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ABSTRACT
Sustainable landslide mitigation requires appropriate approaches to
predict susceptible zones. This study compared the performance of
Logistic Model Tree (LMT), Random Forest (RF) and Naïve-Bayes
Tree (NBT) in predicting landslide susceptibility for the upper
Nyabarongo catchment (Rwanda). 196 past landslides were mapped
using field investigations. Thus, the inventory map was split into
training and testing datasets. Fifteen predisposing factors were ana-
lysed and information gain (IG) technique was used to analyse the
correlation between factors and observed landslides. Therefore, the
area under receiver operating characteristic (AUROC) with other
statistical estimators including accuracy, precision, and root mean
square error (RMSE) were employed to compare the models. The
AUC values were 78.7%, 80.9% and 82.4% for RF, LMT and NBT
models, respectively. Additionally, the NBT produced the highest
accuracy and precision values (0.799 and 0.745, respectively).
Regarding RMSE values, the NBT model achieved an optimized pre-
diction than RF and LMT models (0.301; 0.428 and 0.364, respect-
ively). The results of the current study may inform further studies
and appropriate landslide risk reduction and mitigation measures.
They can also be instrumental for policy and decision making in
regards with natural risk management.
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1. Introduction

Landslides are among the greatest deadly natural hazards throughout the world
(Chen et al. 2018a; 2018b). Thus, the losses and fatalities induced by landslide haz-
ards are continuously numerous. Most of landslides are generally provoked by climate
change effects and anthropogenic factors (UNISDR 2016). Landslides are conse-
quently very common in most countries especially in mountainous areas, which are
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either highly susceptible or vulnerable. It is therefore required to put in place strong
and appropriate measures to control and minimize all impacts induced by landslides.

As previously confirmed by studies (Claessens et al. 2007; Pellicani et al.2014;
Pourghasemi et al.2018), the way to deal with landslide hazards, is to map the par-
ticular volume and type of their spatial likelihood in relation with their occurrence
within a given area. Hence, this is mostly termed as susceptibility mapping
(Corominas et al. 2014; Paul�ın et al. 2016; Tseng et al.2015). This is normally com-
posed of different aspects such as conditioning factors, landslide categories, failure
mechanisms and the coverage of affected areas (Abella and Van Westen 2007).
Therefore, any study of landslide susceptibility modeling has to consider those high-
lighted parameters. The selection of approaches and conditioning factors has to con-
sider categories of landslides, analysis levels, study area features and availability of
datasets (Zêzere et al. 2017). Additionally, for any type of landslide, the susceptibility
has to be evaluated individually since different categories of landslide hazards present
special uniqueness linked to different threshold conditions based on the controlling
factors (Tseng et al. 2015).

At present, there exist different classes of landslides in the literature, ranging from
simple to very complex (Cruden and Varnes 1996; Nsengiyumva et al. 2019). These
include deep-seated, falls, topples, rotational, flows, lateral spreads, complex, shallow
and translational landslides among others (Pradhan et al. 2011). Landslides are typically
triggered due to natural slope failures that collapses devastatingly. These hazards usually
pose a grave threat to lives, properties, environment, and infrastructure. In many cases,
landslides are mainly triggered in mountainous and steep regions in prolonged period of
intense rainfall events (Godt et al. 2008; Valentino et al. 2014). Thus, precipitation
increases the pore pressure in the soil, and the variations in pore pressures are extremely
variable due to the hydraulic conductivity, topographic nature, and further soil proper-
ties. In addition to soil physical properties, land-cover changes due to anthropogenic fac-
tors also affect the rate and spatial dispersal of landslides. Particularly, forests removal,
inappropriate land use practices and cultivation on fragile hill and steep slopes are
among the major triggers of mass movements (Akgun and Erkan 2016; Bordoni
et al. 2015).

Throughout the previous decades, landslide susceptibility modeling has attracted
the attention of various scholars around the world (Chen et al. 2017a; Ramani et al.
2011; Zêzere et al. 2017), however, landslides still constitute a global danger.
Moreover, numerous methods and techniques exist for susceptibility mapping. They,
therefore, range from qualitative approaches to quantitative models (Juliev et al. 2019;
Zêzere et al. 2017). The qualitative approaches are mainly grounded on expert’s opin-
ion, and they include magnitude frequency, active mapping, Boolean logic, fuzzy logic
(Abella and Van Westen 2007; Carrara et al. 1991; Carrara et al. 1999; Cervi et al.
2010). Conversely, the quantitative approaches are built on statistical analysis (bivari-
ate and multi-variate methods) and deterministic theories (SINMAP, TRIGRS and
SHALSTAB methods). Additionally, there exist another category of approaches that
are identified as semi-quantitative, and they include analytic hierarchy (AHP), the
heuristic methods and spatial multi-criteria evaluation (SMCE) (Pisano et al. 2017).
Within the very recent years, another category of methods has been introduced for
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modeling landslide susceptibility. This is composed of machine learning and data
mining techniques such as the logistic regression models (LRM), support vector
machines (SVM), artificial neural network (ANN), and decision tree models (DT)
(Chen et al. 2017b). Generally, it seems that the machine leaning algorithms enriched
the quality and accuracy of generated susceptibility maps (Chen et al. 2019) and these
techniques were confirmed to achieve improved performance than classical methods
(Chen et al. 2019). Though various methods exist, the prediction of landslide suscep-
tibility is always challenging across the globe (Dou et al. 2018).

The literature emphasizes that various methods have been extensively compared to
study susceptibility throughout the world (Chen et al. 2018a; Juliev et al. 2019).
Qualitative models as well as data-driven models namely statistical approaches have
been explored and applied to study landslides through comparative analysis (Dou
et al. 2018; Van Den Eeckhaut et al. 2010). Thus, it was concluded that generated
maps were precise and accurate. By comparing qualitative and data-driven techniques,
it was ascertained therefore that data-driven approaches generate very objective out-
comes and reduce the subjectivity whilst giving weights to conditioning factors. They
yield more objective and reproducible outcomes in comparison with qualitative meth-
ods (Dou et al. 2018; Yalcin 2008).

Previous studies on landslide susceptibility mapping also compared various data-
driven models including multivariate and bivariate techniques (Lanfredi Sofia
et al.2018). Different comparative studies showed that multivariate models perform
better than bivariate methods. Mostly, the susceptibility analysis using multivariate
statistics evaluates the correlation between landslide spatial distribution and control-
ling factors. Furthermore, the bivariate statistical analysis relates independently each
conditioning factor with the landslide distribution. Thus, weights are assigned to con-
ditioning factors based on landslide density. Additionally, within recent comparative
studies on landslide susceptibility modelling, statistical models were applied in com-
parison with machine learning techniques (Chen et al. 2018a; Goetz et al. 2015).

Furthermore, for susceptibility study, various studies made an extensive compari-
son between data-driven models and deterministic models (Akgun and Erkan 2016;
Zizioli et al. 2013; Ciurleo et al. 2017). Typically, deterministic models produced a
slight differentiation in modeling landslide susceptibility compared to data-driven
models (Paul�ın et al. 2016; Pourghasemi et al. 2018). Presently, the deterministic
models proved rather promising approaches in modelling landslide susceptibility.
However, the deterministic methods require extensive soil datasets and they proved
not appropriate for large areas or where there is little data (Chen et al. 2017c).

Current literature discloses that different models have been compared to study sus-
ceptibility across the globe. However, less comparative analysis was done between
recent and novel GIS-based machine learning approaches in predicting landslide sus-
ceptibility especially for Africa. The application of modern approaches in predicting
spatial probability of landslides is essential in some African areas since the higher
accuracy of susceptibility maps may influence land management, planning and pro-
tection policies in developing countries (Bui et al. 2017; Bui et al. 2016). Additionally,
it is very useful to investigate the comparative analysis among varied models to
achieve excellent performance and reasonable results for susceptibility mapping.
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Thus, the comparison of methods helps to highlight the advantages and limitations of
models in producing landslide susceptibility maps (Ding et al. 2016). As ascertained
by Lanfredi Sofia et al. (2018), the absence of comparative analysis of susceptibility
methods compromises their reliability and may also cause their misuse. Therefore, to
bridge the above mentioned deficiency, the present research intends to explore and
analyse the performance and predictive capability of three GIS-based machine learn-
ing techniques. These include the random forest (RF), the logistic model (LMT) as
well as the naïve-bayes tree (NBT) in predicting landslide susceptibility for the upper
Nyabarongo catchment of Rwanda. The present study represents indeed a novel effort
of comparing susceptibility modelling analysis using machine leaning simulations for
Africa and the study area. Furthermore, this study evaluated and compared the results
using different statistical estimators including the receiver operating characteristics
(AUROC), root mean square error (RMSE), accuracy and precision.

2. Study area

The current study was conducted in the south-western Rwanda, and covered the entire
upper Nyabarongo catchment (Figure 1). The area is mostly dominated by hills and val-
leys, and it is among the steepest areas in the country (Ndayisaba et al. 2016;
Nsengiyumva et al. 2018). This region has a tropical climate though the temperature
tends to decrease because of high altitude. Thus, this situation influences rainfall aspects
and the average annual precipitation varies between 1000mm to 1600mm/year

Figure 1. Location of the study area and the landslide inventory map.

GEOMATICS, NATURAL HAZARDS AND RISK 1253



(Nsengiyumva et al. 2018; Nyesheja et al. 2019). It is located in a heavy rainfall area
comparing to other parts of Rwanda.

Geomorphologically, the upper Nyabarongo catchment belongs to the Congo-Nile
ridge region of Rwanda. Generally, the study area represents the hilly land of Rwanda
(Figure 1) and extends over landslide-prone and hilly areas with high elevation
stretching between 1398.26m and 2944.92m above sea level. Largely, the study area
has an elevation rising from east to western part and this becomes a major cause of
landslide hazards.

This mountainous terrain is located within the east of the Kivu Lake covering a
total area of about 3,743.5 km2 with a perimeter of 410 km. Therefore, the area is
positioned within 1�500–2�200 S latitude, 29�100–29� 40’E longitude (Figure 1).
Entirely, the upper Nyabarongo catchment is dominated by six types of land use
classes, namely forestland, cropland, built up land, grassland, wetland and
water bodies.

Topographically, the upper Nyabarongo catchment is a landslide-prone zone which
presents an appropriate individuality to explore and make comparison of the machine
learning simulations in predicting susceptibility. Landslides have recently become the
highest frequent and devastating hazard in the area under investigation (MIDIMAR
2016, 2018). They therefore induce massive devastations and fatalities. Also, as
reported by Rwandan Government through MINEMA, from 2011 to May 2015, 124
human lives were lost due to natural hazards including landslides, with injuries and
about 897 houses completely demolished (MIDIMAR 2018). In 2016 (May alone),
landslides killed 35 people, and 26 were injured while 67 road segments and 29
bridges were completely destroyed (Nsengiyumva et al. 2018). From January to
December 2018, landslides and other rainfall-induced hazards took about 234 lives
with 218 injuries, demolished 15,264 family houses and 9,412 of crops in hectares,
damaged infrastructure facilities (31 and 52 facilities for road sections and bridges
respectively), completely destroyed 87 school rooms and killed 797 livestock
(MIDIMAR 2018). Most of these damages were recorded in Nyabarongo vicinity.
This background information about the physical settings of the upper Nyabarongo
catchment zone makes it an ideal case study. Despite the high frequency, intensity
and magnitude of landslide hazards, no comparative analysis using novel simulation
techniques (LMT, RF and NBT) has previously been done to predict the spatial likeli-
hood of landslides in the upper Nyabarongo-Catchment of Rwanda. Therefore, this
background information confirms the rationale for authors to select the area for sim-
ulating the three models.

3. Datasets and methodology

3.1. The inventory map

It was confirmed by previous studies that a landslide inventory is indispensable for
susceptibility modelling (Corominas et al. 2014; Pham et al. 2017; Van Tien et al.
2018). It is therefore made of a compilation of locations where landslides occurred in
past and their features. This comprises of areas of previous and current landslides
and can display locations, time of occurrence, landslide types, frequency and intensity
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of occurrence, scale and extent, mechanisms of failure, causal-related factors, damages
and effects induced (Calvello and Pecoraro 2018; Chen et al. 2019). Generally, it is
assumed that circumstances that caused past landslides, may be the same to trigger
future landslide occurrences (Nsengiyumva et al. 2018). Thus, past landslide locations
help to identify and recognize the correlation between historical landslide events and
predisposing factors (Chen et al. 2018a; Chen et al. 2018b; Nsengiyumva et al. 2018;
Youssef et al. 2016).

In this study, information about locations of past landslides and non-landslide
locations was collected from different sources including both primary and secondary
data sources. These included reports from ministries and other agencies, databases,
websites (www.minema.gov.rw) and extensive field investigation from February to
December 2019 in the catchment zone to validate landslide locations. Therefore, a
total of 196 past landslide events (1997-1999), were mapped as points (x, y coordi-
nates) within the upper Nyabarongo Catchment of Rwanda (Figure 1) using the GPS
devices. These landslides were characterized by an average length of about 67m.
Moreover, their extent was ranging between 14 and 7089m2, with an average exten-
sion of about 473m2. The slide surface depth ranged between 0.90m and 1m. The
slide surface depths vary according to the location of the landslides, characteristics of
the soil, land use/cover types and other anthropogenic aspects.

Through field visits, the authors have also detected that big part of past landslides
in Nyabarongo catchment occurred on embankments alongside roads and in cut-
slopes, within poorly cultivated and uncovered lands among others (Figure 2e). The
area is mostly affected by both translational and rotational landslides as well as shal-
low landslides involving soil at different depths. To complement the field datasets
and other collected information, authors have conducted few interviews with local
residents and indigenous knowledge holders within the hazard-prone zones in the
area under investigation.

The authors have randomly split the inventory map into training dataset for model
building and validation/testing dataset for model performance validation. As confirmed
by Dou et al. (2019) the model performance is validated by splitting the dataset into two
parts. Nonetheless, there is no universal rule for selecting the ratio of testing and training
dataset (Pradhan and Lee 2010). The current study employed a random proportion of
75% landslide locations (equivalent to 147 landslide locations) to build the models
whereas 25% (49 landslide events) were used for model performance evaluation and sus-
ceptibility map validation (Figure 1g). Equally, random non-landslide sites were col-
lected within the study area to derive the three final susceptibility maps. The inventory
was extracted and split into training and validating points using GIS software environ-
ment, ArcMap 10.3 (Youssef et al. 2016; Zêzere et al. 2017).

3.2. Landslide conditioning factors

For any susceptibility study, it is mandatory to consider predicting factors which may
be natural or man-made. The factors normally inform what may have led to slope
instability in the past. Studies confirmed that landslides can be triggered by similar
causes that lead to instability in the past (Abella and Van Westen 2007).
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For the current study, fifteen landslide factors were selected and employed to pre-
dict susceptibility namely the normalized difference vegetation index (NDVI), slope
angle, distance to roads, slope aspect, elevation, profile curvature, plan curvature, soil
depth, lithology, soil texture, land use/land cover (LULC), distance to rivers, wetness
index of the topography (TWI), topographic factor (LS) and precipitation. These were

Figure 2. Landslide conditioning factors: (a) Aspect; (b) Slope angle; (c) LS, (d) TWI, (e) elevation,
(f) Soil texture, (g) Lithology, (h) LULC, (i) Rainfall, (j) Distance to roads, (k) Distance to rivers/
streams, (l) Plan curvature, (m) NDVI, (n) Soil depth, (o) Profile curvature.
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regarded as causal factors of landslide occurrence in this case study and will be
defined in detail in the following section. The literature confirms that no universal
rule is followed in selecting landslide conditioning factors for susceptibility modelling
(Chen et al. 2017d; Pham et al. 2017).

To predict susceptibility using machine learning approaches, authors have to iden-
tify the actual predisposing factors that might have contributed to slope instability in
the area (Nsengiyumva et al. 2018). This is therefore significant since it can help to

Table 1. Summarized spatial database for susceptibility modeling.

No. Dataset/Factors Data Source
Spatial resolution/

Desription
Data structure/

format

1 Landslide inventory map Fieldwork in Rwanda in 2018
(x,y coordinate points),
Secondary data sources

1.400.000 scale Vector dataset

2 Shuttle Radar Topography
Mission (STRM) digital
elevation model ( DEM)

United States Geological
Survey Earth Explorer:
http://earthexplorer.
usgs.gov/

30� 30m Raster

3 Rwanda Land cover land use
(LCLU)
Normalized Difference
Vegetation Index (NDVI)

Regional Centre for Mapping
of Resources for
Development (RCMRD):
http://apps.rcmrd.org/
landcoverviewer/
Landsat-8 OLi images
provided by the United
States Geological
Survey (USGS)

30� 30m Raster

4 Lithology Geological map of Rwanda
(Rwanda Ministry of
Environment):
www.moe.gov.rw

30� 30m Raster

5 Soil datasets (Soil texture,
Soil depth)

Rwanda Ministry of
Agriculture (MINAGRI:
www.minagri.gov.rw),
Rwanda Agriculture Board
(RAB: http://www.rab.
gov.rw)

30� 30m Raster

6 Road network datasets
(Distance to roads)

Rwanda Transport
Development Agency/
Ministry of Infrastructure
(http://www.rtda.gov.rw)

30� 30m Raster

7 River/stream networks
(Distance to rivers)

Rwanda Ministry of
environment
(www.moe.gov.rw)

30� 30 Raster

8 Precipitation datasets (mean
annual precipitation:
mm/year)

Rwanda meteorological
Agency
Meteorological stations
data (meteorwanda.gov.rw)

Mean annual rainfall
for 20 years
(1998–2018)

Raster

9 Catchment
boundaries/shapefiles

Rwanda Ministry of
Environment (www.moe.
gov.rw)
Rwanda Environment
Management Authority
(www.rema.rw)

1.400.000 Scale Vector

10 Study area Shapefiles/
boundaries (updated
shapefiles of 2015)

Ministry of Environment,
Rwanda Water and
Forestry Authority (www.
rwfa.gov.rw)
Rwanda Land Management
and Use Authority (www.
rlma.rw)

1.400.000 scale Vector
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generate reasonable results (Guzzetti et al. 2000). The selection of conditioning factors
(Table 1) was based on data availability, landslide categories, modelling methods and
objectives of the study. Moreover, the Rwanda risk management plan, disaster man-
agement policy, risk atlas, field investigations and the previous studies on landslide
(MIDIMAR 2015) were referred to in order to deduce the fifteen conditioning factors
used in this study.

The 30m spatial resolution STRM DEM was obtained from the United States
Geological Survey (USGS), using ArcMap 10.3 of GIS environment (Maes et al.
2018). From this dataset, seven factors were produced including elevation, TWI, plan
curvature, slope angle, aspect, profile curvature and the LS. Elevation is confirmed
very important for susceptibility modelling since it indicates the deviations of heights
in maximum and minimum terrains (Chen et al. 2019). It has strong correlation with
landslide occurrence as it impacts on the topographic nature, temperature and vegeta-
tion structures, moisture and anthropogenic activities (Chen et al. 2019). All these
conditions are, therefore, linked with the stability of the slope in line with susceptibil-
ity. Slope angle and slope aspect were considered in this study as they are important
and common contributing factors to the occurrence of hazards. Consequently, for the
present study area, no historical landslide events were recorded in the very low slope
angles (Figure 2b). For slope aspect, it indicates the moisture of the topography based
on precipitation patterns and solar radiation (Pham et al. 2018). Thus, it was con-
firmed by previous studies that slope category influences characteristics of slope fail-
ure (Chen et al. 2017b). Furthermore, curvature was used due the fact that it controls
the water flows which influence the occurrence of landslide hazards within the area
(Chen et al. 2018a). The literature confirms therefore that concave slopes are more
unstable than convex slopes (Montrasio et al. 2012; Pourghasemi et al. 2018)

Generally, the curvature is considered for susceptibility prediction due to its values
which denote various erosivity levels of water, runoff settings and topographical fea-
tures of the area (Dou et al. 2019). For the present study both profile and plan curva-
tures were used to derive susceptibility maps for the upper Nyabarongo Catchment in
Rwanda (Figure 2l and o). Additionally, the TWI which is also considered as a
widely-applied landslide causal-related factor was used for this study (Figure 2d). The
TWI was calculated using Equation 1 as follows:

TWI ¼ ln
a

tanb

� �
(1)

Where b ¼ the slope angle (radiant) and a denotes the flow accumulation towards a
point. Thus, the values of TWI for the Nyabarongo were computed using GIS software
environment, ArcMap 10.3. The LS factor describes the length and steepness the slope in
a given area (Amanambu et al. 2019). LS can explain the impact of topography on the
occurrence of landslides. This factor has been considered for susceptibility maps’ gener-
ation for this study. It is therefore expressed using Equations 2, 2a, 2 b and 3:

Li:j ¼
ðAi:j�in þ D2Þmþ1�Amþ1

i:j�in

Dmþ2:Xm
i:j:ð22:13Þm

(2)

1258 J. B. NSENGIYUMVA AND R. VALENTINO



m ¼ b
1þ b

(2a)

b ¼ sin h=0:0896

3ð sin hÞ0:8 þ 0:56
(2b)

Si:j ¼
10:8 sin hi:jþ 0:03, tan hi:j<9%
16:8 sin hi:j� 0:50, tan hi:j� 9%

n
(3)

With Li.j denoting the length factor of the slope for the grid cell (i.j); D stands for the
size of the grid-cell (m); Xi.j is given by (sin ai.j þ cos ai.j); ai.j means the direction of
aspect for the grid-cell (i.j); also Ai.j�in stands for the flow accumulation at the inlet
(m2) of a grid (i.j). Additionally, the length of the slope m is related to b ratio of rill
erosion to interrill erosion; and h means the slope in degrees (Amanambu
et al. 2019).

LULC was proved a very imperative susceptibility modelling factor (Pisano et al.
2017). Studies have confirmed that land use is highly correlated with mass wastes
(Guzzetti et al. 2000; Persichillo et al. 2017). To apply this factor for the present
study, the authors produced the updated LULC map of 2017 with 30m spatial reso-
lution (Figure 2h). This was derived using datasets obtained from landsat-8 OLI
(U.S.G.S.) through the global visualization toolset. To achieve this, the authors used
the Envi 5.3 software environment and the likelihood (maximum) classification
method was applied. After radiometric adjustments and all other necessary correc-
tions, the authors classified the LULC map based on the prior RCMRD classification
for the central-eastern Africa region. Furthermore, the current study applied the
U.S.G.S. method, type one for the classification. Thus, the area was categorized into
six land cover/land use types (Figure 2h). Additionally, the accuracy assessment was
conducted using sixty points randomly selected for each land use type from the
ground reference data. These were then overlaid to a classified map image for verifi-
cation and validation. Overall, the suitable accuracy of 91.6% was reached for the
study area. The derived LULC map revealed that the cropland class occupies about
67.9% of the study area (Figure 2h).

Moreover, lithology plays a big role in analysing the slope stability. In many cases,
landslides occur within lithological zones with lowest strength and higher moisture
content (Chen et al. 2017a). The lithology factor was derived from the available geol-
ogy map of Rwanda (1:100,000) with 30m spatial resolution (RNRA 2015). The soil
data were acquired from the Rwanda Ministry of Agriculture (MINAGRI 1995; RAB
2000). These datasets were generated from 1995 and 2000 national soil studies (Hengl
et al. 2015). The datasets were used to derive the two conditioning factors used for
this study namely soil texture and soil depth (Figure 2n). For rainfall conditioning
factor, the authors utilized mean annual rainfall map for 20 years (1998-2018) pro-
duced from meteorological data of the investigated area.

These data were provided by the Rwanda Meteorological Agency (meteorwanda.-
gov.rw). It is largely confirmed that the likelihood of a landslide to happen largely
depends on heavy or prolonged rainfall (Chen et al. 2017c). This is a fundamental
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landslide trigger based on its capability to raise the levels of ground water as well as
water pore pressure increases (Ding et al. 2016).

The NDVI factor was used for this study (Figure 2m, Table 1). This has become
very prevalent in landslide susceptibility mapping studies across the globe (Chen
et al. 2017d). NDVI measures the vegetation level in the study under investigation.
Authors used landsat-8 to extract NDVI factor as expressed by Equation 4:

NDVI ¼ ðNIR�RÞ
ðNIRþ RÞ (4)

where NIR¼ the near infrared band, R¼ the red band within the electromagnetic
spectrum. Therefore, NDVI values ranges between �1 and 1 with positive values
representing vegetated ground. For this study, distance to roads and distance to rivers
were considered as landslide factors for this study (Figure 2j and k; Table 1).

3.3. Landslide predicting factors selection

It is very important to use appropriate techniques in selecting proper factors for sus-
ceptibility modelling. As confirmed by studies (Chen et al. 2018a; Zêzere et al. 2017),
conditioning factors selection is a very useful phase that helps to avoid noisy factors
that may cause the model confusion. The quality of the final maps is not only
dependent of employed models but also on the qualitative status of used datasets
(Van Westen et al. 2013). This step increases the performance and predictive fitness
of the models. Thus, different techniques were introduced in the literature for condi-
tioning factors selection. They include information gain ratio, consistency, gain ratio,
chi-square statistics and others (Pham et al. 2017). For the current research, the infor-
mation gain (IG) was used to assess the capability of the predicting factors. Thus, the
selection of predicting factors reduces inappropriate and useless input datasets to
increase the modelling accuracy (Chen et al. 2018a).

The IG has been extensively applied for various researches (Bui et al. 2017; Chen
et al. 2018b). The information gain value for any conditioning factor is determined
using Equations 5 and 6 below:

IGðY, XiÞ ¼ HðYÞ�HðYjXiÞ (5)

with H(Y) standing for the value of entropy for Yi whereas H (YjXi) ¼ the Y entropy
after relating the landslide conditioning factor values (Bui et al. 2016).

Info P1, P2, . . . :Pn½ �ð Þ ¼ entropy P1, P2, . . . :Pnð Þ (6)

where P1, P2…Pn represent the instance numbers for each factor’s class, and the
value of Pi is given by the division of its value by the sum of all Pi. Generally, the
landslide factors are not equally correlated to the landslides (Table 2).
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3.4. Landslide susceptibility modeling

Various approaches exist to map landslide susceptibility (Chen et al. 2017a, b; Chen
et al. 2018a). Only three of these methods (LMT, RF, and NBT) have been selected
because they were suitable for the present study area. Therefore, the authors applied
the conditioning factors and the three models for this study based on the data avail-
ability, objectives of the study, landslide type and on the study area scale. Briefly, the
comparison of the three established models for a landslide-prone area increased the
knowledge on GIS-based machine learning techniques in predicting landslides for
African continent as whole and for the study area in particular.

3.4.1. Logistic model tree (LMT)
The LMT is a landslide susceptibility mapping model that has been extensively
applied for susceptibility studies (Chen et al. 2019; Dou et al. 2019). This model com-
bines a linear logistic regression with a decision tree in order to leverage their advan-
tages (Chen et al. 2018b; Karabulut and Ibrikci 2014). Thus, at any given tree node,
authors have to employ the LogitBoost algorithm to fit functions of the logistic
regression (Chen et al. 2018a; Karabulut and Ibrikci 2014). For landslide susceptibility
modelling, it is advisable to determine the probability for each class of the condition-
ing factor using Equation 7. This is therefore done based on the principle that there
are x vectors and C classes in each susceptibility dataset (Karabulut and Ibrikci 2014):

pðcjxÞ ¼ eFcðxÞPc
n¼1 e

FnðxÞð Þ (7)

Where Fc(x) denotes the linear regressions functions, C¼ the number of classes. Therefore,
the fitness of Fc(x) is performed by applying the least squares technique. Moreover, the total
sum of Fc(x) for all classes must be equal to 0 as expressed with Equation 8:

Table 2. Significance of landslide predisposing factors using IG method.
No. Conditioning factor Average merit (AM) Standard Deviation (SD)

1 Land use land cover 0.106 ±0.011
2 Slope angle 0.088 ±0.006
3 Elevation 0.055 ±0.008
4 Distance to roads 0.051 ±0.008
5 Rainfall 0.039 ±0.004
6 Aspect 0.023 ±0.012
7 Lithology 0.016 ±0.009
8 TWI 0.011 ±0.005
9 Soil texture 0.009 ±0.013
10 NDVI 0.007 ±0.009
11 LS 0.004 ±0.007
12 Distance to rivers 0.003 ±0.013
13 Soil depth 0.001 ±0.015
14 Plan Curvature 0.000 ±0.000
15 Profile curvature 0.000 ±0.000
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Xc
n¼1

FcðxÞ ¼ 0 (8)

The logistic model tree uses the functions of logistic regression to estimate the prob-
ability value for each class of the conditioning factor (Karabulut and Ibrikci 2014). It
is therefore a probability model capable of handling uncertainties. To estimate the fit-
ness using LMT, the LogitBoost applies maximum likelihood for the determination of
the least possible deviations between both observed and predicted values (Chen
et al. 2018a).

3.4.2. Random Forest model (RF)
The RF model consists of an ensemble learning approach that associates different
decision trees for landslide to spatially predict susceptibility for a given area (Ayala-
Izurieta et al. 2017; Dou et al. 2019). As previously stated by studies on landslide
mapping, the RF method can be characterized as a collection of decision and random
trees (Chen et al. 2018a). Each tree is dependent on the values of random vectors
equally distributed among all forest’s trees.

For landslide susceptibility mapping, each node of normal trees can be split using
the perfect split for all landslide predicting factors (Chen et al. 2017d). However, for
the RF model, every node is divided by using the best split in a subset of factors
selected randomly by the node. Therefore, based on the RF algorithm, the smaller the
value, the better the split for the node in susceptibility modelling (Kausar and Majid
2016). Naturally, a random vector ik within the RF algorithm, is independently pro-
duced from the prior random vectors across all the trees whereby every tree is gener-
ated by random vector ik and training datasets. The outcomes of this method are
represented by the groups of tree classifiers h (x, ik), k¼ 1, 2, … n at input x vector
(Chen et al. 2019). For the present study, ik represents the conditioning factors for
susceptibility simulation. The RF entailed two categories of trees including both non-
landslide and landslide, and each of them was established from fifteen ran-
dom features.

Basically, the generalization error (GE) is defined using Equation 9 in a RF algo-
rithm (Chen et al. 2019; Kausar and Majid 2016)

GE ¼ Px, yðmgðx, yÞ<0Þ (9)

whereby x,y denote the conditioning factors and Pxy indicates the probability over
both x and y space, while mg¼ the margin function as expressed using Formula 10:

mgðx, yÞ ¼ avkjðhkðxÞ ¼ yÞ�maxj6¼yavkjðhkðxÞ ¼ jÞ (10)

At a random vector, the margin function (mg) determines to which extent the num-
ber of votes exceeds the average. Thus, I(�)¼ the indicator function (Chen
et al. 2019).

The Random Forest method has been a predominant approach for determining
suitable but unseen patterns among huge datasets (Chen et al. 2018a).
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3.4.3. Naïve-Bayes tree model (NBT)
The Naïve-Bayes tree model (NBT) is considered a hybrid algorithm (Chen et al.
2018a). On each tree’s leaf node, NBT consists of decision tree classifiers and Naïve-
Bayes. Furthermore, NBtree is a generative classifier for susceptibility prediction
(Tsangaratos and Ilia 2016). The NBT was introduced in 1996 and has become one
of the commonly applied machine learning approaches. It is mostly built on a tree
classification like in hierarchy (Pham et al. 2017; Pham et al. 2016).

Generally, Bayesian classification consists of a procedure of estimating the new
observation probability that belongs to a predefined category, by using a probability-
based method (Chen et al. 2019). This method is built on Bayes’ theory that takes all
attributes as independent to maximize the posterior probability for determining the
classification (Pham et al. 2018). Furthermore, the NBT is considered as a classifica-
tion tree method, but it comprises both leaves and nodes. The previous studies con-
firmed that the performance of NBT is far better than Naïve Bayes and decision tree
(Dou et al. 2019).

The probability is therefore expressed by Equation 11:

PðCjjXÞ ¼
PðXjCJÞ � PðCjÞ

PðXÞ (11)

p(CjjX) means the probability of the observations that are unkown while X belongs
to Cj category which is known as the posteriori probability; also, p(XjCj) ¼ the cat-
egory Cj given probability, and observation that are unknown belong to this category,
p(Cj) denotes the prior probability the unknown observation X to be observed in cat-
egory Cj, p(X) represents the prior probability of the unknown observation and X is
the same for each category Cj.

For k landslide related variables, yj stands for the analysis of the Boolean output
for susceptibility analysis, and describes both landslide and non-landslide prediction.
Tien Bui et al. (2016) ascertained that Equation 12 may be applicable to decide and
choose the class with maximum posterior probability.

Yj ¼ argmaxPðYjÞ
Yk
i¼1

P
Xi

Yj

� �
(12)

Where P(yj) stands for yi prior probability which may be calculated following the
ratio of the observations with yj class output in the training datasets, j¼ the non-
landslide or landslide for susceptibility modelling while k¼ the overall number of
cases. Besides, P(xi/yj) denotes the conditional probability which is computed using
Equation 13.

P XijYj
� � ¼ 1ffiffiffiffiffiffiffiffi

2pa
p e

�ðxi�gÞ2
2a2 (13)

Where g ¼ the mean and ᾳ represents the standard deviation of xi.
Generally, for the mapping of landslide susceptibility using NBT model, a tree

growing follows the selection of the attribute measure following the concept of
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entropy which is taken as the degree of disorder (Chen et al. 2017a). Assume that
given cases are represented by D and jDj is the total of all the cases. The cases can
therefore be categorized into m classes whereby: Di (i¼ 1, 2,… .m). Thus, jDij ¼ the
number of the cases belonging to the Di class. To calculate the expected entropy for
D classification, Formula 14 is applied:

EntropyðDÞ ¼ �
Xm
i¼1

ðjDij=jDjÞlog2 ðjDij=jDjÞ½ � (14)

with the partitioning of D set on attribute A (having z number of values), the
expected entropy is summarized with Equation 15:

EntropyAðDÞ ¼ �
Xz
j¼1

jDjj
jDj � Info Djð Þ (15)

At this stage, the difference between Entropy (D) and Entropy A (D) is considered as
the Information Gain (InforGain), and its value helps to determine the split using
Equation 16:

InfoGainðAÞ ¼ EntropyðDÞ�EntropyAðDÞ (16)

Nonetheless, the InfoGain may cause biases for attributes with many values and the
related number of splits may be not reasonable (Chen et al. 2017b). To avoid the
bias, the authors are therefore obliged to use SplitInfo in decision tree to normalize
the InfoGain (Pham et al. 2016). The SplitInfo is therefore computed using Equation
17 below:

SplitInfo ¼ �
Xz
j¼1

jDjj
jDj � log2

jDjj
jDj

 !
(17)

The SplitInfo is a type of Entropy related to the split point of a given attribute. From
this, the Information Gain Ratio in decision tree is therefore defined using Equation
18 as follows:

Gain RatioðAÞ ¼ InfoGainðAÞ
SplitInfoðAÞ (18)

3.4.4. Model-performance evaluation and validation
As confirmed by studies on landslide (Chen et al. 2017c; Chen et al. 2018b), a final
derived map is not suitable unless it is validated. It is required to use appropriate
approaches for susceptibility map validation (Van Den Eeckhaut et al. 2005). For the
present study, the authors used the receiver operating characteristic (ROC) and other
statistical estimators namely the accuracy, precision and the root mean square error
(RMSE) to evaluate the three produced susceptibility maps. ROC portrays the
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percentages of true positive against the false negative percentages to rate the past
landslides cumulatively in a decreasing order. This helps to find the success rates
using the areas under ROC curves (AUROC) (Ahmed and Dewan 2017). The
AUROC is used for detecting the models predictive capabilities.

In case of the poor prediction (poor modelling), the AUROC values become
smaller or equal to 50 whereas the better prediction is obtained for AUC values closer
to 100 (Ahmed and Dewan 2017). Furthermore, the higher the AUROC value, the
better the model’s performance, and an AUROC value of 100 depicts an excellent
and outstanding performance (Bui et al. 2017). The AUROC curves are regarded as
one of the best and common techniques for validating and comparing models in
recent studies (Begueria 2006; Chen et al. 2018a; Zêzere et al. 2017). Thus, it has
been extensively applied as a common tool to assess the performance capability of the
models (Chen et al. 2017d). To assess and compare the three susceptibility methods,
the authors applied statistical estimators using Equations 19, 20, 21 and 22 (Chen
et al. 2018b; Tharwat 2018):

AUC ¼ ðPTPþPTNÞ
ðPþNÞ (19)

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

(20)

Precision ¼ TP
TPþ FP

(21)

Whereby P represents the landslide number, N stands for the non-landslide number.
Both TP (which is the true positive) and TN (which means the true negative) repre-
sent the numbers of correctly classified pixels; and both FP (which is the false posi-
tive) and FN (which is the false negative) portray the numbers of incorrectly
classified pixels (Chen et al. 2017a). Therefore, for AUC, accuracy, and precision, a
better predictive ability of the model is shown by a higher value (Tharwat 2018).
Furthermore, when the obtained value is closer to 1, the derived susceptibility map is
confirmed accurate and reliable. For the current study, RMSE value is defined as fol-
lows:

RMSE ¼
ffiffiffiffi
1
N

r X
ðy�y0Þ2 (22)

where N¼ total number of data, y is the observed output, y’¼ the predicted output.
Therefore, the closeness of RMSE value to 0, indicates the competency of the model
to forecast susceptibility (Ercanoglu and Gokceoglu 2004; Nefeslioglu et al. 2008).
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4. Results and discussion

4.1. Landslide conditioning factor analysis

To generate the landslide susceptibility maps for the upper Nyabarongo catchment
(Rwanda), authors have applied IG technique to select conditioning factors. The fac-
tor’s selection based on their weights to fit with the models for susceptibility mapping
(Figure 3). Thus, factors with weights higher than zero were considered for the sus-
ceptibility analysis. In contrast, factors with less weight (below or equal to zero value)
were excluded from susceptibility modelling.

The capability of 15 factors using IG method is illustrated in Figure 3 and Table 2.
The analysis disclosed that only 13 predicting factors have positive correlation with
the landslide hazard spatial occurrences in Nyabarongo based on their positive values
(Average Merit >0). Therefore, from these factors, land use/land cover becomes the
peak for landslide prediction capability (AM¼ 0.106). This can be explained by many
past locations of landslide events recognized within the Nyabarongo Catchment due
to land cover settings and inappropriate land use practices (Figure 4). It is therefore
in conformity with other previous research works (MIDIMAR 2015; Nsengiyumva
et al. 2018). The next factor was slope angle which has also the best correlation with
landslides in this research (AM ¼ 0.088). Slope was confirmed to be among signifi-
cant predicting factors of landslides (Ahmed and Dewan 2017). For other factors
including elevation (AM ¼ 0.055), distance to roads (AM ¼ 0.051), rainfall (AM ¼
0.039), aspect (AM ¼ 0.023), lithology (AM ¼ 0.016), TWI (AM ¼ 0.011), soil
texture (AM ¼ 0.009), NDVI (AM ¼ 0.007), LS (AM ¼ 0.004), distance to rivers
(AM ¼ 0.003), soil depth (AM ¼ 0.001) respectively showed significant spatial
relationship to the landslide susceptibility modelling.

Similar factors have been largely used in various studies related to susceptibility
modelling (Chen et al. 2019; Nsengiyumva et al. 2018; Pham et al. 2018). However,

Figure 3. Prediction capability of the fifteen landslide conditioning factors in the present study.
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the other two conditioning factors namely plan and profile curvatures have no posi-
tive correlation since they are tested as low or null prediction capability (Average
Merit ¼ 0). Thus, both factors were not considered for the current susceptibility
modelling to achieve improved accuracy of the final output (Bui et al. 2017; Bui et al.
2016). Recent studies confirmed that prediction ability of a given factor largely
depends on the used landslide model (Chen et al. 2017b; Zêzere et al. 2017).
Nevertheless, further studies may be useful to analyse the appropriate approaches for
selecting predicting factors and more improvement of their predictive capability.

Figure 4. Fresh Landslide occurrences triggered by heavy rainfall in the study area (Source: Field
visits by the researchers, June 2018-August 2019).
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4.2. Generation of landslide susceptibility maps

For this study, the three models (NBT, LMT and RF) were used to study susceptibil-
ity in the upper Nyabarongo catchment of Rwanda (Figure 5). The susceptibility
models were built employing the abovementioned data (training datasets) together
with testing and validating datasets. Thus, the three models were applied in determin-
ing the susceptibility indexes for all pixels in the area under investigation. The sus-
ceptibility maps were therefore derived with five classes. Besides, the natural breaks
method was employed to make classification of the three derived maps (very low,

Figure 5. Landslide susceptibility maps derived using: (a) LMT, (b) NBT and (C) RF models.
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low, moderate, high and very categories) (Figure 5). Moreover, the natural break has
become the most widely applied method in classifying susceptibility maps (Bui et al.
2016; Carrara et al. 1999). It is therefore confirmed one of the best appropriate tech-
niques for modelling susceptibility based on the data distribution histogram (Chen
et al. 2017d).

Overall, the analysis generated the three landslide susceptibility maps for the study
area (Figure 5) and it can be seen that the five susceptibility classes are differently
dispersed across the entire catchment zone (Table 3). The distribution of landslide
susceptibility across the entire study area, confirms unconditionally that the upper
Nyabarongo catchment of Rwanda is highly susceptible to landslides. For the RF
model, the findings reveal that the category of very low susceptibility falls into 3.20%
of the total catchment and 24.12% falls into the low susceptibility class. The catego-
ries from moderate, high and very high susceptibility represent 32.61%, 21.05% and
19.02% of the area respectively (Figure 5, Table 3).

For susceptibility map derived using LMT, 3.63% of the upper Nyabarongo catch-
ment falls into very low susceptibility category and 25.13% belongs to low susceptibil-
ity category. Moreover, the categories of moderate, high and very high susceptibility
represent 33.10%, 22.02% and 16.12% of the entire catchment, respectively. Regarding
the susceptibility map derived by NBT model, it can be detected that very low and
low susceptibility classes account for 4.18% and 25.21% of the upper Nyabarongo
catchment, respectively. 30.68% of the upper Nyabarongo catchment area falls within
the moderate susceptibility category. Moreover, 22.70% and 17.23% of the area fall
into the high and very high susceptibility categories, respectively (Table 3).

Overall, 17.46% of the total area under study falls into the very highly susceptible
class and 22.02% falls into the high susceptibility category, while 3.67% represents the
very low category/stable zone. These results confirm that the upper Nyabarongo
catchment area is very prone given its geomorphological settings, high presence of
landslide influencing factors as well as different anthropogenic factors. Obviously it is
not excluded that the high presence of landslides in this area, could be influenced by
different causes, including anthropogenic, geological, climatological and environmen-
tal aspects that have not been directly taken into account in the selected models (Bui
et al. 2017; Zêzere et al. 2017). This catchment qualifies to make susceptibility model-
ling achievable. As shown by previous studies (Chen et al. 2018b; Persichillo et al.
2017), susceptibility mapping has to be conducted in order to deal with the prevailing
natural hazards. Susceptibility mapping is, therefore, a critical stage within the land-
slide risk management cycle. This helps to identify high-risk zones and predominant
causal-related factors. The selected methods used the GIS and remote sensing (RS)

Table 3. Different landslide susceptibility classes in percen-
tages using RF, LMT and NBT models.
Susceptibility class RF (%) LMT (%) NBT (%)

Very low 3.2 3.63 4.18
Low 24.12 25.13 25.21
Moderate 32.61 33.10 30.68
High 21.05 22.02 22.70
Very high 19.02 16.12 17.23
Total 100 100 100
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techniques. From Table 3, it can be observed that big part of the upper Nyabarongo
catchment falls into moderate susceptible area for all the tree models.

The results from the models helped to respond to the critical scientific questions
of making judgments on which method is appropriate to successfully predict suscepti-
bility within the area under study. The landslide hazard situation in the Nyabarongo
catchment of Rwanda is mostly aggravated by some human activities including
unplanned and poor settlements, improper land use practices, lack of storm water
drainage, absence of rainwater harvesting mechanisms, high level of vulnerability and
exposure to landslides. Furthermore,due to the accelerated population growth, there
is a high rise in pressure on land, whereby local residents continue to invade the fra-
gile mountainous environment and ecosystem, cut the hills to settle and earn
their living.

Analytically, the northern and western parts of the modelled area proved to be
highly susceptible to landslides on the three derived susceptibility maps (Figures 4
and 5). In contrast, the very low susceptible areas were mostly detected in the south-
eastern part of the catchment and this is due to a number of reasons including the
topographic nature and presence of the conditioning factors (Figure 5). Further stud-
ies may be proposed to complement these findings using other novel machine learn-
ing and ensemble techniques and such researches would generate more reasonable
results in line with landslide risk mitigation and sustainable environmental manage-
ment in Rwanda.

Figure 6. The performance of landslide models (RF, LMT and NBT) using ROC curves.
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4.3. Models comparison and validation

As previously explained, the AUROC curves and the three statistical measures (accur-
acy, precision and RMSE) were applied to assess the complete performance of the
three approaches and to validate the derived maps (Figure 6, Table 4).

From the findings of this research, it was disclosed that all the three methods rea-
sonably produced accurate landslide susceptibility maps. Therefore, it can be observed
from the analysis of the AUROC (Figure 6) that the susceptibility prediction rates
were 79.8%, 80.6% and 81.2% respectively for RF, LMT and NBT models. Therefore,
the NBT and LMT susceptibility models attained very good performance in modelling
landslide susceptibility within the study area with AUROC � 80% (Figure 6) (Yilmaz
and Ercanoglu 2019). Moreover, the results analysis confirmed the NBT model to be
the best predictor of landslide susceptibility within the upper Nyabarongo catchment
zone. It has outperformed the RF and LMT models. However, it is very clear that all
the models produced reasonable outputs and they proved promising methods for sus-
ceptibility modelling within the area under investigation.

Furthermore, three statistical estimators (Accuracy, precision and RMSE) were
used to compare and evaluate the models (Table 4). The results disclosed that the
NBT method achieved the highest performance for accuracy and precision values
(0.799 and 0.745 respectively), followed by the LMT model (Accuracy ¼ 0.762 and
precision ¼ 0.724). The RF model achieved the lowest accuracy and precision values
(0.733 and 0.692 respectively). For RMSE, the NBT model also achieved the best per-
formance with 0.301 of RMSE values, followed by LMT model (0.364) and RF model
(0.428 RMSE value). Generally, the NBT model performs better than LMT and RF
models for the accuracy, precision and RMSE. Despite this slight discrepancy, the
three used models produced reasonable results and proved suitable for susceptibility
mapping in the landslide prone-areas. Moreover, the overall validation of the findings
indicated a sensible agreement between the derived maps and the observed data on
past landslide locations.

The current study offers a great contribution to the knowledge of landslide suscep-
tibility prediction, mainly for the mountainous zones of the central-eastern African
region, and specifically for Rwanda (Nahayo et al. 2019). Through susceptibility map-
ping, it is appropriately used for land management and policy, there is a high possi-
bility of mitigating landslide hazards to turn into disasters. However, there is a
serious shortage of landslide database and past landslide records for Nyabarongo
catchment, and this gap should be addressed through the adoption of adequate and
regular system for recording landslide events to serve as a database for future inven-
tory building and landside quantitative modelling. This study also represents a novel
contribution of using GIS-based machine learning techniques for the Eastern African

Table 4. Model performance evaluation with statistical estimators.

Statistical estimator

Susceptibility models

RF NBT LMT

Accuracy 0.733 0.799 0.762
Precision 0.692 0.745 0.724
RMSE 0.428 0.301 0.364
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region as a whole and for the study area in particular. Furthermore, scholars, decision
and policy makers would deploy considerable efforts for mitigation and preventive
measures especially for areas modelled as highly and very highly susceptible. The
study results may be informative and instrumental for sustainable land use planning,
rational environment management and resilience building.

5. Conclusion and policy implications

For this study, the authors employed three different GIS-based machine learning
methods to map landslide susceptibility for the upper Nyabarongo catchment in
Rwanda. The RF, NBT and LMT models were employed and explored in various sus-
ceptibility studies, but their exploration through comparative analysis has never been
done before for the whole Africa in general and for the upper Nyabarongo catchment
of Rwanda. The methods and the predicting factors used in the present study were
chosen based on the availability of data, the objectives of the study as well as the size
and environmental settings of the study area. The produced maps were categorized
into five classes of very high, high, moderate, low and very low susceptibility based
on the natural break method. The final results were compared and validated using
the AUC/ROC, accuracy, the RMSE and precision measures. According to the pro-
duced results, it can be confirmed that the NBT and LMT models achieved the high-
est prediction capability, but the RF model also proved a promising approach for
susceptibility prediction though it yielded lower values for AUROC and the statis-
tical measures.

Therefore, the results showed that NBT model produced the highest value of AUC
(82.4%), followed by the LMT method (80.9%) while the RF model produced the least
AUC value (78.4%). Additionally, for statistical measures of accuracy and precision,
the NBT method produced the most reasonable results (0.799 and 0.745 respectively).
Also, for RMSE estimator, the NBT model outperformed other two models with
0.301 RMSE value. Moreover, these prediction values confirm that the derived suscep-
tibility maps for this study are effectively reliable. Overall, the three employed
approaches proved real promising models for spatially predicting landslide suscepti-
bility for Eastern-Africa region. Conclusively, these results may be suitable for further
studies and for appropriate landslide risk reduction and mitigation for Rwanda and
for different parts across globe with similar topographical settings. They can inform
policy and decision making in regards with natural risk management.
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