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Abstract 

The models for the end-user demand give a detailed description of the water request, which takes into account the consumes of 
each dwelling. Therefore, these approaches can model the water demand at WDS nodes by aggregating the single request of each 
user. 
The effectiveness of a novel approach  the Overall Pulse model (OP)- to describe the aggregated water demand has been tested. 
In fact, the OP model, unlike the commonly used rectangular pulse models (e.g. PRP, NSRP), does not aim to reconstruct single 
demand pulses as they occur when home faucets and hydro-sanitary appliances are operated, but allows the generation of the 
water demand as it is observed at the house water meter. This feature makes the model very versatile, allowing the direct 
modeling of either a single user or of a group of n users. The possibility of 'pre-aggregation' of the water demand makes it easier 
to take into account the spatial variability of the model parameters. In the paper, the performance of the OP model is investigated, 
and to this aim the generated time series are compared with the observed ones of real users. In addition, the comparison of series 
obtained by means of the classical PRP approach and of the OP model show the effectiveness of the latter. 
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1. Introduction 

The rectangular pulse point processes, originally studied to model the rain events [1, 2], have been widely used in 
technical literature for generating synthetic time series of the residential water demand (e.g. [3, 4, 5]). 

Buchberger and Wu [3] used the Poisson Rectangular Pulse (PRP) process to describe the water request of 
residential users, by examining the actual demand of some monitored dwellings. Although the PRP process is 
theoretically a very interesting approach, because it tries to model the behavior of the users regarding water 
consumption, the performances of the PRP showed the need of improvements. 

Therefore, Alvisi et al. [4] and Alcocer-Yamanaka et al. [6] suggested to take into account the cluster effect of the 
water demand, while Garcia et al. [7] proposed a practical criterion to define the non-homogeneous process 
describing the pulse occurrence during the day. 

However, the above mentioned approaches attempt to model all the pulses, as they occur at hydro-sanitary 
devices of a dwelling. Moreover, the estimation of the PRP parameters often needs the reconstruction of single 
pulses, while the available information about the residential demand is obtained only by means of the water counters 
[8]. Hence, a specific monitoring campaign was developed to obtain reliable estimations of the PRP parameters, by 
installing water meters inside some residences in order to monitor the consumptions of each hydro-sanitary device 
[9]. 

Also the Overall Pulse (OP) model [10] is a rectangular pulse process, but it directly generates the total request 
for each discretized time interval ∆t. In this way, the OP model presents a double advantage. First of all, this 
approach does not need to generate the single pulses of the residential request. Second, the model is capable of 
taking into account also the overall demand of more users. This latter feature is analyzed in this paper, namely the 
effectiveness of the OP model to describe water demand of clustered users is investigated. 

2. Generation of time series by means of the OP model 

The OP approach generates synthetic time series of the water requested by the residential users, where the 
demand is modeled effectively by means of rectangular pulses. Unlike classical end user models, the OP model does 
not describe the water demand at each hydro-sanitary device of a dwelling, but it models the overall request of a 
dwelling for each interval ∆t of the time discretization. In other words, the OP model simulates the flow which can 
be measured by means of the water meter of a residence, whereas the pressure is adequate to satisfy the demand 
[11]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Flow-chart of the OP model. 
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As the OP model does not need to reconstruct all the pulses of the single appliances which form the demand of a 
residence, this approach is also suitable for generating the aggregate request of more residences at the same time. 
Indeed, for modeling the demand of n users, it is enough that the parameters of the OP model are estimated with 
reference to the overall request of the aggregated users. 

The OP model has a hierarchic approach, which is organized in three steps (Fig.1). 
Each step of the process models, by means of the Monte Carlo technique, one of the random phenomena which 

contribute to the formation of water demand. 
More precisely, three data types are generated by the OP model: 

 arrivals of the demand clusters; 
 durations of each cluster, τ; 
 intensity of the demand qt for each time interval ∆t within a cluster. 

Although the above mentioned random variables resemble those of the classical rectangular pulse models, they 
have a totally different meaning in the OP approach. For instance, as the OP model directly generates the overall 
demand of a residence, the arrivals represent the beginning of aggregated demand pulses, with several hydro-sanitary 
devices simultaneously working. Of course, it may occur that a cluster demand is produced by only one pulse, 
because during the generated τ only one single device (e.g. a tap) is supplying water in a dwelling. 

 
       Table 1. The estimated arrival rates  for the residence from 1 to 10 of Milford case study 

t [hours] Home 1 Home 2 Home 3 Home 4 Home 5 Home 6 Home 7 Home 8 Home 9 Home 10 

1 0.0078 0.0128 0.0132 0.1007 0.0150 0.0178 0.0372 0.0085 0.0253 0.0103 

2 0.0040 0.0076 0.0158 0.0371 0.0107 0.0112 0.0170 0.0026 0.0177 0.0067 

3 0.0059 0.0070 0.0152 0.0255 0.0066 0.0066 0.0065 0.0051 0.0164 0.0121 

4 0.0042 0.0093 0.0258 0.0062 0.0515 0.0053 0.0197 0.0219 0.0159 0.0124 

5 0.0078 0.0683 0.0960 0.0053 0.0546 0.0040 0.0236 0.0300 0.0391 0.0078 

6 0.0266 0.1100 0.0845 0.0073 0.0206 0.0105 0.0284 0.1357 0.0676 0.0124 

7 0.0883 0.0851 0.0766 0.0169 0.0237 0.0626 0.0529 0.0927 0.0311 0.0137 

8 0.0935 0.0477 0.0381 0.0181 0.0524 0.0953 0.0547 0.0318 0.0592 0.0419 

9 0.0599 0.0352 0.0370 0.0391 0.0603 0.0827 0.0598 0.0191 0.0567 0.1177 

10 0.0411 0.0251 0.0449 0.0507 0.0501 0.0555 0.0388 0.0208 0.0300 0.0801 

11 0.0598 0.0182 0.0385 0.0563 0.0428 0.0466 0.0392 0.0207 0.0285 0.1021 

12 0.0748 0.0200 0.0339 0.0532 0.0418 0.0399 0.0312 0.0139 0.0334 0.0406 

13 0.0429 0.0233 0.0323 0.0458 0.0364 0.0369 0.0430 0.0277 0.0307 0.0465 

14 0.0389 0.0215 0.0338 0.0408 0.0278 0.0273 0.0458 0.0132 0.0331 0.0348 

15 0.0514 0.0322 0.0320 0.0487 0.0297 0.0275 0.0400 0.0166 0.0384 0.0247 

16 0.0427 0.0389 0.0390 0.0509 0.0345 0.0329 0.0405 0.0238 0.0567 0.0451 

17 0.0679 0.0689 0.0439 0.0543 0.0579 0.0424 0.0370 0.0686 0.0718 0.0519 

18 0.0569 0.0787 0.0516 0.0609 0.1009 0.0579 0.0486 0.0819 0.0700 0.0652 

19 0.0424 0.0712 0.0594 0.0547 0.0758 0.0628 0.0577 0.0780 0.0498 0.0766 

20 0.0520 0.0814 0.0586 0.0481 0.0695 0.0672 0.0536 0.0922 0.0384 0.0313 

21 0.0461 0.0682 0.0484 0.0515 0.0615 0.0789 0.0633 0.1066 0.0495 0.0363 

22 0.0282 0.0352 0.0361 0.0461 0.0369 0.0504 0.0623 0.0512 0.0509 0.0305 

23 0.0397 0.0233 0.0245 0.0371 0.0226 0.0517 0.0533 0.0303 0.0574 0.0583 

24 0.0171 0.0108 0.0209 0.0445 0.0163 0.0260 0.0458 0.0070 0.0322 0.0411 
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The Bernoulli distribution is effective to model the random variable of the cluster arrivals, while the exponential 
distribution fits well the observed cumulative frequencies of the cluster durations [10]. 

The intensity qt during a specific ∆t represents the overall demand, sum of the pulses produced by different 
devices which are working simultaneously. Also for qt the exponential distribution was assumed, even though this 
choice implies underestimation of the maximum intensity [10]. 

As significant differences in the water demand can occur from one day to another (for instance, if some of the 
occupants of a residence are absent), the step I of the approach takes into account also this phenomenon. In fact, the 
total number of arrivals in a day is considered as a Normally distributed random variable, which can also be 
generated with the Monte Carlo technique. 

The variability of the water demand during the day leads to a non-homogeneous process, which is modeled as 
homogeneous during predefined time sub-intervals, the duration of which has been assumed ∆ = 1 hour. 

Therefore, the OP model presents two levels of time discretization: the overall pulses of the residential water 
demand are generated considering the time interval ∆t; the non-homogeneous process of the daily request is tackled 
as a sequence of homogeneous processes of duration ∆. Further details of the OP model are given by Gargano et al. 
[10]. 

 

       Table 2. The estimated arrival rates  for the residence from 11 to 20 of Milford case study 

t [hours] Home 11 Home 12 Home 13 Home 14 Home 15 Home 16 Home 17 Home 18 Home 19 Home 20 

1 0.0465 0.0249 0.0285 0.0169 0.0093 0.0175 0.0411 0.0048 0.0021 0.0249 

2 0.0219 0.0149 0.0142 0.0072 0.0053 0.0211 0.0236 0.0004 0.0024 0.0134 

3 0.0138 0.0152 0.0134 0.0073 0.0075 0.0160 0.0178 0.0009 0.0006 0.0093 

4 0.0103 0.0101 0.0125 0.0434 0.0089 0.0203 0.0207 0.0081 0.0006 0.0071 

5 0.0170 0.0159 0.0169 0.0406 0.0123 0.0268 0.0365 0.1719 0.0155 0.0098 

6 0.0341 0.0287 0.1340 0.0728 0.0180 0.1462 0.0777 0.0984 0.0679 0.0351 

7 0.0880 0.0524 0.2129 0.0940 0.0451 0.0478 0.1067 0.0046 0.1223 0.0508 

8 0.0734 0.0631 0.0584 0.0764 0.0774 0.0293 0.0926 0.0049 0.0521 0.0435 

9 0.0563 0.0729 0.0119 0.0705 0.0901 0.0172 0.0481 0.0062 0.0304 0.0384 

10 0.0488 0.0425 0.0068 0.0497 0.0643 0.0174 0.0424 0.0070 0.0318 0.0424 

11 0.0456 0.0397 0.0043 0.0469 0.0629 0.0139 0.0479 0.0096 0.0367 0.0579 

12 0.0522 0.0368 0.0043 0.0608 0.0463 0.0161 0.0400 0.0062 0.0349 0.0440 

13 0.0476 0.0337 0.0048 0.0440 0.0490 0.0149 0.0325 0.0063 0.0331 0.0338 

14 0.0459 0.0464 0.0063 0.0374 0.0392 0.0185 0.0346 0.0076 0.0396 0.0345 

15 0.0378 0.0586 0.0116 0.0379 0.0384 0.0208 0.0414 0.0339 0.0588 0.0412 

16 0.0423 0.0709 0.0076 0.0390 0.0373 0.0161 0.0558 0.0779 0.0746 0.0502 

17 0.0560 0.0834 0.0124 0.0549 0.0475 0.0259 0.0497 0.1152 0.0810 0.0651 

18 0.0524 0.0560 0.0196 0.0477 0.0626 0.0604 0.0448 0.0961 0.0616 0.0610 

19 0.0403 0.0429 0.0326 0.0483 0.0607 0.0994 0.0389 0.0894 0.0516 0.0527 

20 0.0337 0.0421 0.0491 0.0463 0.0317 0.0819 0.0348 0.0695 0.0568 0.0438 

21 0.0296 0.0371 0.0849 0.0218 0.0446 0.0839 0.0265 0.0752 0.0624 0.0545 

22 0.0272 0.0478 0.1229 0.0143 0.0533 0.0883 0.0202 0.0463 0.0521 0.0634 

23 0.0506 0.0390 0.0904 0.0114 0.0555 0.0704 0.0160 0.0432 0.0225 0.0694 

24 0.0289 0.0251 0.0398 0.0105 0.0330 0.0299 0.0097 0.0166 0.0090 0.0536 
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3. Case study 

The OP model was tested for the real case study of Milford (US), where the water demand of 21 residential users 
were monitored [12]. The analyzed data refer to 154 days of observed water demand indoor requests of 20 different 
dwellings (for data reliability reasons, one of the 21 users has been excluded in this study), aggregated with a time 
step of one minute. The analysis has been carried out following two different approaches. 
The first approach involves the estimation of the OP model parameters for each of the 20 residences, obtaining 20 
sets of parameters. Tables 1 and 2 give the arrival rate  of each residence during the i-th hour of the day, while 
the other parameters of the OP model are reported in Table 3. 

In the second approach, the main feature of the OP model has been fully exploited, pre-aggregating the 20 users 
in a single block of 20 residences. Thus, only one set of parameters has been estimated (Tables 4 and 5). On the basis 
of the obtained parameters, two synthetic time series of 154 days has been generated, following the two above 
mentioned approaches. 

 

            Table 3. Mean and standard deviation of the number of cluster arrivals, mean cluster durations and mean intensities  
                          estimated for 20 Milford Users.  

  

Mean number of 
cluster arrivals µad 

Standard deviation  
of cluster arrivals 

σad 

Mean cluster 
durations µτ [min] 

Mean intensities µq 

[L/min] 

Home 1 42.94 14.69 2.20 3.27 

Home 2 40.16 25.63 2.25 5.08 

Home 3 50.62 17.97 2.26 3.90 

Home 4 106.82 22.94 2.45 2.50 

Home 5 31.64 15.32 3.87 4.75 

Home 6 46.56 17.46 2.54 4.70 

Home 7 51.60 24.79 2.15 5.97 

Home 8 26.80 19.63 2.92 5.78 

Home 9 63.14 23.47 2.26 3.67 

Home 10 31.57 9.81 2.16 3.68 

Home 11 55.88 27.52 2.56 4.29 

Home 12 41.19 18.47 2.71 5.29 

Home 13 27.31 11.35 2.51 3.00 

Home 14 40.60 10.52 2.77 4.61 

Home 15 42.86 18.33 2.15 3.46 

Home 16 25.81 9.04 2.48 4.73 

Home 17 50.26 26.16 3.01 3.76 

Home 18 15.58 8.05 3.68 4.48 

Home 19 47.44 13.64 2.89 6.70 

Home 20 52.60 19.07 2.79 5.17 

 
         Table 4. The estimated arrival rate  for the aggregated block of 20 users of Milford case study. 

t [hours] 1 2 3 4 5 6 7 8 9 10 11 12 

0.0678 0.0503 0.0397 0.0398 0.0418 0.0316 0.0240 0.0322 0.0378 0.0420 0.0384 0.0467 

t [hours] 13 14 15 16 17 18 19 20 21 22 23 24 

0.0534 0.0522 0.0484 0.0418 0.0342 0.0259 0.0290 0.0331 0.0357 0.0461 0.0475 0.0606 
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    Table 5. Mean and standard deviation of the number of cluster arrivals, mean cluster durations and mean intensities  

                  estimated for a pre-aggregated block of 20 users. 

  

Mean number of 
cluster arrivals µad 

Standard deviation  
of cluster arrivals 

σad 

Mean cluster 
durations µτ [min] 

Mean intensities µq 

[L/min] 

Block of 20 users 141.35 15.79 7.68 9.06 

4.Results and discussion 

The effectiveness of the OP model for aggregated residential demand was tested by comparing the observed time 
series of Milford users with the generated data. In addition, the synthetic time series of the OP model were also 
compared with those generated by means of the classical PRP process, calibrated for the same users. 

The performance of the proposed approach was analyzed by means of the daily volume of water demand, which 
was estimated by accumulating the requested volume during 1440 minutes of a day. 

 

a  b  

Fig.2. Cumulated frequencies of daily water demand for observed and generated (PRP and OP) data, for a single user (a) and for 20 aggregated 
users (b) of Milford. 

a  b  

Fig.3. Box-plots of the water demand of 20 users during the day for observed (a) and synthetic (b) time series 
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The plots of Fig.2 show the comparison between observed and synthetic cumulative frequencies of the daily 
volumes needed to satisfy the water request of a single residence (Fig. 2a, in which, as an example, the plot refers to 
home n.3, but similar results were also obtained for the other considered users of the Milford case study) and of all 
the aggregated 20 residences (Fig. 2b). Fig.2 clearly shows the capability of the investigated approach to model 
plausible time series for 20 users, as well as for only one dwelling. 

The OP model is quite effective to generate the water demand of 20 aggregated users (Fig.2b). Indeed, it shows a 
significant underestimation of the daily volume only for the highest values(right tail of the cumulative frequency 
above 85%), while the approach is absolutely robust for one single residence. In any case, however, the OP approach 
is definitely more effective than the PRP process in modeling the cumulative frequencies of daily volume. 

Instead, Fig.3 shows the capability of the OP model to describe the water demand of the 20 aggregated users 
during the day. More precisely, the diagrams of Fig.3 compare –by means of the box plots (the bottom and top of 
box represent the first and the third quantiles) and the minimum and maximum values– observed hourly values of 
requested water volume (Fig.3a) with those generated by the OP model (Fig.3b). The comparison of the two 
diagrams of Fig.3 shows the effectiveness of the OP model to take into account the variability of the water demand 
of aggregated users along the day. In fact, the proposed approach catches well the daily trend, although it 
underestimates the spread of maximum and minimum water request. 

5. Conclusions 

The rectangular pulse models give a detailed description of the residential water demand, but they often present 
poor performance for aggregated users. In addition, this kind of approach implies a considerable computational 
effort, especially to obtain robust estimation of the parameters of the model. 

Therefore, the paper investigates the effectiveness of a recently proposed approach – the OP model [10] - in order 
to generate time series of aggregated residential users. This approach is designed to model the aggregate water 
demand of n users, as it directly generates the overall demand pulses, without the need to reconstruct the individual 
pulses at the single taps in the dwellings. 

The comparison between observed and generated time series demonstrates the capability of the OP approach to 
reliably model the water request also for aggregated users. 
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