducted in
conformity with the institutional guidelines in compliance with
national (D.L. n. 116, G.U., suppl. 40, Feb. 18, 1992) and international
laws and policies (EEC Council Directive 86/609, OJ L 358, 1, Dec.12,
1987; Guide for the Care and Use of Laboratory Animals, U.S. National
Research Council, 1996). The protocols for the proposed investigation
were reviewed and approved by the Animal Care and Use Committees
(IACUC) of the “Mario Negri” Institute for Pharmacological Research.
Chronic EAE was induced in C57BL/6 wild type female mice (6–
8 weeks of age) obtained from Harlan (Bresso, MI, Italy) and
maintained in specific pathogen-free conditions. EAE was induced
by subcutaneous immunization with a total of 200 μg of MOG35–55 in
incomplete Freund's adjuvant (Sigma, St. Louis, MO, USA), supple-
mented with 8 mg/ml of Mycobacterium tuberculosis (strain H37RA;
Difco, Detroit, MI, USA). The mice received 300 ng of pertussin toxin
(Sigma) i.v. at the immunization time and 48 h later. Control C57BL/6
female mice received a subcutaneous injection of incomplete Freund's
adjuvant without MOG35–55. Weight and clinical score (cs) were
recorded daily according to the standard EAE grading scale. The onset
of EAE clinical signs was at 13–14 days post-immunization (dpi). On
the total immunizedmice (n=16), a first group of micewas sacrificed
during “early EAE” (n=9; cs 1.5 to 3.5) at 20 dpi, while a second
groupwas followed up to 39 dpi, defined as “late EAE” (n=6; cs 2.0 to
3.0). Individual clinical scores were plotted per day, data were
expressed as median±SEM (Supplementary Fig. 1). For each
experimental group, healthy controls (n=5) were sacrificed at
equivalent times.

Histology and Immunohistochemistry

Micewere anesthetized with chloral hydrate (3 μl/g, intraperitoneal
injection) and transcardially perfused with 100 ml of fixative (2%
paraformaldehyde plus 0.2% glutaraldehyde). After perfusion, each
hemisphere was cut into 20-μm thick sagittal sections then immuno-
stained for light microscopy or confocal laser microscopy, except for
sections that were stained with toluidine blue for comparative
microanatomy analysis. The following primary antibodies were utilized
in single and multiple immunolabelings: anti-MBP (Myelin Basic
Protein), anti-A2B5, anti-NG2 (nerve-glial antigen 2), anti-NeuN
(Neuronal Nuclei), anti-O4, anti-PDGFR-α (platelet derived growth
factor receptor-α), anti-CNPase (2′,3′-Cyclic Nucleotide 3′-Phosphodi-
esterase), anti-MOG (Myelin Oligodendrocyte Glycoprotein, anti-GST-π
(glutathione S-transferase isoform-π), anti-GFAP (Glial Fibrillary Acidic
Protein), anti-NF (70 kDa Neurofilament), anti-CD45, anti-PCNA (Pro-
liferative Cell Nuclear Antigen). The initial analysis of both cerebral
cortex and subcortical white matter myelination levels, in healthy and
EAE-affected mice, was carried out by immunoenzymatic methods to
reveal the myelin marker MBP. Subsequently, adjacent sections were
immunolabeled for laser confocal analysis with a number of markers
(Table 1), according to the protocols described in the Supplementary
materials. Sections were examined under a Leica TCS SP5 confocal laser
scanning microscope (Leica Microsystems, Mannheim, Germany).

Quantitative assessment

Brains from healthy (n=5), “early EAE” (20 dpi; n=5), and “late
EAE” (39 dpi; n=5) mice were utilized for computer-aided morpho-
metric analysis. The levels of brain myelination, in cerebral cortex



Table 1
Primary antibodies and secondary antibodies combined in single and multiple immunolabelingsa.

Primary antibodies Host Ig Dilution Producer company Code number

Anti-MBP rabbit IgG 1:100 Abcam ab65988
A2B5 mouse IgM 1:600 Millipore MAB312R
Anti-NG2 rabbit IgG 1:200 Millipore AB5320
Biotinylated anti-NeuN mouse IgG1 1:100 Millipore MAB377B
O4 mouse IgM 1:1000 Millipore MAB345
Anti-PDGFR-α rat IgG2a kappa 1:70 Millipore CBL1366
Anti-CNPase mouse IgG1 1:60 Sigma C5922
Anti-MOG goat IgG 1:300 R&D Systems AF2439
Anti-GST-π rabbit IgG 1:750 MBL Int. Corp. 312
Anti-GFAP mouse IgG1 1:150 V.B. Novocastra NCL-GFAP-GA5
Anti-NF mouse IgG1 1:80 Dako M0762
Anti-CD45 rat IgG2 1:50 Novus Biologicals NB110-93609
Anti-PCNA mouse IgG 1:70 Santa Cruz Sc-56

Secondary antibodies and streptavidin conjugates Dilution Producer company Code number

1 Biotinylated goat-anti-rabbit 1:500 Vector BA-1000
2 HRP-streptavidin 1 μg/ml Vector SA-5704
3 Biotinylated goat anti-mouse IgM 1:300 Invitrogen D20693
4 Streptavidin-conjugated Alexa 488 1:300 Invitrogen S-11223
5 Streptavidin-conjugated Alexa 555 1:300 Invitrogen S-21381
6 Goat anti-rabbit Alexa 568 1:300 Invitrogen A11011
7 Goat anti mouse IgG1 Alexa 488 1:300 Invitrogen A11001
8 Donkey anti goat Alexa 488 1:300 Invitrogen A11055
9 Goat anti-rabbit Alexa 488 1:300 Invitrogen A11070
10 Donkey anti goat Alexa 568 1:300 Invitrogen A11057
11 Goat anti mouse IgG1 Alexa 633 1:300 Invitrogen A21126
12 Goat anti rat Alexa 555 1:400 Invitrogen A21434

a Primary antibodies combinations inmultiple immunolabelings: A2B5 combined with NG2 (revealed by 3, 4, 6 immunoreagents, ir) or NeuN (3, 4, 5 ir); NG2 combined with GFAP
(6, 7 ir), O4 (3, 4, 6 ir), CNPase (6, 7 ir), MOG (6, 8 ir), PCNA (6, 7 ir), PDGFR-α (9, 12 ir); MBP combined with MOG and CNPase (9, 10, 11 ir); MBP combined with NF (6, 8 ir); MBP
combined with CD45 (9, 12 ir).
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supragranular/granular layers and in subgranular layers/subcortical
WM, were analyzed on sections immunostained with MBP or MOG. In
the same areas, the number of cell precursors identified by their own
phenotype, A2B5+/NG2− GRPs (glial restricted progenitors), NG2+/
PDGFR-α+ OPCs (oligodendrocyte precursor cells), NG2+/O4+ pre-
oligodendrocytes, and NG2−/O4+/CNPase+/GST-π pre-myelinating/
myelinating oligodendrocytes, was interactively assessed, normalized
to the same volume (1 mm3) and expressed as mean value±SD.
Proliferating NG2+/PCNA+ OPCs were also counted and the results
are expressed as percentages of the total NG2+ cell number. For each
marker, immunoreactive tissue areas were also measured and the
results are expressed as mean value±SD. All data were statistically
analyzed using Student t-test, one-way Anova and the Bonferroni
post-test (GraphPad Prism, GraphPad Software, Inc., La Jolla, CA, USA).
Results were considered significant at p-values ofb0.05.

Results

Immunolocalization of cells of the oligodendrocyte lineage in cerebral
cortex of healthy mice

The distribution and characteristics of the cells of the oligoden-
drocyte lineagewere evaluated in healthymice with the aid of specific
markers. On sections double immunolabeled for A2B5 and NG2, a
number of A2B5+/NG2− glial restricted progenitors (GRPs) were
recognized throughout all the cerebral cortex layers (Supplementary
Figs. 2a–c) and in subcortical white matter (WM) (Supplementary
Figs. 2d–f). GRPs showed a typical morphology characterized by a
small cell body and few, short processes (Supplementary Figs. 2a, c,
d, f), easily distinguishable from the A2B5+/NeuN+ nuclei of cortex
neurons (Ledeen andWu, 2008) frequently detected in the upper part
of cortical layer II (Supplementary Figs. 2a, c, g–i). A2B5−/NG2+

precursors were revealed in the cortex and in subcortical WM areas
(Supplementary Figs. 2a–f), where they represented a large popula-
tion of immature oligodendrocytes. These NG2+ oligodendroglial
precursorsweremorphologically different from theA2B5+progenitors,
showing numerous long, slender processes forming a rich network
throughout theneuropil (Supplementary Figs. 2a–f). A small percentage
of NG2+ cells, also reactive for A2B5 (0.5±1.8%), characterized by few
processes and preferentially localized in the subcortical WM, was also
revealed (Supplementary Figs. 2d–f) and regarded as “transitional”
oligodendrocyte precursors that would eventually differentiate into
A2B5–/NG2+ oligodendrocyte precursors. Double immunostainings
carried out with anti-NG2 and anti-O4 antibodies allowed us to
distinguish, in the whole NG2+ cell population, the NG2+/O4−

oligodendrocyte precursor cells (OPCs) from the NG2+/O4+ pre-
oligodendrocytes, as well as to reveal NG2−/O4+ pre-myelinating
oligodendrocytes (Supplementary Figs. 3a–f, j–l). On these sections, O4
stained glycolipidswere also present in the neuropil, in particular in the
subgranular cortex layers and in WM, where they were revealed on
myelinated fibers (Supplementary Figs. 3a, c, d, f). In cortex and WM,
NG2/O4 immunolabeling disclosed a large population of NG2+/O4+

pre-oligodendrocytes, distinct from the typical NG2+/O4− OPCs
(Supplementary Figs. 3a–f). As demonstrated by morphometric
analysis, in normal cerebral cortex pre-oligodendrocytes outnumbered
the OPCs and accounted for 60.9±18.1% of the total NG2+ cells. On the
other hand, in theWMof these control brains, the pre-oligodendrocytes
only represented 31.8±21.7% of the entire NG2+ cell population
(Supplementary Figs. 3a–f). To accurately evaluate the NG2+/O4− OPC
population, double immunolabelingswere carried outwithNG2and the
OPC-specific marker PDGFR-α (Supplementary Figs. 3g–i). The per-
centage of PDGFR-α+ OPCs accounted for 55.2±20.6% of the total
NG2+ cell population in supragranular and granular layers and for
76.7±11.6% of the entire NG2+ cells in subgranular layers andWM. On
these sections, PDGFR-α staining appeared more concentrated in the
cell body and showeda punctuate pattern onprocesses (Supplementary
Figs. 3g–i). The remaining population of NG2+/O4+ pre-oligodendro-
cyteswas characterized by a large cell body and a longer,more extended
branching than OPCs (Supplementary Figs. 3j, l). In the middle layers of
the cortex and in the WM, several NG2−/O4+ cell bodies and fibers of



Fig. 1. Representative images of cerebral cortex immunolabeled for MBP and MBP/NF. (a–d) MBP staining in normal (a, c) and EAE (b, 39 dpi; d, 20 dpi) occipital cortex, showing a
reduced MBP reactivity in EAE supragranular and granular layers; note in d, scarce, subpial fibers. (e, f) MBP staining in 39 dpi EAE mice showing frontal cortex demyelinated areas
either limited to the outer layers (e, dotted ellipse) or extending throughout the cortex (f, dotted ellipse). (g, h) MBP+/NF+ nerve fibers in layers I and II of normal frontal cortex (g)
compared to “naked” axons (h, green) in the cortex of 39 dpi EAEmice. Scale bars: 30 μm. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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pre-myelinating oligodendrocytes were also evident (Supplementary
Figs. 3c, f, l). Triple immunostainings were carried out with antibodies
to CNPase, MBP andMOG to disclose mature, myelinating oligodendro-
cytes andmyelinated nervefibers. As expected, CNPase+/MBP+/MOG+

oligodendrocytes and myelinated fibers were present in all the
cortical layers as well as in the WM (Supplementary Figs. 4 a–d); in
particular, CNPase staining also identified oligodendrocyte cell bodies
(Supplementary Figs. 4 e–h),whereasMBP andMOG specifically tagged
the myelinated fibers (Supplementary Figs. 4 f–h). In addition to these
general myelin markers, and to better evaluate the amount of mature
Fig. 2. Quantitative analysis in cerebral cortex supragranular/granular layers and subg
immunoreactivity for markers A2B5, NG2, O4, CNPase, MOG, and MBP expressed as mean p
SD) identified by specific markers: A2B5+/NG2− GRPs, A2B5+/NG2+ “transitional” OPCs, N
oligodendrocytes, GST-π+ mature oligodendrocytes. One way Anova and Bonferroni post-te
oligodendrocytes throughout the cortex andWM, single labelings were
also carried out with the oligodendrocyte-specific enzyme GST-π, that
specifically marks the cell body (Supplementary Figs. 5 a–c). Overall,
the largest population of oligodendrocyte precursors described
above appeared to be composed of NG2+ oligodendroglial cells, one
portion of which exhibited NG2+/PDGFR-α+/O4− OPC phenotype and
the other one the more differentiated NG2+/O4+ pre-oligodendrocyte
phenotype.

To highlight the relationship between the NG2+ oligodendroglial
cell population and that of the differentiated oligodendrocytes and
ranular layers/WM in healthy and EAE-affected mice at 20 and 39 dpi. (a) Tissue
ercentage area±SD. (b) Number of cells of the oligodendrocyte lineage (mean/mm3±
G2+/PDGFR-α+ OPCs, NG2+/O4+ pre-oligodendrocytes, NG2−/O4+ pre-myelinating

st analyses: pb0.05, (#) control vs 20 dpi, (*) control vs 39 dpi, and (§) 20 dpi vs 39 dpi.

image of Fig.�2
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astrocytes, NG2/CNPase and NG2/GFAP double immunolabelings
were also carried out (Supplementary Figs. 6a–f). The outcome of
these stainings demonstrated that each of these three markers was
restricted to a morphologically distinct cell type exhibiting a specific
distribution in the cerebral cortex. In particular, the spidery, richly
ramified NG2+ oligodendroglial cells were clearly distinguishable
from the poorly ramified and rounded CNPase+ oligodendrocytes
(Supplementary Figs. 6a–c), and both these oligodendrocyte types
were in turn distinguishable from the typical star-like, GFAP+ cortical
astrocytes (Supplementary Figs. 6d–f).

Immunohistochemical analysis of myelinated fibers in cerebral cortex of
EAE mice

Brain sections from EAE-affected mice sacrificed at 20 and 39 dpi,
defined as “early” and “late” disease, respectively, were analyzed for
the distribution of both MBP and MOG reactivity. In both stages of the
disease, MBP and MOG immunoreactivity appeared significantly
reduced in cerebral cortex and subcortical WM (Figs. 1a, b; 2a). In
the cerebral cortex of EAE-affected mice, together with the diffuse
reduction of MBP, localized areas characterized by a reduced or absent
MBP reactivity were also frequently seen in the form of band-like
subpial demyelination (Figs. 1a–d) and rarely as bounded lesions
either extending up to layer IV (Fig. 1e), or to the subcortical WM
(Fig. 1f). MBP reactivity also appeared significantly reduced in the
supragranular and granular layers of mice in the “late” stage of the
disease (39 dpi) as compared with the “early” stage (20 dpi) (Fig. 2a).
Double stainings with anti-MBP and anti-NF antibodies were also
carried out to ascertain whether the observed areas of myelin loss
corresponded to primary demyelination, which is characterized by a
Fig. 3. Representative confocal microscopy images of EAE cerebral cortex immunolabele
macrophage-like cells in cortex layers I and II at 20 dpi (a) and 39 dpi (b); note in a, a corte
CD45high-reactive macrophage-like cells associated withMBP-reactive fibers at 39 dpi; in d a
relative sparing of axons. In EAE-affected cortex, at both 20 and 39 dpi
the depletion ofMBPwas confirmed and NF+ “naked” axons were still
recognizable (Figs. 1g, h). According to the results described above,
serial sections close to the detected demyelinated cortical areas were
stained with the microglia/leukocyte marker CD45. In the cortex, a
large population of activated microglia cells, identifiable by a low
CD45 expression, was revealed together with spreadmacrophage-like
cells, identified on the basis of a high CD45 expression (Almolda et al.,
2009) (Figs. 3a, b). These CD45high-reactive cells were frequently
associated with demyelinating fibers (Figs. 3c, d; Supplementary
Video 1) and increased during the disease course, while typical
inflammatory infiltrates were never seen around cerebral cortex
microvessels either at 20 dpi or at 39 dpi (Fig. 3a). These observations
demonstrated that a demyelination process occurs in the cerebral
cortex and subcortical WM of the analyzed EAEmice and prompted us
to further investigate the distribution of oligodendrocyte lineage cells
during the disease course.

Immunolocalization of cells of the oligodendrocyte lineage in EAE
cerebral cortex at 20 dpi

Quantitative analysis of double immunolabeled A2B5/NG2 sections
fromEAE-affectedmicedemonstrated that the number of A2B5+/NG2−

GRPs was significantly increased in supragranular and granular layers,
deeper subgranular layers andWM (Figs. 2b, 4a, b), the highest number
of GRPs being observed in subpial cortex areas. Although the number of
A2B5+GRPswas increased in EAE-affectedmice, the total A2B5 staining
of the cortexwasnot significantly different from the stainingobtained in
control cortex (Fig. 2a). This discrepancy could be explained by the
observed reduction of the A2B5 reactivity in the EAE neuropil and
d for CD45 and MBP/CD45. (a, b) CD45low-reactive microglia and CD45high-reactive
x microvessel (v) without signs of perivascular infiltrates. (c, d) High magnification of
macrophage tightly adheres to a nerve fiber (arrow). Scale bars: (a–c) 20 μm; (d) 10 μm.

image of Fig.�3
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neuron nuclei (Figs. 4a, b). As already observed in control brains, a small
number of ‘transitional’OPCswas also identifiable by reactivity for both
A2B5 and NG2 (Fig. 2b). Double immunolabeling for the markers NG2
and O4 revealed an increase of the NG2+/O4− OPCs in the supragra-
nular and granular layers, whereas their number did not change in
subgranular layers and WM. In EAE supragranular layers, these cells
showed an immature morphology, characterized by small, rounded cell
bodies, a few unbranched processes and a high level of NG2 expression
(Figs. 4c–f). The observation of anOPC increase in subpial demyelinated
layers was confirmed by the evaluation of their number by PDGFR-α
staining (5944.68±1075.04 vs 3705.07±1113.44 cells/mm3; p=
0.012; n=5) (Fig. 2b; Supplementary Fig. 7), that also confirmed a
Fig. 4. Representative confocal microscopy images of control and 20 dpi EAE-affected brains
(arrows) are significantly increased in EAE cerebral cortex supragranular and granular lay
ramified NG2+ oligodendroglial precursors (large arrows); arrowheads point to A2B5 staine
OPCs (large arrows) increase significantly during EAE (control 3966.82±957.84 vs EAE 6
numerically stable (control 6178.5±1441.49 vs EAE 7284.72±2579.51); NG2−/O4+ pre-m
arrows), and bushy-like NG2+/O4+ pre-oligodendrocytes (d, f; arrows) are also recognizab
steady state in deep cortex layers and WM (3750.87±1261.84 vs
3886.52±1157.92 cells/mm3; p=0.86; n=5). Unlike GRPs and OPCs,
the NG2+/O4+ pre-oligodendrocytes did not increase in number
(Fig. 2b) but they expressed high levels of NG2 and, especially in
supragranular layers, showed a deeply modified morphology charac-
terized by an enlarged, polymorphic cell body bearing numerous
dendritic-like processes (Fig. 4d). In accordance with the previous NG2
labeling results, the area of immunoreactivity for NG2 was also
significantly increased in supragranular and granular layers (Fig. 2a).
A slight increase of NG2−/O4+ pre-myelinating oligodendrocytes was
observed in all cortical layers andWM(Figs. 2b, 4c–f) andwasparalleled
by the value of O4 immunoreactive cortex areas (Fig. 2a).
immunolabeled for A2B5/NG2 and NG2/O4. (a, b) Small, scarcely ramified A2B5+ GRPs
ers (control 4988.32±607.4 vs EAE 7396.56±1428.76 cell/mm3) together with large,
d neuronal nuclei. In supragranular (c, d) and granular (e, f) cortical layers, NG2+/O4−

590.93±1246.88 cell/mm3), whereas NG2+/O4+ pre-oligodendrocytes (arrows) are
yelinating oligodendrocytes (c-f, arrowheads), unbranched NG2+/O4- OPCs (d, f; large
le. Scale bars: 50 μm.
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To ascertain a possible relation between the increase of NG2+

oligodendroglial precursors and the reduced level of myelination
observed in supragranular and granular cortex layers in “early EAE”,
we morphometrically analyzed NG2, CNPase, MOG, and MBP
reactivity. As compared to the peak observed in NG2 immunoreac-
tivity, myelin markers showed a significant reduction (Figs. 2a; 5a-f),
paralleled by a non-significant decrease in the number of mature
oligodendrocytes identified by GST-π (Figs. 2b; 5g, h). An additional
feature of the EAE cerebral cortex was the presence of transitional
NG2+/CNPase+ pre-myelinating oligodendrocytes (Figs. 6a–c), which
were never seen in control cortex, as well as of polymorphic NG2+

and O4+ doublet cells (Figs. 6d–f) that are considered aspects of
cell proliferation. To better evaluate the presence of an increased
proliferative capacity of the oligodendrocyte precursors during “early
EAE”, double immunolabelings were carried out with NG2 and the
proliferative marker PCNA. The analysis, performed by counting the
percentage of NG2+ cells marked by PCNA, revealed an increase of
proliferation that, in EAE cerebral cortex, accounted for 6.02±0.91%
of the whole NG2+ population vs 3.50±1.27% in control brains
(p=0.0069; n=5) (Figs. 6g, h).

Immunolocalization of cells of the oligodendrocyte lineage in EAE
cerebral cortex at 39 dpi

Comparison between the observed changes in 20 dpi, “early EAE”,
and 39 dpi, “late EAE”, demonstrated that a severe decrease in the
number of precursors of the oligodendrocyte lineage took place in the
“late” stage of the disease. The reduction involved A2B5+/NG2− GRPs,
NG2+/PDGFR-α+ OPCs, and NG2+/O4+ pre-oligodendrocytes, that
showed a statistically significant decreased number as compared with
those in controls and in “early”disease (Fig. 2b). Inparticular, thenumber
of OPCs, that had been demonstrated to increase at 20 dpi, showed a
significant reduction in 39 dpi mice, in both supragranular and granular
cerebral cortex layers (1884.03±804.96 vs 5944.68±1075.04;
p=0.0001; n=5) and subgranular layers and WM (1118.48±397.95
vs 3750.87±1261.84; p=0.0021; n=5) (Fig. 2b). A significant
reduction of mature GST-π+ oligodendrocytes was also observed as
compared to controls, and was paralleled by a further decrease of MOG
and MBP immunoreactivity (Figs. 2a, b). Among the different types of
immature and mature oligodendrocytes, only the differentiated NG2−/
O4+ pre-myelinating oligodendrocytes did not appear quantitatively
reduced (Fig. 2b). Overall, these data indicated that in “late EAE” themain
observed changes consisted of a progressive process of demyelination
together with an arrest of oligodendrocyte precursors proliferation.

Discussion

Neocortical lesions have long been recognized to be present in MS
(Brownell and Hughes, 1962; Greenfield and King, 1936) and to be
prominent in patients with progressive MS (Bø et al., 2003; Geurts
et al., 2009; Kidd et al., 1999). In the past decade, only few, specifically
modeled EAE experiments have demonstrated a cortical involvement
similar to that seen in MS in humans (Merkler et al., 2006; Pomeroy
et al., 2005; Storch et al., 2006), while conventional MOG-induced EAE
in C57BL/6 mice has been extensively studied and has not previously
been documented to display grey matter lesions (Kim et al., 2010;
Zamvil and Steinman, 1990), even if in this model indirect evidence
of cerebral cortex disease has been suggested (Tu et al., 2009; Zeis
et al., 2008). Recently, the histopathological bases of inflammation
and demyelination in the cerebral cortex and corpus callosum have
been described in chronic EAE induced by MOG peptide 35–55 in
C57BL/6 mice (Mangiardi et al., 2011). Interestingly, in this study
demyelinating lesions located in different areas of the cerebral cortex,
as well as structural and functional alterations, have been demon-
strated to mimic cortical and callosal pathologic abnormalities of
progressive MS. Our study confirms the presence of cerebral cortex
demyelinating lesions in the standard MOG-induced EAE mouse
model and extends the analysis to the changes that involve the
oligodendrocyte cell lineage. Areas of subpial demyelination were
disclosed in the form of band-like diffuse myelin reduction and as
bounded areas resembling the general subpial demyelination, type III
and type IV lesions described in the cerebral cortex of progressive MS
patients (Bø et al., 2003; Geurts et al., 2005; Peterson et al., 2001). In
cortical lesions of progressive MS, signs of remyelination have also
been shown (Albert et al., 2007; Patani et al., 2007), however, the
immunomorphological criteria adopted in this study do not allow us
to distinguish between partially demyelinated and remyelinating
fibers, making it impossible to establish whether new wrapping of
demyelinated axons occurs during the phases of the disease under
study. As recently demonstrated, new molecular markers of demye-
lination/remyelination are needed to specifically identify the ongoing
processes (Ma et al., 2011).

Thereafter, we identified and quantitatively evaluated, on the basis
of the study carried out on control brains with a broad panel of
oligodendrocyte markers, the morphological and quantitative
changes that occur in the cells of the oligodendrocyte lineage in
EAE-affected brains. In the control cerebral cortex and subcortical
WM, virtually all the cells of the oligodendrocyte lineage are identified
by their morphology and antigenic phenotype (Supplementary Fig. 8),
the prevalent population being OPCs/polydendrocytes. Other numer-
ically considerable precursors were GRPs and pre-oligodendrocytes;
the former have previously been revealed in the developing brain and
are considered as early progenitors of the oligo-astroglia cell lineage
(Liu et al., 2002; Strathmann et al., 2007). As demonstrated in the
developing murine cerebral cortex, the subpial area is an additional
niche for oligodendrogenesis (Costa et al., 2007). At this site, the
oligodendrogenesis that takes place in adulthood may be reactivated
in EAE conditions and evidence for this reactivation may be afforded
by the increment of GRPs.

Based upon the outcome of our phenotypical study, the large
population of NG2+ cells includes the classically described OPCs/
polydendrocytes,which also show specific reactivity for PDGFR-α, and
encompasses a subset of pre-oligodendrocytes identified by their
coincident O4 expression. In “early EAE”, NG2+ oligodendroglial cells
seem to react to demyelination by pronounced proliferation. The
proliferative response of NG2+ cells has been reported in previous
studies (Di Bello et al., 1999; Keirstead et al., 1998; Polito andReynolds,
2005; Reynolds et al., 2002) and has been suggested to be promoted by
interactions of NG2 with non-myelinated axons (Kucharova and
Stallcup, 2010). In ourmodel, the proliferative attitude of NG2+ cells is
suggested by the presence of NG2+ doublet cells, deemed to be
dividing cells that maintain a differentiated morphology (Ge et al.,
2009; Kukley et al., 2008), and is confirmed bymorphometric analysis
of proliferating precursors identified by NG2/PCNA markers. In “early
EAE”, proliferation of NG2+ cells in cerebral cortex increases two-fold
in the subpial cortex layers, where a more evident and extended
demyelination has also been demonstrated. The emerging data on
proliferation and differentiation capacities of OPCs endorse the
concept of a fundamental contribution of these cells to CNS plasticity
under physiological conditions and during remyelination (Staugaitis
and Trapp, 2009; Tripathi et al., 2010; Zawadzka et al., 2010; Zhu et al.,
2011). As compared with other precursors of the glial lineage, OPCs,
which are present both during brain development and in adulthood,
are extremely plastic andmay respond to the neuralmicroenviroment
by exerting multiple functions, as well as resuming their proliferative
capability (Mangin and Gallo, 2011; Simon et al., 2011; Wigley et al.,
2007). In this view, it is conceivable that during the early phase of MS,
proliferation of OPCs may occur as a response to short-lasting de-
myelination, initiating, together with other mechanisms such as the
release of anti-inflammatory cytokines and redistribution of axon
channels, a repair process (Chang et al., 2000; Hollifield et al., 2003;
Moll et al., 1991). Unlike OPCs, NG2+/O4+ pre-oligodendrocytes
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Fig. 6. Representative confocal microscopy images of EAE cerebral cortex at 20 dpi immunolabeled for NG2 also combined with CNPase, O4, and PCNA. Single channels (a, b) and
merged image (c) of NG2+/CNPase+ transitional pre-myelinating oligodendrocytes (arrows) together with an NG2+ oligodendroglial precursor (large arrow in b and c). (d, e) NG2+

doublet cells (double arrow), note in e the dividing nucleus (arrowhead, better shown in the inset). (f) A doublet cell showing an NG2+/O4+ pre-oligodendrocyte phenotype (double
arrow). (g, h) NG2+ oligodendrocyte precursors labeled by PCNA (note in g a doublet cell, double arrow) as examples of this proliferating population (control 3.50±1.27% vs EAE 6.02±
0.91%). Scale bars: 15 μm.
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remain numerically stable and seem to respond to the cortex damage
by acquiring a hypertrophic, reactive morphology; traces of their
differentiation are revealed by the appearance of an NG2+/CNPase+

transitional phenotype. In “early EAE”, despite the proliferative
response of OPCs to the demyelinating damage, the mature GST-π+

oligodendrocytes show a tendency to reduce and have been suggested
to be unable to resume the myelination program (Keirstead and
Blakemore, 1997).

It is known that cultured OPCs undergo a finite number of cell
divisions, after which they differentiate into more mature oligoden-
drocytes, even when proliferative stimuli are provided in excess
Fig. 5. Representative confocal microscopy images of control and 20 dpi EAE-affected brain
granular (c, d) cortex layers, CNPase+ myelinated fibers diminish in EAE, whereas CNPase+

shown with MOG, together with a prominent network of NG2+ oligodendroglial precursors.
decreased in both EAE cortex and subcortical WM (supragranular and granular layers: contr
control 24992.85±874.86 vs EAE 15276.27±8293.68 cell/mm3). Scale bars: 50 μm.
(Noble et al., 1988; Raff et al., 1988). In fact, in the “late” disease, when
the process of demyelination becomes more evident, the proliferation
potential of precursors seems to become exhausted and an over-
whelming loss of the entire oligodendrocyte lineage takes place. The
number of oligodendrocyte precursors significantly declines along
with that of mature myelinating oligodendrocytes, while pre-
myelinating oligodendrocytes seem to be the only cell type that
remains numerically stable. This can be explained by considering that
at least a subset of the OPCs present at the “early” stage of the disease
may embark upon a differentiation program to generate, in “late EAE”,
the population of pre-myelinating oligodendrocytes that, however,
s immunolabeled for NG2/CNPase, NG2/MOG, and GST-π. In supragranular (a, b) and
oligodendrocyte bodies are still in place; (e, f) a similar degree of demyelination is also
(g, h) When compared with controls, the number of GST-π+ oligodendrocyte bodies is
ol 8252.26±1582.27 vs EAE 6067.12±1976.91 cell/mm3; subgranular layers and WM:

image of Fig.�6
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appears to be unable to sustain the decreasing population of mature
oligodendrocytes.

Different mechanisms have been suggested to sustain the MS/EAE
pathogenesis and outcome, including a reduction of differentiation-
inducing signals, the presence of local inhibitors of oligodendrocyte
differentiation and/or axon-wrapping capacities (Butovsky et al.,
2006; Chen et al., 2009; Höftberger et al., 2010; Huang et al., 2011;
Jurynczyk et al., 2008; Kremer et al., 2011; Mi et al., 2005), modified
interactions with the dystrophic axons (Chang et al., 2002; John et al.,
2002). In this context, our results confirm that a defect in the
differentiation program may specifically intervene in critical steps of
oligodendrocyte maturative progression (Kuhlmann et al., 2008), and
pinpoint thematurational block in a late differentiation stage, possibly
coinciding with pre-myelinating oligodendrocytes.

Overall, the observations carried out in this chronic EAE model
identify a two-phase response of oligodendrocyte precursors, provide
an additional phenomenological basis for a better understanding of
the pathogenesis of progressive MS, and suggest the proliferative
response of OPCs during “early EAE” as a potential for remyelination,
as well as offering indications underlining the importance of imple-
menting early therapeutic strategies aimed at impeding the progres-
sion to extensive demyelination.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.nbd.2011.05.021.
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