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Basing on the work by Antuono et al. (2010) [1], an SPH model with numerical diffusive terms (here
denoted δ-SPH) is combined with an enhanced treatment of solid boundaries to simulate 2D gravity
waves generated by a wave maker and propagating into a basin. Both regular and transient wave systems
are considered. In the former, a large number of simulations is performed for different wave steepness
and height-to-depth ratio and the results are compared with a BEM Mixed-Eulerian–Lagrangian solver
(here denoted BEM-MEL solver). In the latter, the δ-SPH model has been compared with both the
experimental measurements available in the literature and with the BEM-MEL solver, at least until the
breaking event occurs. The results show a satisfactory agreement between the δ-SPH model, the BEM-
MEL solver and the experiments. Finally, the influence of the weakly-compressibility assumption on the
SPH results is inspected and a convergence analysis is provided in order to identify the minimal spatial
resolution needed to get an accurate representation of gravity waves.

© 2010 Elsevier B.V. All rights reserved.
0. Introduction

In the last years, the use of particle methods to simulate com-
plex flow has been largely increased (see e.g. [25,14]). As a primary
feature, those methods do not need a structured topological con-
nection (grids) between the computational nodes. These nodes are
treated as fluid particles followed during their motion, while their
physical properties evolve in time according to the governing equa-
tions. One of the main advantages of such methods consists in the
capability to deal with complex free-surface flows without an ex-
plicit enforcement of the dynamic condition along it (for details
see [4]). In this context, the SPH scheme has widely proved to
be an accurate and efficient solver to simulate violent flows with
strong deformations of the free surface like dam-break flow im-
pacts (see for example [2]).

Landrini et al. [14] proved that the SPH scheme can correctly
simulate the near-shore bore propagation both in uniform depth
and over a beach with constant slope. Notwithstanding that, the
SPH literature beholds a few works dealing with the modeling of
propagation of gravity waves (see, for example, [13]).

In the present work we use a modified version of the weakly-
compressible SPH scheme with diffusive terms described in An-
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tuono et al. [1] (hereinafter denoted by δ-SPH) to study the prop-
agation of 2D gravity waves generated by a wave maker into a
2D wave basin. In contrast with the numerical scheme proposed
in [1], the present SPH scheme contains a diffusive term only in
the continuity equation while the influence of the internal energy
is neglected. This idea was firstly proposed by Molteni and Cola-
grossi [24] and, using a different approach, by Ferrari et al. [10]
where a Rusanof-type flux was added inside the continuity equa-
tion. In the present SPH scheme, a linear state equation with a
constant sound velocity is used in order to simplify the numeri-
cal model. The solid boundaries and the wave maker are modeled
through the fixed ghost particle technique described in [3]. Then,
the present work has to be regarded as a further validation of
this numerical technique. For the results presented in this work
a heuristic convergence analysis is provided.

In the first part of the paper, the evolution of a standing wave
in a rectangular tank is studied in order to measure the dissipa-
tion of the proposed scheme. The dissipation is mainly caused by
the use of a numerical viscous term in the SPH scheme. This term,
widely adopted in the SPH literature (see for example [25]), makes
the numerical scheme stable. Although it is not used to simulate a
viscous fluid, the numerical viscous term approximates the physi-
cal viscous term of an incompressible fluid, i.e. the Laplacian of the
fluid velocity (see, for example, [9]). The boundary condition on
rigid boundaries is a free slip condition. As a consequence, in phys-
ical problems where the solid boundary effects are negligible (like,
for example, the propagation of gravity waves), the dissipative rate
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predicted by the numerical scheme is close to the physical one.
Specifically, we use the approximate analytical formula derived by
Lighthill [17] as a validation for the numerical scheme. This for-
mula gives an estimation of the damping of gravity waves caused
by viscous effects and is particularly suited for comparison with
the SPH solutions since it has been derived under the assumption
that the boundary layer dissipation is negligible. To this purpose,
the dissipation rate predicted by the SPH scheme is generally in
good agreement with the prediction of the approximate analytical
formula. Anyway, the standing wave problem allows an accurate
inspection of a further problem which arises when the wave am-
plitude is too small. An overdamping is observed when the wave
amplitude is lower than the initial particle spacing, dx. This be-
havior is related to spurious numerical effects and is likely caused
by the inability of the numerical scheme to represent the wave
evolution when the spatial resolution is too coarse. In any case,
the analysis of this phenomenon (further inspected in the regular
wave simulations) allows the setting of the limits of applicability
of the SPH scheme to study the gravity waves propagation.

In the second part of the paper, the propagation of regular
wave trains is used to validate the proposed SPH scheme. A large
number of test cases are considered to emphasize the nonlinear
features of the wave propagation. Both the wave steepness and the
wave height-to-depth ratios spreading from deep to shallow water
are considered. The SPH results are compared with the predic-
tions of the Mixed-Eulerian–Lagrangian Boundary Element Method
(hereinafter BEM-MEL) developed in [20]. The BEM-MEL solver,
based on the potential theory (that is, inviscid and irrotational
flows), is the most appropriate scheme to describe the propagation
of gravity waves (see for example [18,19,12,5,6,26]) at least until
the closure of the breaking wave. Because of the limitations of the
potential flow theory, the wave height of the regular wave systems
are chosen to emphasize the nonlinear features without inducing
a breaking events. In this way, the capability of the SPH scheme
(generally implemented with the use of an artificial viscosity) to
approximate inviscid fluids is fully inspected.

Although the BEM-MEL solver is generally faster and more ac-
curate than the SPH schemes in modeling small gravity waves, it
is limited to the analysis of non-breaking waves. On the contrary,
due to its Lagrangian structure, the SPH solvers are among the
best codes to model violent breaking events. In any case, since the
breaking is generally preceded by a long non-breaking evolution,
the validation of the present δ-SPH scheme through non-breaking
wave problems is of fundamental importance.

Finally, the last part of the paper focuses on the propagation of
wave packets. A wave packet is given by the interaction of several
wave components whose amplitudes are chosen in a prescribed
frequency spectrum. The corresponding wave phases are calculated
to realize their focusing in a prescribed position of the wave basin
(i.e. the focusing point) and at a fixed time instant. Because of its
nature, the wave packet is a good candidate to check the nonlinear
propagation of a multicomponent wave train. Following Dommer-
muth et al. [7], the wave packet is used to get a breaking wave
at the focusing point and the numerical results are then compared
with the experimental data provided in [7].

1. The δ-SPH scheme

In the SPH method, the fluid domain Ω is discretized in a fi-
nite number of particles representing elementary fluid volumes dV ,
each one with its own local mass dm and other physical properties.
In this context, a generic field f at the position ri of the i-th par-
ticle is approximated through the convolution sum

〈 f 〉(ri) =
∑

f j W (ri − r j,h)dV j (1)

j

where f j is the value of f associated to the generic particle j, dV j

is its volume and finally W (ri − r j,h) is a kernel function with a
finite support. The kernel function is defined so that the integral
on its support is equal to one. The symbol h is a reference length
of this support and is generally called smoothing length. When h
goes to zero the kernel function W becomes a delta Dirac “func-
tion”. For the ease of notation, hereinafter we denote W (ri − r j,h)

simply through W (r j). The choice of the kernel function affects
both the CPU requirements and the stability properties of the al-
gorithm. In this work a Gaussian kernel with a compact support
has been adopted (see, for example, [24,14]). In all the simulations
presented in this paper the particles are initially set on a regular
lattice, the initial particles’ distance is dx and therefore the initial
volume of the particle is dV = dx2. As reported in [15], the value
of the ratio h/dx is generally chosen by following the practical rule
that a linear field has to be well reproduced when the particles
are distributed on a Cartesian uniform lattice. Using h/dx = 4/3
and the adopted kernel, this rule is satisfied with an error of or-
der of 10−4. The spatial derivatives of the field f can be estimated
using the formula (1)

〈∇ f 〉(ri) =
∑

j

(∇ f ) j W (r j)dV j . (2)

Following [4], the previous formula can be approximated by

〈∇ f 〉(ri) =
∑

j

f j∇i W (r j)dV j + 〈I∂Ω 〉i (3)

where the surface term 〈I∂Ω 〉i has to be handled in an adequate
way in order to accurately account for the considered boundary
conditions, as shown in [4].

Most of the SPH schemes is based on the assumption of
barotropic and weakly-compressible fluid. Then, the reference
equations for the flow evolution are the Euler equations:

Dρ

Dt
= −ρ∇ · u, ρ

Du

Dt
= −∇p + ρ f , p = c2

0(ρ − ρ0),

(4)

where ρ , p and u are the density, pressure and velocity fields, re-
spectively, f is the body force field, ρ0 the density at the free sur-
face and c0 the sound velocity. Differently from [1], in the present
work we use a linear state equation since we do not deal with
violent fluid–structure interactions.

To reduce the computational effort, most of the weakly-
compressible SPH solvers imposes the sound speed much lower
than the physical one, however, one order of magnitude larger
than the maximum velocity of the investigated flow. Anyway, in
the case of gravity waves the flow velocity is generally small while
the most important quantity associated with the wave propagation
is the wave celerity, that is, c2 = g/k tanh(kH) where H is the still
water depth, k is the wave number and g the gravity acceleration
(see, for example, [22]). For kH going to zero, the shallow water
regime is approached and the relation above becomes c2 = g H .
Since the latter expression is an upper bound for the wave celerity
(that is g/k tanh(kH) � g H), we choose c0 = 10

√
g H .

When the system (4) is written in the SPH formulation, an ar-
tificial viscous term is generally added in the momentum equation
for stability reasons (see for example [25]). Here the SPH scheme
proposed by Antuono et al. [1] is used: a proper artificial diffu-
sive term is added into the continuity equation in order to remove
the spurious numerical high-frequency oscillations in the pressure
field. Further, the XSPH velocity correction is used to regularize
the velocity field (see for example [25]). Then, the discrete δ-SPH
scheme reads:
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Dρi

Dt
= −ρi

∑
j

(u j − ui) · ∇i W (r j)dV j

+ δhc0

∑
j

ψ i j · ∇i W (r j)dV j,

ρi
Dui

Dt
= −

∑
j

(p j + pi)∇i W (r j)dV j + ρi f i

+ αhc0ρ0

∑
j

πi j∇i W (r j)dV j,

Dri

Dt
= ui + εX

∑
j

(u j − ui)W (r j)dV j,

pi = c2
0(ρi − ρ0),

(5)

where:

ψ i j = 2(ρ j − ρi)
r ji

|ri j|2 − [〈∇ρ〉L
i + 〈∇ρ〉L

j

]
,

πi j = (u j − ui) · r ji

|ri j|2 ,

and ri j = −r ji = ri −r j . The symbol 〈∇ρ〉L
i indicates the renormal-

ized gradient defined in [16]. The symbols ρi , pi and ui denote the
i-th particle density, pressure and velocity, respectively. The coef-
ficient δ determines the order of magnitude of the diffusive term,
α the order of magnitude of the artificial viscous term and εX the
influence of the XSPH correction on the actual velocity field. Here,
εX = 0.25, δ = 0.1 and α is chosen in the range [0.01,0.05].

The system (5) preserves the global mass and both the linear
and angular momenta. Moreover, the diffusive term in the continu-
ity equation, the artificial viscosity and the XSPH correction go to
zero as the spatial resolution increases (i.e. when h goes to zero),
recovering the consistency with the Euler equations.

The numerical viscous term added inside the momentum equa-
tion approximates the Laplacian of the velocity for incompressible
fluids (see [9]). Notwithstanding that, a free slip condition is im-
plemented along the solid boundary since in the propagation of
gravity waves the boundary layer effects are negligible. The cor-
responding numerical kinematic viscosity is theoretically given in
two dimension by

ν = αc0h/8 = αc0 dx/6 (6)

(see e.g. [25]). For the gravity wave problem, a value of alpha larger
than 0.01 is used in order to ensure the stability of the numeri-
cal algorithm. This choice is a limitation of the SPH scheme since
the artificial viscosity damps out largely the gravity waves for long
time simulations. An estimation of the damping effects is discussed
in Section 3 making the results of this paper useful for the com-
parison with other numerical solvers.

2. The solid boundary treatment

The enhanced treatment of the solid boundaries proposed in [3]
and [21] is used here to deal with the solid boundary at the wave
maker, the tank walls and the bottom. The former is a rigid bound-
ary moving with a prescribed time law. Within the SPH scheme the
modeling of moving solid boundaries with a generic shape is not
a trivial matter. Anyway, similarly to [3], in the present work we
implement an enhanced treatment of solid boundaries based on
the use of fixed ghost particles. This method generally provides a
simple and accurate procedure for the description of moving solid
profiles and can be regarded as a generalization of the classical
ghost-particle method widely used in the SPH literature (see for
example [2]).
Fig. 1. Sketch of the fixed ghost particles near the wave maker. The symbol h f in-
dicates the distance of the flap hinge from the tank bottom.

In the standard ghost particle technique at each time step any
particle nearby the solid boundary is mirrored into a ghost with
respect to that boundary. In contrast, here the ghost particles are
fixed in the frame of reference of the body. To compute the quan-
tities attributed to each ghost particle, an interpolation point is
associated to it. This interpolation point is obtained by mirroring
the position of the fixed ghost particle into the fluid domain, see
Fig. 1.

The algorithm to generate the fixed ghost particles is detailed in
the following: (a) the tank profile is approximated by regular eq-
uispaced body nodes with a prescribed distance ds; (b) the normal
and the tangent unit vectors are computed, assuming the normal
vectors to point outwards the fluid domain; (c) using the normal
vector, the body nodes are moved outwards the fluid at a distance
ds/2 from the body profile; (d) a new profile is generated along
which equispaced nodes with distance ds are set. Such a profile
represents an expansion of the tank profile and the nodes along
it are the fixed ghost particles. In the same way but using a vec-
tor opposite to the normal, each fixed ghost particle is associated
with an interpolation point inside the fluid. The procedure is re-
peated to cover the interaction radius of the fluid particles (see
Fig. 1). In case of singular points along the tank profile (like the
hinge of a flap wave maker), the procedure described above is ap-
plied starting on both sides of the singularity. The generation of
the fixed ghost particles is repeated at each time step to update
the position of the wave maker.

The main advantage of the fixed ghost particle technique with
respect to the classic ghost particles consists in a uniform distribu-
tion of the fixed ghost, independently from the position of the fluid
particles. This allows a simple modeling of complex 2D geometries.
Further, the use of a Moving Least Square interpolator (see [11] for
more details) ensures an accurate mirroring procedure of the flow
quantities.

In this work only the free-slip boundary condition is prescribed
for the solid boundaries. This condition is enforced keeping the
tangential component of velocity unaltered during the mirroring
procedure while the normal component of the fluid velocity is re-
versed to prevent particles going through the solid boundary. For
moving boundaries the velocities components have to be consid-
ered with respect to the frame of reference attached to the bound-
ary. To assign the pressure field along the solid boundaries, the
Neumann boundary condition is enforced, that is:

∂ p

∂n
= −ρ

[
Dub

Dt
· n + (ub − u) · (ωb × n) − f · n

]
, (7)

where n is the normal unit vector to the solid profile, ub is the
velocity of the solid boundary and ωb is its angular velocity. Note
that (7) is obtained from the momentum equation using a free slip
condition along the solid profiles. In the case of no-slip conditions,
it is sufficient to neglect the term containing ωb . For more details
we address the reader to Doring [8].



M. Antuono et al. / Computer Physics Communications 182 (2011) 866–877 869
Fig. 2. The standing wave. Left: sketch of the initial condition. At t = 0 the free surface is flat while the velocity field is given by the analytical solution (8). Right: time history
of the total kinetic energy (β = 0.1097).
3. Test cases

3.1. Standing waves

Before dealing with the generation and propagation of gravity
waves, we study the evolution of a standing wave in a 2D squared
tank with length L. For an inviscid fluid, the linear theory pre-
dicts that the standing wave evolves infinitely without any change
of amplitude, i.e. the total energy is conserved. Similarly, the mean
over the wave period of the kinetic energy maintains constant dur-
ing the evolution. On the contrary, the SPH do not preserve the
energy because of the numerical viscous term inside the momen-
tum equation. As a consequence, for long time evolution the mean
kinetic energy goes to zero and the standing wave is completely
damped. For these reasons, this problem is used to get a measure
of the numerical damping of the proposed SPH scheme through
the analysis of the kinetic energy time history. In this way it is
possible to check whether the numerical dissipation is mainly due
to the artificial viscosity (see Eq. (6)) or to other numerical effects,
identifying the limits of applicability of the SPH scheme.

For the standing wave problem, we fixed the water filling
height to H = L. In the following λ indicates the wave length
of the standing wave and k the corresponding wave number (i.e.
k = 2π/λ); A is the amplitude of the standing wave and ε denotes
the ratio 2A/H . For small-amplitude waves (i.e. small ε), the po-
tential theory gives the following approximate analytical solution:

ϕ(x, y, t) = ϕ0(x, y) cos(ωt);
ϕ0(x, y) = −ε

H g

2ω

cosh[k(y + H)]
cosh(kH)

cos(kx). (8)

The period of oscillation of the standing waves is T = 2π/ω where
the circular frequency ω is given by the dispersion relation: ω2 =
gk tanh(kH). The frame of reference is indicated by the sketch in
the left plot of Fig. 2. At time t = 0 the free surface is horizontal
and the time derivative of the velocity potential ϕ̇ is zero in the
whole domain, therefore the pressure field can be simply assumed
to be hydrostatic with an error of O(ε2). By definition the initial
fluid velocity is given by ∇ϕ0 (see left plot of Fig. 2). Since the
SPH scheme contains a numerical viscosity term (see Eq. (5)), its
solution converges to (8) only for h going to zero. For finite values
of h and neglecting the boundary layer dissipation, an analytical
expression of the energy dissipation can be derived following the
procedure described by Lighthill [17]. Under the assumption made
in [17], the time evolution of total kinetic energy is given by the
following approximate solution:
Ekin(t) = ε2 g
λH2

32
e−4νk2t[1 + cos(2ωt)

]
(9)

where the numerical kinematic viscosity given by Eq. (6) is used
to compute ν . The damping coefficient β = 4νk2 depends on the
wave number and on the numerical kinematic viscosity.

The dissipation predicted by (9) is due to the numerical viscous
term included into the momentum equation of the SPH scheme.
Anyway, a larger damping is observed when the spatial resolution
is too coarse. This phenomenon, related to numerical approxima-
tions, has to be avoided because the SPH solver is working out of
its limits of applicability.

The overdamping of the standing wave is displayed in the right
panel of Fig. 2. Here, λ = L (L is the tank width), the spatial res-
olution is fixed (i.e. dx constant) and three different wave heights
are considered (i.e. three different values of A/dx). Since α = 0.05,
the damping rate predicted by (9) is constant (that is, β = 0.1097).
Anyway, for A/dx = 0.5 and A/dx = 1, the dissipation shown by
the SPH solver is much larger and a good agreement is obtained
only for A/dx = 4. This means that the SPH cannot properly model
gravity waves whose height is of the same order of magnitude of
the mean particle distance (that is, A/dx � 1).

Apart from this, a good agreement is observed when A/dx > 2.
This is, for example, highlighted in Fig. 3. Here, the wavelength,
the wave height and the nonlinearity parameter are kept constant
and the spatial resolution increases. Since α = 0.05, each numeri-
cal simulations is characterized by a different dissipation rate (i.e.
a different value of β). The most viscous case, i.e. β = 0.2193,
is damped in only 10 periods; in contrast, the simulation with
β = 0.0274 just halves in the same time interval. The fair match
between the analytical solution (9) and the SPH output is a clear
indication that for this test case the numerical damping is only re-
lated to the artificial viscosity dissipation. As a consequence, the
solid boundary treatment adopted, the weakly-compressible as-
sumption and the use of diffusive term in the continuity equation
do not introduce any significant error. The simulation has been re-
peated using different time integrators (see e.g. [24]) recovering
the same solution plotted in Fig. 3.

3.2. Regular waves

Here we focus on the propagation of regular waves postpon-
ing the analysis of the wave packet to the next section. In all
the SPH simulations a uniform spatial resolution is used. This is
not an optimal choice because the use of a finer spatial resolu-
tion near the free surface and a coarser one as the depth increases
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Fig. 3. The standing wave. Time history of the total kinetic energy compared with the Lighthill’s analytical solution (9). Left: β = 0.2193 (solid line) and β = 0.1093 (dashed
line). Right: β = 0.0545 (dashed line) and β = 0.0274 (solid line).

Table 1
Test case matrix for regular waves in deep water regime.

Deep water

λ/H μ ε γ Np H/dx λ/dx A/dx βT

DW_01 2.00 3.14 0.03 0.05 404K 130 260 1.95 1.80×10−2

DW_02 2.00 3.14 0.07 0.11 404K 130 260 4.55 1.80×10−2

DW_03 2.00 3.14 0.13 0.20 404K 130 260 8.45 1.80×10−2

DW_04 2.00 3.14 0.23 0.36 468K 150 260 17.3 1.56×10−2

DW_05 1.40 4.49 0.04 0.09 538K 150 210 3.00 2.66×10−2

DW_06 1.40 4.49 0.06 0.13 538K 150 210 4.50 2.66×10−2

DW_07 1.00 6.28 0.01 0.04 538K 150 150 0.75 4.40×10−2

DW_08 1.00 6.28 0.03 0.09 538K 150 150 2.25 4.40×10−2

DW_09 1.00 6.28 0.05 0.17 314K 150 150 3.75 4.40×10−2

Table 2
Test case matrix for regular waves in intermediate water regime.

Intermediate water

λ/H μ ε γ Np H/dx λ/dx A/dx βT

IW_01 12.0 0.52 0.22 0.06 223K 40 480 4.40 5.72×10−3

IW_02 12.0 0.52 0.34 0.09 223K 40 480 6.80 5.72×10−3

IW_03 7.40 0.85 0.04 0.04 265K 60 444 1.20 6.57×10−3

IW_04 7.40 0.85 0.23 0.20 265K 60 444 6.90 6.57×10−3

IW_05 6.00 1.05 0.11 0.06 356K 50 300 2.75 1.02×10−2

IW_06 6.00 1.05 0.25 0.13 356K 50 300 6.25 1.02×10−2

IW_07 3.00 2.09 0.11 0.11 514K 60 180 3.30 2.15×10−2

IW_08 3.00 2.09 0.22 0.23 514K 60 180 6.60 2.15×10−2
strongly reduces the CPU cost (see for example [3]). Anyway, since
the present work is a validation of the δ-SPH scheme, we preferred
to limit the numerical variables/parameters. For the same reason,
we did not use any beach or damping technique to reduce wave
reflection at the end walls of the tank. As a consequence, the tank
length is set to simulate about 12 wave periods without any re-
flection at the right end wall. This time of simulation is generally
too short to reach a steady-state solution and, therefore, only the
transient evolution is considered. A longer time interval would re-
quire an extension of the tank and a large increase of the particle
number and of the computational cost. In any case, the comparison
between different numerical solvers is generally more demanding
during the transient evolution than during the steady-state. For the
detection of the free-surface, we used the algorithm described in
Marrone et al. [23].

Tables 1, 2 and 3 represent the main parameters of the test
cases considered in the present work. Specifically, λ is the wave
length, μ = 2π H/λ is the parameter accounting for the dispersive
effects, ε = 2A/H is the nonlinearity parameter (A is the wave
amplitude) and γ = 2π A/λ is the wave steepness. To allow a com-
parison with the MEL-BEM solver, test cases are split in deep-water
(μ > 3, see Table 1), intermediate-water (0.3 < μ � 3, see Table 2)
and shallow-water (μ � 0.3, see Table 3) regime. The parameters
ε and γ are chosen to avoid the occurrence wave breaking, but
for the case DW_04 where the leading crest is breaking. The wave
maker is a piston for λ � 12 while a flap has been adopted for the
remaining cases (see Fig. 1). The flap paddle is hinged at the tank
bottom with the exception of the cases DW_05, DW_06 (hinged at
0.3 from the tank bottom) and DW_07, DW_08 (hinged at 0.5 from
the tank bottom). In all the cases a sinusoidal time law has been
imposed to the paddle. Further, a ramp has been used in some
test cases during the initial stage of the evolution to avoid impul-
sive transitory. Details on the wave maker motion and on the ramp
are given in Appendix A.

In Tables 1–3 are also reported the parameters related to the
spatial resolutions used in the SPH simulations: the total number
of particles N p , the number of particles along the depth (i.e. H/dx)
and the ratios λ/dx, A/dx, i.e. the number of particle for wave-
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Table 3
Test case matrix for regular waves in shallow water regime.

Shallow water

λ/H μ ε γ Np H/dx λ/dx A/dx βT

SW_01 30.0 0.21 0.12 0.01 400K 40 1200 2.40 2.21×10−3

SW_02 30.0 0.21 0.27 0.03 144K 20 600 2.70 4.42×10−3

SW_03 30.0 0.21 0.39 0.08 400K 40 1200 7.80 2.21×10−3

SW_04 25.0 0.25 0.13 0.02 400K 40 1000 2.60 2.66×10−3

SW_05 25.0 0.25 0.25 0.03 144K 20 500 2.50 5.32×10−3

SW_06 25.0 0.25 0.44 0.11 400K 40 1000 8.80 2.66×10−3

SW_07 21.0 0.30 0.13 0.02 144K 20 420 1.30 6.36×10−3

SW_08 21.0 0.30 0.22 0.03 144K 20 420 2.20 6.36×10−3

SW_09 21.0 0.30 0.36 0.11 144K 20 420 3.60 6.36×10−3

Fig. 4. Free-surface evolution for the case DW_07 as predicted by the SPH solver (solid lines) and the BEM solver (dashed lines). Arrows indicate the particle diameter (the
length is referred to the y-axis). The SPH wave is highly damped by the artificial viscosity.

Fig. 5. Free-surface evolution as predicted by the SPH solver (solid lines) and the BEM solver (dashed lines). Top panels: DW_01, DW_02. Bottom panels: DW_03, DW_04. The
wave length of these cases is λ/H = 2 while the steepness increases from γ = 0.05 up to γ = 0.36.
length and wave amplitude, respectively. The last columns contain
the parameter βT where β is the damping coefficient defined in
Section 3.1 and T is the wave period. Last parameter gives an esti-
mate of the damping per period caused by the numerical viscosity
of the SPH scheme.

Basing on the results of Section 3.1, a wave amplitude A greater
than dx has been chosen for almost all simulations of regular
waves (the only exception is the case DW_07 which is discussed in
the following). This choice ensures a small dissipation due to spuri-
ous numerical effects of the SPH solver. Further, to get an accurate
enough representation of the wave propagation phenomenon, a
spatial discretization λ/dx > 100 is chosen. In the BEM-MEL solver,
a spatial discretization λ/dx = 90 is used while no limits exist
for wave amplitude. The deep water case DW_07 has the low-
est ratio A/dx, set equal to 0.75. The free surface profile at time
t
√

g/H = 30.08, evaluated by the two solvers SPH (solid line) and
BEM-MEL (dashed line), is reported in Fig. 4. The damped behav-
ior of the wave in the SPH solution resembles the one observed
in the previous section for the standing wave when A/dx < 1. In
contrast, the case DW_03 using ratio A/dx equal to 8.45 shows a
much reduced wave damping (see right-top plot of Fig. 6).

In Fig. 5 (from left to right and from top to bottom), we show
the comparison of the free surface evolution as predicted by the
δ-SPH solver (solid lines) and the BEM solver (dashed lines) for
the deep-water cases DW_01, DW_02, DW_03, DW_04 (reported in
Table 1). These cases are characterized by a wave length λ/H = 2
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Fig. 6. Free-surface evolution as predicted by the SPH solver (solid lines) and the BEM solver (dashed lines). Top panels: DW_05, DW_06. Bottom panels: DW_08, DW_09.
Arrows indicate the particle diameter (the length is referred to the y-axis).

Fig. 7. Free-surface evolution as predicted by the SPH solver (solid lines) and the BEM solver (dashed lines). Top panels: IW_01, IW_02. Bottom panels: IW_03, IW_04.
while the amplitude increases from ε = 0.03 up to ε = 0.23. There-
fore in these four cases we move from an almost linear wave
(DW_01) to a highly nonlinear wave (DW_04). In the latter case,
the steepness is quite large (i.e. γ = 0.36) leading to the break-
ing of the first crest at a distance of about 13H away from the
wave maker (see bottom right plot of Fig. 5). The BEM-MEL solver
is not able to simulate such a quite steep wave while for the
first three cases the match between SPH and BEM-MEL is gener-
ally very good: both wave shape and wave celerity are fairly well
reproduced and only small damping is observed in the SPH simu-
lations at the wave front. The relative errors for these cases are
εR = 0.27,0.19,0.17 respectively (see Appendix B for more de-
tails).

In the bottom panels of Fig. 6 we show the comparison δ-SPH
versus BEM-MEL for the deep-water cases with the smallest wave
length (λ/H = 1, see Table 1). For such cases the effect of the SPH
dissipation is quite evident because of the large value of the pa-
rameter βT .
Figs. 7 and 8 show the most significant intermediate- and
shallow-water test cases. The overall agreement between the δ-
SPH and BEM results is fairly good. The cases IW_02 and SW_06
having the largest ratios λ/dx and A/dx show a good agreement
with the BEM-MEL solution. Incidentally, we underline that for the
propagation of shallow water waves it is generally important to ac-
count for the action of boundary layer at the tank bottom. Anyway,
the BEM solver cannot implement a no-slip condition along the
solid boundary because it is based on the potential theory. Conse-
quently, the influence of the boundary layer at the tank bottom has
been neglected and a free-slip condition has been implemented in
the SPH solver as well.

Plots in Fig. 9 show the same test case (that is, SW_01) us-
ing two different spatial resolutions (H/dx = 20, A/dx = 1.2, top;
H/dx = 40, A/dx = 2.4, bottom). For the smallest spatial resolu-
tion small oscillations associated with the weakly compressibil-
ity appear. This effect disappears when a larges resolution (i.e.
H/dx = 40) is used. In Figs. 6, 7, 8 and 9 arrows indicate the par-
ticle diameter (the length is referred to the y-axis) and prove that
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Fig. 8. Free-surface evolution as predicted by the SPH solver (solid lines) and the BEM solver (dashed lines). Top panels: SW_01, SW_03. Bottom panels: SW_04, SW_06.
Arrows indicate the particle diameter (the length is referred to the y-axis).

Fig. 9. Test case SW_01. Comparison between two different spatial resolutions: top panel H/dx = 20, bottom panel H/dx = 40.
the spurious dissipative effects become smaller for the cases with
the largest ratio A/dx.

In Fig. 10 we show the convergence analysis of the wave el-
evation as predicted by the δ-SPH scheme. The test case is the
IW_04 and the wave elevation has been recorded at x/H = 18 us-
ing three different spatial discretizations. The convergence rate of
the SPH is about C = 1.5 (see Appendix B for more details) and
the SPH solution tends to the convergent solution of the BEM-MEL
signal.

Finally, we conclude this section reporting the computational
costs of the δ-SPH scheme for the simulations of the regular waves.
For all these cases the same speed of sound has been used, that is
c0 = 10

√
g H . The time steps of the SPH scheme can be estimated

by the equation: dt = 3.5 dx/c0, using a fourth order Runge–Kutta
scheme as time integrator. Since neither breaking wave phenom-
ena nor impacts on solid structures are present, the SPH time step
remains almost constant during the simulations. Therefore, to sim-
ulate a physical time evolution of t = 100

√
H/g s, 286(H/dx) time

iterations are needed. The algorithm implemented for the δ-SPH
scheme requires a CPU cost of about 30 μs for each time iteration
and for each particle using a single 2.33 GHz XEON core. Using the
above estimations the case DW_07 requires 13 000 time iterations
and takes a CPU time of 57 hours on a single core. The memory oc-
cupation is about 500 Mbyte using double precision variables. The
same case takes about two hours using the BEM-MEL solver requir-
ing 9000 time steps while the memory requirement is 35 Mbyte.
This clearly shows that an optimal choice for an efficient analysis
of the gravity waves is to couple the SPH scheme with a potential
flow solver. Indeed, the former scheme would be used only where
wave breaking can occur while the latter one would be used in the
remaining part of the fluid domain.
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Fig. 10. Convergence analysis for the time history of the wave elevation recorded at x/H = 18. Test case IW_04.

Fig. 11. The basin used in the work by Dommermuth et al. [7]. Probe positions are: x/H = 3.16, 5.00, 6.66, 8.33, 9.16, 10, 10.83, 11.83, 12.16.

Fig. 12. Left panel: time law of the piston motion used in the work by Dommermuth et al. [7]. Right panel: modulus of the Fourier series coefficients of the wave maker
motion.
3.3. Wave packet

Having shown the capability of the SPH solver to reproduce the
evolution of the regular wave system, in the following the wave
packets evolution is used to stress further the ability of the al-
gorithm to deal with the wave propagation problem. The wave
packet proposed by Dommermuth et al. [7] is used to get a plung-
ing breaking wave. In Fig. 11 a sketch of the basin used for their
experiments is depicted. The wave packet is generated by a linear
superposition of wave frequency components with suitable ampli-
tude and phase to get their superposition at a prescribed distance
from the wave maker. The point where the several components
focus is called focusing point. The left plot of Fig. 12 shows the
time history of the piston motion. As shown in the right panel
of the same figure, this signal contains several harmonic com-
ponents in the dimensionless frequency range (0.15 : 0.30). To
proper capture the highest one, a fine enough spatial discretiza-
tion is required to avoid the spurious dissipative effects of the SPH
scheme.

Along the basin there are nine probes which measure the wave
elevation (see Fig. 11). Specifically, probes P8 and P9 are placed
near the breaking point. The comparison with the experimental
measurements in Fig. 13 shows an overall good agreement except
for a small disturbance observed in the SPH signals at probes P8

and P9. In the low right panel of the same figure, the convergence
analysis for the SPH free surface is displayed for a detail of the
signal at probe P8. The convergence rate obtained using the res-
olutions H/dx = 25, 50, 100 is C = 1.3 while for H/dx = 50, 100,
200 we get C = 1.1. Note that the time signals have been con-
sidered up to t = 51

√
H/g since for longer times wave breaking

occurs. This analysis is repeated for a snapshot of the free surface
evolution near the focusing point (see Fig. 14). The SPH solutions
at different spatial resolutions are compared with the BEM solu-
tion. The relative errors with respect to the BEM-MEL solver are
εR = 0.41, 0.24, 0.15, 0.13 respectively. All figures clearly show that
a fine enough resolution is needed to avoid the underestimation of
the wave height.

Finally, Fig. 15 compares the free surface predicted by both
the BEM-MEL solver and the δ-SPH with the experimental mea-
surements at the plunging point (probe P8). Both the numerical
solvers are in good agreement even if they tend to anticipate the
experimental data. The small delay of the BEM-MEL solver with
respect to the δ-SPH is due to the use of a regridding algorithm.
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Fig. 13. Free-surface elevation at probes P1 to P9. Comparison between the experimental data and the solution predicted by the δ-SPH model. The bottom right panel shows
the convergence analysis at probe P8 (H is the still water depth and dx is the mean particle distance).
Such a numerical technique is widely used inside the numerical
solvers based on the potential theory (see for example Dommer-
muth et al. [7]) to remove the numerical instabilities of the free-
surface.

During the post breaking evolution, the BEM-MEL solver is un-
able to follow this stage since vorticity is generated consequently
to the cavity closure. In contrast, the SPH method can simulate
this phenomenon and in Fig. 15 the vorticity generated after the
plunging of the breaking wave is displayed. Specifically, two vorti-
cal structures are induced by the splashing processes similarly to
what shown in [14]. Since both positive and negative vorticities
are generated, dipole structures are formed which tend to move
downwards away from the free surface.
4. Conclusions

The ability of the δ-SPH solver to properly model the wave
propagation phenomenon has been inspected. This model, defined
as a simplified version of the one proposed in Antuono et al. [1], is
associated with the enhanced treatment of the solid boundary de-
scribed in Colagrossi et al. [3]. Standing waves, regular waves and
wave packet have been studied in details and compared respec-
tively with the approximate analytical solution by Lighthill [17],
with a BEM-MEL solver [20] and with the experimental measure-
ments by Dommermuth et al. [7]. In all the cases considered, the
SPH proved able to reproduce the propagation of gravity waves
in all the regimes (i.e. from deep to shallow water) showing a
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Fig. 14. Convergence analysis for the free-surface elevation as predicted by the δ-SPH model. Top left panel: H/dx = 25; top right panel: H/dx = 50; low left panel:
H/dx = 100; low right panel: H/dx = 200 (H is the still water depth and dx is the mean particle distance).

Fig. 15. Left: Free surface at the plunging point. Comparison between experiments (triangular points), BEM-MEL solver and δ-SPH. Right: Vorticity generated after the wave
breaking.
good overall agreement with analytical, numerical and experimen-
tal data. Finally, the present study allowed understanding which
is the minimal spatial resolution needed to properly model the
propagation phenomenon and avoid an overdamping of the gravity
wave signals.

Acknowledgements

The research leading to these results has received funding
from the European Community’s Seventh Framework Programme
(FP7/2007–2013) under grant agreement No. 225967 “NextMuSE”.
This work was also partially supported by the Centre of Excel-
lence for Ship and Ocean Structures of NTNU Trondheim (Norway)
within the “Violent Water–Vessel Interactions and Related”.

Appendix A. The wave maker motion

The time law of the piston is given by:

xw(t) = �x

2
sin(ωt), (A.1)

where xw is the x-coordinate of the wave maker and �x/2 is its
maximum displacement from the position of rest. For a flap it is:

xw(t, z) = �x

2

[
1 − z

H − h
sin(ωt)

]
, (A.2)
f

where h f is the position of the hinge from the tank bottom. In
some test cases, a ramp is used to avoid impulsive transitory. This
is given by a function R(t) which multiplies xw(t). This function is
given below:

R(t) = 1

2

[
1 − cos

(
π

t

τ

)]
, (A.3)

where τ is a fixed time interval which corresponds to the ramp
duration. All the details on the wave maker and on the ramp are
summarized in Table 4.

Appendix B. Convergence analysis: details of computations

In this brief section we report some details on the convergence
analysis.

Let us consider the signal f = η(s) − H with s ∈ [s0, s f ]. Here,
the symbol s represents the spatial or the time variable according
to the case at hand. Then, the error between two signals f1 and
f2 in the L1-norm is:

ε21 =
s f∫

| f1 − f2|ds. (B.1)
s0
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Table 4
Regular waves. Letters ‘P’ and ‘F’ indicate respectively that a piston or a flap is used.

WM �x/H h f /H τ
√

g/H

SW_01 P 0.50 / /
SW_02 P 1.00 / /
SW_03 P 1.30 / 15.00
SW_04 P 0.40 / /
SW_05 P 0.70 / /
SW_06 P 1.10 / 12.00
SW_07 P 0.40 / /
SW_08 P 0.70 / /
SW_09 P 0.90 / 10.00
IW_01 P 0.400 / 6.00
IW_02 P 0.600 / 6.00
IW_03 P 0.052 / 2.13
IW_04 P 0.264 / 2.13

IW_05 F 0.200 0.0 3.00
IW_06 F 0.400 0.0 3.00
IW_07 F 0.102 0.0 4.00
IW_08 F 0.200 0.0 4.00
DW_01 F 0.025 0.0 5.00
DW_02 F 0.050 0.0 5.00
DW_03 F 0.100 0.0 5.00
DW_04 F 0.200 0.0 5.00
DW_05 F 0.028 0.3 4.00
DW_06 F 0.042 0.3 4.00
DW_07 F 0.010 0.5 3.00
DW_08 F 0.020 0.5 3.00
DW_09 F 0.040 0.5 3.00

Now, let assume that f2 is obtained by doubling the resolution of
f1 and, similarly, consider a signal f3 that doubles the resolution
of f2. Then, the convergence rate of the quantity f is given by:

C = log

(
ε32

ε21

)/
log(2). (B.2)

The relative error with respect to the BEM solutions is given by:

εR1 =
( s f∫

s0

| f1 − f B |ds

)( s f∫
s0

| f B |ds

)−1

(B.3)

where the symbol f B indicates the BEM signal, here regarded as
the reference solution (that is, as an “exact” solution).
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