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Abstract

We investigate the optimal operation of multi-energy systems deploying geothermal energy storage to deal
with the seasonal variability of heating and cooling demands. We do this by developing an optimization
model that improves on the state-of-the-art by accounting for the nonlinearities of the physical system, and
by capturing both the short- and long-term dynamics of energy conversion, storage and consumption. The
algorithm aims at minimizing the CO, emissions of the system while satisfying the heating and cooling
demands of given end-users, and it determines the optimal operation of the system, i.e. the mass flow rate
and temperature of the water circulating through the network, accounting for the time evolution of the
temperature of the geothermal fields.

This optimization model is developed with reference to a real-world application, namely the Anergy Grid
installed at ETH Zurich, in Switzerland. Here, centralized heating and cooling provision based on fossil
fuels is complemented by a dynamic underground network connecting geothermal fields, acting as energy
source and storage, and demand end-users requiring heating and cooling energy. The proposed optimization
algorithm allows reducing the CO, emissions of the university campus by up to 87% with respect to the
use of a conventional system based on centralized heating and cooling. This improves on the 72% emissions
reduction achieved with the current operation strategies. Furthermore, the analysis of the system allows to
derive design guidelines and to explain the rationale behind the operation of the system. The study highlights
the importance of coupling daily and seasonal energy storage towards the achievement of low-carbon energy
systems.

Keywords: Multi-energy systems, seasonal storage, geothermal storage, energy networks, MINLP, Yearly
scheduling

1. Introduction

The evidence of climate change clearly indicates the necessity of new routes for energy supply, entailing
zero-carbon emissions around 2050 and limiting global warming at 1.5 °C [1]. New routes of energy provision
are enabled by distributed generation, smart grids and smart energy networks concepts, all seen as a viable
solution to reduce primary energy use and carbon dioxide (CO,) emissions, as well as to increase the
reliability and the flexibility of electrical and thermal networks [2—6].

In this context, multi-energy systems (MES) represent a new paradigm that exploits the interaction
among various energy carriers, such as heat and cold, both at design and operation phase, allowing for
improved technical, economic and environmental performance of the integrated energy system [7-9]. MES
can provide energy to a single dwelling, a group of buildings, a single firm, a district or a region. The
coupling of multiple energy vectors determines a greater complexity of urban energy systems [10]. Reference
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[7] provides a detailed overview of MES, focusing on the identification of internal and external energy flows,
and proposes criteria for their technical and economic evaluation.

The spread of MES transforms energy end-users into prosumers, which are both self-consumers and
providers of the energy supply [11]. Local energy communities arise to optimally operate such MES facili-
ties from both technical, economic and environmental standpoints [12, 13]. Such communities are usually
composed of several energy hubs, each characterized by specific electrical, thermal and cooling energy needs.
Particularly in the tertiary and residential sectors, often characterized by a significant degree of electri-
fication, heat pumps constitute an efficient technology to provide heat and cooling energy by exploiting
different primary sources, i.e. air, water and ground [14-16]. The flexibility of heat pumps can be exploited
to provide ancillary services to the electric power system by load modulation strategies [17], and geothermal
distributed heat pumps can be operated to provide heat peak demand shaving within a district heating
network [18].

Several local, district and city-scale MES are coupled to geothermal sources in urban ground and ground-
water [19-21]. In these cases, the optimal design of geothermal heat pumps and borehole heat exchangers
is challenging; different local factors have to be examined, such as the available space, the geomorphology
of the site and the ground thermal response [21-23]. As far as the geothermal field is concerned, open-
or closed-loop systems having a vertical or horizontal arrangement of boreholes, U-tube or spiral shaped,
have to be examined very carefully since errors during the design phase can lead to malfunctioning of the
whole geothermal system. Innovative solutions consider ground source heat pump systems coupled with PV
and solar thermal collectors to reduce the land use [24, 25], or geothermal combined heat and power plants
[26-28].

The deployment of MES is often coupled with energy storage technologies, which allow to compensate
fluctuations in renewable energy production and energy demand [29-31]. Concerning thermal storage,
two categories of systems are used to compensate short-term and long-term fluctuations. Daily or weekly
fluctuations can be compensated by water tank storages, referred to as hot water thermal storage (HWTS),
whereas long-term fluctuations can be compensated via phase change materials and geothermal installations
[15, 32, 33]. However, compensating variable energy generation and demand at the seasonal scale is daunting,
because (i) it can only by done through a few, expensive technologies, such as underground geothermal
installations, and (ii) the optimal design and operation is complicated by the large number of decision
variables, due to the required length and resolution of the time horizon [29, 34, 35], and by the system
complexity.

Several tools for energy management systems (EMS) are proposed in the literature to optimally design
and operate MES systems with energy storage [10, 36]. EMS can be based on linear or non-linear math-
ematical models, can be characterized by single- or multi-objective optimization frameworks and capture
the physics of the elements of the energy system with different levels of detail [10, 37]. Concerning the
optimal design and operation of seasonal storage systems, some studies have recently tackled the complexity
of the optimization problem by using time series aggregation methods, i.e. by reducing the number of time
intervals while retaining a level of detail sufficient to describe the dynamics of the entire energy system. A
review of these methods is provided by Hoffmann et al. [35], Schiitz et al. [38], and Gabrielli [39].

Modeling seasonal storage offers the opportunity to assess strategies for offsetting the seasonal variability
of heating and cooling demands [40]. A real-world system adopting this concept is the Anergy Grid installed
at ETH Zurich, in Switzerland, which consists of an underground network deploying geothermal fields acting
as energy sources and storage units [41]. The current system operation allows reducing the CO, emissions of
the university campus by 72% with respect to the conventional system using centralized heating and cooling
[42]. The scope of this contribution is to develop an optimization framework enabling further increase in
energy efficiency, hence further emissions reduction.

The full potential of the system can only be exploited by adopting an optimization-based EMS able to
(i) describe the underground network structure, (ii) capture the short- and long-term dynamics of energy
production, storage and consumption, (iii) account for the different temperature levels at which heat and cold
are required during the year, (iv) model the time evolution of the geothermal fields, (v) model the scheduling
of the conversion technologies installed in the demand clusters. Whereas previous studies have investigated
the optimal design and operation of MES coupled with geothermal systems [43-45], and the optimal design
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and operation of MES coupled with heating networks [46-48], two important aspects remain uncovered.
On the one hand, such studies do not consider the different temperature levels at which heat and cold
demands are required. Although this assumption is reasonable for systems where heat and cold are provided
by separate units, and allows preserving the linearity of the optimization problem with the associated
computational complexity, it prevents the analysis of systems where heat and cold are provided through
the same network. On the other hand, the system behavior is investigated during a few representative days
along the year, but the interaction between daily and seasonal system dynamics is not accounted for.

These shortcomings stem from the computational complexity arising when describing the non-linear
behavior of the system across different time scales. We tackle them by formulating a mixed-integer nonlinear
program (MINLP) that accurately describes the physical behavior of the system, and by reducing it to a
mixed-integer linear program (MILP) that is able to capture the most relevant aspects and features a
reasonable computational complexity. This optimization algorithm aims at minimizing the CO, emissions
of the multi-energy system while satisfying the heating and cooling demands of end-users. It determines
the optimal operation of the system, i.e. the mass flow rate and temperature of the water circulating
through the network, and the resulting time evolution of the temperature of the geothermal fields. The
optimal solution requires the knowledge of the energy demands, the energy prices, the carbon intensities of
the energy grids, and the parameters characterizing the technical performance of the technologies involved.
The developed optimization model builds on previously presented work [29, 49, 50] and introduces novel
elements by: (i) developing detailed first-principle models and corresponding linear reduced order models
to describe the geothermal fields, acting as seasonal storage devices; (ii) formulating and solving a MINLP
optimization problem able to determine the optimal value of both the mass flow rate and the temperature of
the water circulating in the network; (iii) modeling the structure of the geothermal network; (iv) determining
optimal strategies to reduce the carbon footprint of the system and assessing potential savings with respect
to currently adopted strategies.

Several techniques have been proposed to solve MINLP. As an example, Elsido et al. presented bilevel
decomposition algorithms able to determine the most profitable synthesis and design of combined heat and
power units within a district heating network with thermal storage, while taking into account the yearly
scheduling of the system [51, 52]. Inspired by their work, we present a two-stage algorithm, where the
original MINLP is linearized by means of McCormick envelopes [53] and the resulting MILP is used to (i)
determine a lower bound of the original optimization problem, and (ii) derive information on the optimal
time profile of the mass flow rate.

The paper is structured as follows. Section 2 describes the investigated system. Section 3 presents the
MINLP optimization problem, while Section 4 presents the linearization and solution techniques. Section 5
discusses the optimization results for the Anergy Grid of ETH Zurich. Finally, in Section 6 conclusions are
drawn.

2. System description

The Anergy Grid of ETH Zurich is illustrated in Fig. 1; it consists of various underground geothermal
fields, which are connected to the served demand clusters, i.e. clusters of buildings of the campus, through a
low-temperature water network. More specifically, the system consists of five demand clusters, namely HPL,
HPZ, HWN, HCP, HCO (last two included in HCI in Fig. 1), three geothermal fields, namely HPL, HC,
HWO, and the centralized heat and cold generation plant, HEZ. The heat and cold generated by HEZ are
directly supplied to the five demand clusters using a dedicated connection to each demand cluster, without
transiting to the Anergy Grid. The geothermal fields consist of 200 m deep vertical U-shaped borehole heat
exchangers. They are used as the energy source, as well as seasonal storage systems to exploit the seasonal
shift between heat and cold demands. Each demand cluster includes a substation, which couples the demand
cluster and the thermal network as detailed in Fig. 1 with reference to the HPL substation located in the HPL
demand cluster. In the five substations, the heat and cold delivered to the buildings are actually produced.
Heat is produced via heat pumps (HP) that transfer energy from the underground water to a working fluid
by absorbing electricity; cold is produced via two heat exchangers (HE): a low-temperature heat exchanger
(LTHE) supplying the cooling demand of the laboratories, and a high-temperature heat exchanger (HTHE)
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supplying the cooling demand of air conditioning. If a substation requires heat, it is supplied from one of
the other clusters or underground storages via the grid. If there is waste heat in a cluster, which cannot be
directly used, it is either used by other clusters or stored in the underground storage, where it stays available
for later use. The same applies to cold. The water network consists of two rings, one warm and one cold,
with the temperatures varying between 8 °C and 22 °C.

The flexibility provided by the aforementioned design allows reducing the use of fossil-based technologies
by exploiting the seasonal storage capacity of the geothermal fields. This is best achieved by keeping the
temperature level of the storage low at the end of spring (i.e. at the end of the heating period), and high at
the end of summer (i.e. at the end of the cooling period), so as to maximize the cooling and heating capacity
in summer and winter, respectively [41]. During summer, the cooling demand of the clusters is high, and
the water going from the substations to the geothermal fields is warmer than the soil. Hence, by circulating
in the probes the water is cooled while heating up the ground; in this way, the water can absorb heat in
the heat exchangers of the substation and provide cold. Such a process is reversed in winter: heat demand
is high, the water going to the probes is colder than the ground and it is heated up while cooling down
the ground, so as to provide heat to the clusters through the heat pumps of the substations. Whenever
the Anergy Grid is not able to satisfy the energy demands, these are covered by using the conventional
centralized boiler and the compression chiller unit.

Based on the continuous monitoring of the overall system, the first operating years have been evaluated.
In 2016, the coverage of energy requirements using the Anergy Grid was around 85% for the useful heating
demand and 60% for the useful cold demand. The remaining amount was conventionally covered by using
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Figure 1: Schematic of the Anergy Grid (AG) system installed at ETH Zurich, adapted from [41].
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the centralized boiler and compression chiller unit [42].

In order to develop a general methodology for optimizing and assessing seasonal energy storage via
geothermal networks, we model the Anergy Grid as a MES where several geothermal fields are used as
energy source and storage, and are connected with several demand clusters through a low-temperature
water network. The scheme of a demand clusters is illustrated in Fig. 2. The yellow box contains the
cluster substation mentioned above and the energy end-users (buildings). In the substation, heat and cold
are provided through the heat pump and the heat exchangers, respectively, by using the energy of the
thermal network. When the thermal network cannot meet the energy demands, heat and cold are provided
by the central boiler and the central compression chiller. The input and output energy flows defining such
technologies, as well as the network temperatures, are function of time and are characterized for every time
interval of the time horizon (one year with hour resolution here). Note that while one heat pump and two
heat exchangers are installed for each cluster of the Anergy Grid, multiple heat pumps and heat exchangers
could be used to provide heat and cold at different temperature levels.

The water coming from the network enters at temperature T7. During the heating season, it goes
through the heat pump and reduces its temperature to Th; the heat pump uses this low-temperature heat
and electricity (from renewable energy sources) to provide high-temperature heat to the buildings. During
the cooling season the water coming from the network goes through the heat exchangers and increases its
temperature to T3 (LTHE) and 7, (HTHE); the heat exchangers use this water to provide cold to the
buildings. The heat pump and the heat exchanger can be operated separately (e.g. during peak heating or
cooling seasons) or in combination (e.g., during mid seasons). They can even be operated in a closed loop,

Natural gas from grid Electricity from grid
central boiler central chiller
(HEZ) (HEZ)
central heat central cold

energy end-users (cluster buildings)

Y
Heat LT cold HT cold
| ) HWTS
Electricity from grid
m,T, T, <T; T3 > T, Ty =T
L HP it LTHE o HTHE ——p—
< D< D>

from thermal network to thermal network
or geothermal field or geothermal field

Figure 2: Scheme of a single demand cluster. The yellow box contains the conversion substation and the energy end-users
(cluster buildings). The substation consists of a heat pump (HP), a low-temperature heat exchanger (LTHE) and a high-
temperature heat exchanger (HTHE) providing heat, LT cold and HT cold, respectively. When needed, heat and cold can be
provided by the central system (HEZ).
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where the heat pump provides water at lower temperature to the heat exchanger, and the heat exchanger
provides water at higher temperature to the heat pump.

The possibility of installing HWTS within the cluster substations is also considered. Due to the relatively
high thermal losses, low thermal inertia and the low energy density, the HW'TS is mostly used to offset short-
term mismatch between energy production and demand.

3. System model and optimization framework

The optimal operation of the system described in Section 2 is identified through an optimization problem
that minimizes the CO, emissions of the MES by determining the optimal flow rate and temperature of
the water circulating in the geothermal network, as well as the optimal scheduling of heat pumps and heat
exchangers, to satisfy the heating and cooling demands of the end-users. The resulting optimization tool
must account for the different temperatures at which energy is required during the year, and therefore it is
formulated as a MINLP. This can be written in general form as

min (clT:c + czTy)

x,y

s.t. (1)
f(z,y) =b

x>0ecRY, ye{01}¥

where ¢1 and cg represent the cost vectors associated to the continuous and binary decision variables,  and
y, respectively; f is a generic nonlinear function of  and y, where the nonlinearity arises due to the energy
balances describing the thermal network and the technology behaviors, and b is a constant vector; X and
Y indicate the dimension of & and y, respectively. The binary variables model the non-linearities related to
the scheduling (i.e. ON/OFF) of the conversion technologies and the direction of the water circulating in
the thermal network.

The complexity of the considered MES requires an optimization tool able to capture both the short-
and long-term dynamics of the energy production, storage and consumption. Therefore, we consider a
time horizon of one year with hourly resolution. Time series aggregation (method MI in reference [29]) is
adopted to model the time horizon, thus reducing the computational burden resulting from the large number
of decision variables, which is due to the complexity of the network and to the length and granularity of
the time horizon. In the following, all the aspects of the optimization problem, namely input data, decision
variables, constraints, and objective function are described in detail.

In the following, the set of energy carriers is indicated with C, the set of clusters with D, the set of
geothermal fields with G, and the set of intersection points of the thermal network with Z. The set of all
nodes of the thermal network is denoted as O and is the union of D, G and Z. The set of branches departing
from each node of the thermal network is denoted as B. The set of available technologies is indicated with M,
whereas the set of technologies available in the clusters (i.e. heat pumps and heat exchangers) is indicated
with Mp. Unless otherwise indicated, bold symbols indicate vectors in RY, where N is the length of the
time horizon.

3.1. Input data
The carriers considered within the optimization problem are:

o Electricity (e). It can be imported from the electricity grid and is consumed by the heat pumps and
by the conventional chiller unit.

o Natural gas (g). It can be imported from the natural gas distribution grid and is consumed by the
conventional boiler.

e Heat (h). It is generated by the heat pumps and by the conventional boiler and is required by the
clusters.



194

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

212

e Cold (c). It is generated by the heat exchangers and by the conventional chiller unit and is required
by the clusters. Here, cold is required at two different levels, denoted as low-temperature (LT) and
high-temperature (HT) cold (note that any number of cold levels could be considered).

Hourly-resolved profiles of 2018 are considered for the carrier demands (see Fig. S1 in the Appendix A).
Inputs to the optimization problem are:

¢ Ambient temperature Tmb

e Carrier demands D,; Vie D,VjeC

e Import and export carrier prices wuj;, v; VjeC

e Carrier carbon intensity €; vjeC

e Technology size Sik Vie O, Vk e M

e Parameters describing the performance of the available technologies (reported in Table 1).

3.2. Decision variables
The following decision variables are returned by the optimization problem:

e Scheduling (ON/OFF status) of cluster technologies z; ) €{0,1}Y VieD, Vke Mp

e Water mass flow rate in the network nodes and branches m; Vie O,VieB

+ Inlet and outlet water temperature for cluster technologies TJ", T3} Vi e D, Vk € Mp

o Inlet and outlet water temperature of geothermal fields Tij“7 T;ut Vjeg

e Average temperature of geothermal fields T? Vjeg

e Average water temperature in the network branches T, Vie B

¢ Input power for all technologies and carriers Fi,; Vi e D, Vk e M,VjeC
e  Output power for all technologies and carriers P;; Vie D, Vk e M,VjeC
e Energy stored in hot water thermal storage E; Vi e D

o Flow direction in the network branches d, € {0,1}V vieB

3.8. Constraints

The constraints of the optimization problem can be grouped into two categories, namely the constraints
representing the performance of conversion and storage technologies and the energy balances of the thermal
network.

(I) Performance of conversion and storage technologies. The constraints reported in the following
hold for all time intervals ¢ € {1, ..., N} and the parameters describing the performance of the available
technologies are reported in Table 1. The index specifying the energy carrier relative to the input and
output powers is described in the text and is not reported in the equations for the sake of simplicity.

o Conventional boiler and chiller. For the boiler, P, and F; refer to generated thermal power and
consumed fuel power (natural gas LHV), respectively. For the the chiller, P, and F; refer to
generated cooling power and consumed electrical power, respectively. For both technologies, the
generated power is

Py =nk; (2)
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Table 1: Technology and network parameters with reference to the Anergy Grid of ETH Zurich, see Fig. 1. A different number
of boreholes, n is installed in the different geothermal fields, namely 101 (HPL), 128 (HC) and 200 (HWO). The profiles of
heat and cold demands of the different clusters are reported in Fig. S1 in the Appendix A.

Quantity Unit Value
Central generation (HEZ)
Boiler efficiency, n - 0.92
Chiller efficiency, n - 3.5
Demand Clusters
Cooling low temperature, Tf °C 12
Cooling high temperature, T °C 16
Heat pump performance parameter, 7, - 6.493
Heat pump performance parameter, 7 kW / °C 5.285
Heat pump performance parameter, 73 kW -36.1
Heat pump performance parameter, Sy s / kg 1.063
Heat pump performance parameter, (5 - -0.006
Heat pump power parameter, ¢ Z 0.1
HWTS self-discharge efficiency, A 1/h 0.005
HWTS ambient loss contribution coefficient, IT ~ — 0.001
HWTS charging efficiency, n'* - 0.95
HWTS discharging efficiency, n°% - 0.95
HWTS charging/discharging time , 7 h 3
Water network
Specific heat of water, ¢ kJ / (kg K) 4.186
Minimum mass flow rate, m™® kg/s 0
Maximum mass flow rate, m™* kg/s 80
Geothermal fields
Undisturbed soil temperature, 7° °C 14
Soil thermal conductivity, A W/(Km) 1.8
Soil thermal diffusivity, o m?/s 5.1-1077
Euler-Mascheroni constant, ~y - 0.577
Borehole thermal resistance, RP (mK)/W 88
Depth, L m 200
Minimum temperature, 7™ °C 8
Maximum temperature, 7™ °C 24

where

0<F <SS

(3)

Here, 1 is a constant conversion efficiency and S the size of the technology, i.e. the rated input

8
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power. Heat and cold from conventional technologies are provided via dedicated connections and
are always available to all the clusters.

Heat pump. This generates heat by using electricity and by decreasing the temperature of the
water transiting through the demand cluster (see Fig. 2). For all clusters ¢ € D, the generated
thermal power, P, ;, the absorbed electrical power, F} ;, the mass flow rate of the water circulating
through the heat pump, m,; and its temperatures, Tt“; and Tto"ilt, are computed as

Pt,i = Ut,iFt,i (4)
Pyi=Fpi+comig (T —T) 2 (5)
08wy < Fry < Siwe (6)

Here, 2, ; is a binary variable indicating whether device 4 is turned on at time interval ¢, producing
power but also incurring in a minimum power consumption 6.5;; ¢ is the specific heat of water.
The conversion efficiency, 7, ;, is a function of the heat pump operating temperatures as

Tcond
Nti = Tcond _ eva Ti\i,af (7)
where ¢ is the Carnot efficiency; 7°°™ is the heat pump condensation temperature, which is

defined by the heat demand and considered to be constant at 40°C. Ty7* is the heat pump
evaporation temperature, which is a function of the inlet and outlet temperatures of the water
going through the heat pump, and is computed by

; . UA
Tg;‘t = Ttlf; b (Tt‘r; — Tfja) [1 — exp <— )} T, (8)

cmm

where U is the overall heat transfer coefficient and A the heat exchange area of the evaporator.

Heat exchanger. This is modeled as a counter-current heat exchanger that provides the cooling
power P, ;, at temperature Tti"}, according to

P, =cmy, (TffE — T,”;) T, 9)
where
0<P,;<S; (10)

Here, x4 ; is a binary variable enabling the bypass of the heat exchanger when the inlet temper-
ature exceeds the value specified by the demand cluster, T°:

T} <T° (11)

Two heat exchangers, characterized by two different values of T, are present in the Anergy Grid
of ETH Zurich (see Section 2).

Geothermal field. The heat diffusion through the soil is studied by modeling the boreholes as
infinite line heat sources. Assuming a homogeneous soil with constant properties, the temperature
distribution resulting from each borehole is given by the solution reported by Carslaw and Jaeger,
who determined the dynamic response of the ground temperature to a constant heat step [54].
This is usually referred to as the g-function, g, or the dimensionless temperature response factor,
of the borehole [55], and it can be approximated by a logarithmic function of time that depends

9
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on the geometry of the borehole (i.e. depth and radius) and the properties of the soil (i.e. thermal
diffusivity and conductivity):

i) =tog (151) = (12)

where r is the radius of the borehole and ¢ the time instant; alpha is the thermal diffusivity of
the soil and « the Euler-Mascheroni constant; the subscript ”b” indicates that Eq. (12) applies
to a single borehole. The g-function is computed with hourly resolution along the time horizon
of one year. Later, more accurate numerical solutions [56-59] and analytical approximations
[60, 61] were presented.

The geothermal fields are modeled by considering the thermal interference among individual
boreholes. More specifically, we adopt the spatial superposition principle proposed in references
[58, 62], which results in an aggregated dynamic response of the overall geothermal fields, i.e.
the g-function appearing hereafter and shown in Fig. S3 in Appendix B. This depends on the
properties of the soil and on the geometry of the field (i.e. depth, radius and location of the
boreholes). Furthermore, since the aggregated g-function describes the thermal response of the
geothermal field to a heat step, the time varying heat injection/extraction is modeled through
the temporal superposition of several heat steps. Therefore, the average temperature of the j-th
geothermal field, Vj € G, is described as follows [63, 64]:

1 t
_ 70 - . .
Ti;=T" + STALn, 5:1 (Qrj — Qr—1,5) 9 (rj,t — k) (13)

where T° is the undisturbed soil temperature, A the thermal conductivity of the ground, L the
depth of the borehole heat exchangers, n; the number of boreholes, and 7; the radius of the
geothermal field; @ indicates the net injected thermal power, i.e. P — F, which is positive if
heat is extracted and negative if heat is injected. The same depth and properties of the soil are
considered for all geothermal fields, whereas these can differ in terms of radius and number of
boreholes. The net injected thermal power is expressed as

Quj = emuj (T2 = T;%) (14)

where m, Ttlg and Tt‘f;t are the mass flow rate, inlet and outlet temperature of the water circu-
lating through the geothermal field.

The energy balance at the wall of a single borehole allows to write
Qrj 1

In. — B0 (T.; = T7%;) (15)
J

where RP is the thermal resistance of the borehole and T} the water average temperature, which
is approximated as the average between the inlet and outlet water temperatures. The model of
the geothermal field is validated using the measurements shown in Fig. S2 in Appendix B.

Within the system optimization, the temperature of the geothermal fields is constrained between

a minimum and a maximum value because of environmental limitations:
Tmin < Tt j < Tmax (16)
<A <

Furthermore, a periodicity constraint is imposed on the geothermal fields. This forces the same
field temperature at the beginning and at the end of the year, thus enabling a sustainable field
operation across the years,

To; =Tn,j (17)
10



27 e Hot water thermal storage (HWTS). This type of thermal storage is the cheapest and most

278 deployed thermal storage technology. Due to its high energy losses and low energy density,
279 HWTS is mostly used to offset short-term mismatch between thermal energy generation and
280 use. For all clusters i € D, the energy stored within the HWTS, FE, ;, is expressed through the
281 following linear dynamics [49]
: 1
Et,i = Etfl,i (1 — AAt) — (H&ht -+ UlnFt/J; — Wpt/ﬂ',) At (18)
282 where
Eoi=En, (19)
283
Tmin _ Ttamb
ht = Tmax _ Tmin (20)
284
0<E;; <85 (21)
285
S. S.
—-=<F;P;<= (22)
T ’ T
286 Here, A and IT are self-discharge parameters, and h; expresses the influence of ambient temper-
287 ature on the energy losses of the storage unit, as suggested in [65]; n™ and n°" indicate the
288 charging and discharging efficiency, respectively; At is the duration of the ¢-th time interval
289 (between time steps t — 1 and ¢); 7 is the time required to fully charge or discharge the storage.
200 Here, we consider water stored at 7% = 55°C and cooled to T™" = 40°C. Also, we consider
201 the same value for charging and discharging efficiency. The periodicity constraint, Eq. (19),
202 imposes the same storage level at the beginning and at the end of the yearly time horizon.

203 (II) Thermal network mass and energy balances. The mass and energy balances are defined for all

204 intersection points of the thermal network, as well as for the demand clusters.
205 o Network mass and energy balances. Each intersection point in the thermal network is a connec-
296 tion of three branches, which are in turn connected to three different nodes (with references to
207 Section 3.2, B = {1,2,3}). Each node can be a cluster, a geothermal field, or another intersection
208 point. The mass balance for the i-th intersection point, Vi € Z, is
3 3
Z dt,i,lmt,z, Z —d; i, l Ml (23)
=1 =1
200 where my ; ; is the mass flow rate of the water entering or exiting the intersection point i through
300 the branch [ at time interval ¢; d;;; is a binary variable specifying whether the water flow is
301 entering (d = 1) or exiting (d = 0) the intersection point.
302 The energy balance for the i-th intersection point is
3
Z deigme i T3 Z (L —diig)mey th Wl (24)
= =1
303
Yi [deag T3 + (1= deig) ) z] =i, 1={1,2,3} (25)
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where
3
Yei=2—> diis (26)
=1

where Eq. (25) imposes that, in the case of an entering flow being split into two exiting flows,
the temperatures of all flows are the same; Eq. (26) defines the binary variable y; ;, which states
whether a node mixes two flows (y;; = 0, i.e. the temperature of each branch is defined by
Eq. (24)) or split one flow (y;;, = 1, i.e. all branches are at the same temperature).

o (Cluster energy balance. The energy balance within the i-th cluster states that the generated
energy must equal the energy demand for each energy carrier j € C. This is expressed as

Z (Prik — Frikj) — Dii; =0 (27)
keM

where P, ; 1 ; and Fi; 1 ; are the produced and consumed power of carrier j by technology k in
cluster ¢ at time interval ¢t; D, ; ; is the demand required by the end-users.

Eq. (27) states that the power demand of each cluster must be satisfied exactly, which represents
the reference case for our analysis. However, the Anergy Grid system allows for the flexibility to
produce power beyond the demand and to release the excess power to the environment (i.e. to
dissipate energy), if this improves the value of the objective function. In this case, Eq. (27) is
replaced by the following equations

Z (Prikj— Frikj) = Diij >0 (28)
keM

N N
Z Z Z Z (Prikg — Fring) — Diijg| < ¢>Z Z Z Dy ;5 (29)

t=14i€D jeC Lke M t=14i€D jeC

where ¢ is defined as the amount of energy that can be released to the environment normalized
over the total annual energy demand (32,2, > icp Do jec DrijAL).

3.4. Objective function

The objective function to be minimized is given by the annual CO, emissions of the system, e. These
are due to electricity and natural gas imported from the distribution grids to run the heat pumps and the
centralized chiller and boiler. They are expressed as

N
e = Zéj Z Z ZFt,i,k,jAt (30)

jec eI keM t=1

where €; is the carbon intensity (inclusive of the entire life cycle) of carrier j. Here, the carbon intensity of
electricity and natural gas are ¢, = 30 gco2/kWh (corresponding to the life cycle assessment emissions of
low-carbon electricity produced by renewable energy sources) and ez = 237 gco2/kWh, respectively.

4. Optimization strategy

We aim at minimizing the CO, emissions of the system while satisfying the heating and the cooling
demands. To do so, we determine the hourly scheduling (ON/OFF) and operations of the heat pumps and
of the heat exchangers for the five demand clusters, the heat exchanged with the three geothermal fields
and their temperature evolution, and the temperature and mass flow rate profiles for all branches of the
network. The implemented optimization procedure, illustrated in Fig. 3, proceeds as follows:
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Figure 3: Summary of the optimization procedure developed to determine the system operation that minimizes CO, emissions
while satisfying the energy demands.

(1)

A MINLP problem is formulated that describes the nonlinear behavior of the system, i.e. Egs. (2)-
(30). Two major sources of nonlinearity are (i) the efficiency of the heat pumps, given by Egs. (4),
(7) and (8), which is a nonlinear function of inlet and outlet temperatures, and (ii) the energy output
of the heat exchangers, which is proportional to the product of mass flow rate and temperature (i.e.
product of decision variables). The dynamic response of the geothermal fields (i.e. the g-function) is a
known quantity, not subject to optimization, and therefore does not introduce nonlinearities. Also, the
nonlinearities arising from the product of continuous and binary decision variables can be eliminated by
reformulating them as combination of linear constraints [66].

The MINLP problem formulated in (1) cannot be solved efficiently due to the large number of decision
variables for this class of mathematical optimization problems. Therefore, it is relaxed into a MILP
problem by (i) defining a linear approximation of the heat pump performance described by Eqgs. (4), (7)
and (8), and (ii) adopting a linear relaxation of the heat exchange model in Eqgs. (5), (9), (14) and (24).

For the heat pumps, Eqs. (4), (7) and (8) are replaced by the following linear approximations:

Pri=mF;+ (T} + n3) xu (31)

T =T — (T35 — T (Brma + B2)wi (32)

For the heat exchange, the product mT appearing in Egs. (5), (9), (14) and (24) is written through its
McCormick relaxation [67, 68], i.e. by introducing an auxiliary variable m = mT, which is bounded
between the minimum and the maximum value of the product itself. Namely, the equality constraints
involving mT are replaced by inequality constraints involving m. This represents the most relevant
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source of nonlinearity. The resulting MILP, which is hereafter referred to as the relaxed MILP, is then
solved. The flow direction in all the network branches is optimized but remains constant during the
year so as to reduce the computational complexity of the problem.

The relaxed MILP has a greater feasibility space than the original MINLP, which implies that (i) the
solution of the relaxed MILP might be unfeasible when used as input to the original MINLP, and (ii) the
optimal values of the objective function of the MILP is lower than or equal to that of the MINLP, i.e.
the value of CO, emissions of the system cannot be lower than that found through the relaxed MILP.

The relaxed MILP is solved by modeling the yearly time horizon through ten typical days. This value is
chosen after a sensitivity analysis showing deviations smaller than 1% with respect to the full-resolution
optimization for a number of typical days greater than eight. The value of 1% represents the MIP gap
of the MILP, which defines the precision of the optimal solution.

The profile of mass flow rate obtained through the relaxed MILP, denoted as m?, describes the time
evolution of the mass flow rate within the clusters, the geothermal fields and the network branches.
However, we note this solution generally underestimates the optimal value of the mass flow rate, because
it selects the lower bound identified by the McCormick inequality constraints imposed on m. Therefore,
we determine the actual mass flow rate circulating through the thermal network, denoted as m, by
increasing the value of m® through three different heuristic approaches:

(i) by replacing m® with a higher constant value v, i.e. m; = v,¥t € {1,...., N};

(ii) by scaling up m° through a constant multiplication factor ¢, i.e. m; = m9(,Vt € {1,..., N};

(iii) by shifting m° through a constant additive factor &, i.e. m; = m? 4+ ,vt € {1,..., N}.
The profile of mass flow rate obtained in this way is fixed and used as an input to the original MINLP
problem, resulting in a reduced MILP having only temperatures as decision variables. The results in

Section 5 are obtained by solving this reduced MILP, which is the ultimate end point of the optimization
procedure.

To compare the different heuristic approaches, we introduce the normalized average mass flow rate, p,
which is the ratio of the average value of m to the average value of m°:

N
_ Zt:l My

N
e my

For the three heuristic approaches introduced above p is expressed as

I (33)

(i Y
i h=—=—
Zyjs\il m?
(i) p=¢
Nk
(i) p=———+1
Zyjs\il m?

where larger values of v, ( and x result in larger values of mass flow rate and therefore p.

The solution of the reduced MILP returns the minimum value of CO, that can be attained and the
corresponding optimal operation strategy. This is given by the time evolution of (i) the scheduling and
the generated power of heat pumps and heat exchangers, (ii) the heat injected/extracted to/from the
geothermal fields, (iii) the temperature of the geothermal fields, (iv) the mass flow profiles across the
network.

The optimization problem is formulated in Matlab [69] by using the YALMIP interface [70]. The reduced
MILP is solved by using CPLEX 12.8.0 [71], set to have a relative MIP gap of 1%.
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5. Results and discussion

First, the results of the analysis are described and discussed by referring to a single demand cluster
connected to a single geothermal field, namely the HPL demand cluster and the HPL geothermal field. This
allows deriving general trends valid for all demand clusters and helps understanding the behavior of the
entire Anergy Grid of ETH Zurich, which is then presented.

The scope of the analysis is to determine the operation strategy that minimizes the CO, emissions of
the system. To this end, we identify the most relevant operation and design quantities and we investigate
their optimal values. The most relevant quantities prove to be the mass flow rate circulating through the
thermal network, the minimum-power fraction of the heat pump, the presence of hot water thermal storage,
the operation of the conversion technologies (i.e. heat pump and heat exchangers), and the possibility of
dissipating energy to the environment. Overall, the CO, emissions are minimized when the system flexibility
is maximized, i.e. when the thermal network is able to meet both the heating and cooling demands at the
same time.

5.1. HPL demand cluster and geothermal field

The system showed in Fig. 2 is considered, where the water circulating through the cluster substation
(i.e. heat pump and heat exchangers) comes from and goes to a geothermal field. This describes the HPL
demand cluster connected to the HPL geothermal field. The flow direction in the network is fixed, with
the following steps: a given mass flow rate, m, leaves the geothermal field at temperature 7T7; the water
decreases its temperature by going through the HP, if this is ON, or it maintains the same temperature by
bypassing it, if this is OFF, hence T» < T7; the water increases its temperature by going through the LTHE,
if this is ON, or it maintains the same temperature by bypassing it, if this is OFF, hence T35 > T5; the same
applies to the HTHE, hence Ty > T3; the water increases or decreases its temperature by going through the
boreholes of the geothermal field, depending on the field temperature (see Egs. (13) to (15)).

5.1.1. Minimum CO, emissions

Fig. 4 shows the specific CO, emissions of the system as function of the mass flow rate circulating in
the network, u (Fig. 4-a), of the minimum-power fraction of the heat pump, J, and of the presence of hot
water thermal storage, HWTS (Fig. 4-b), which have proved to be the most relevant quantities to determine
the minimum attainable value of CO, emissions of the single HPL cluster. The specific CO, emissions are
normalized over the total annual heating and cooling demand, and the normalized average mass flow rate
is used to express the mass flow rate (see Eq. (33) in Section 4). For comparison, Fig. 4 reports (i) the
value of CO, emissions of the HPL demand cluster obtained by using the centralized heating and cooling
technologies, without deploying the thermal network (horizontal black dashed line), and (ii) the value of CO,
emissions of the HPL demand cluster achieved with the current operation (horizontal gray dotted-dashed
line) [42, 72].

Fig. 4-a reports the CO, emissions obtained when fixing the mass flow rate through the three heuristic
approaches described in Section 4, which are indicated by (i) the orange squares - constant mass flow rate,
(ii) the green diamonds - time-dependent mass flow rate, and (iii) the blue circles - time-dependent mass
flow rate. Two main considerations can be made. First, a time-dependent mass flow rate results in lower
values of the CO, emissions, as it allows following the time evolution of heating and cooling demands. In
fact, the differences between the three strategies are small, as the system can adapt to different mass flow
rates via different technology operations, as detailed in the following. Second, for all approaches there is an
optimal value of p (i.e. an optimal value of average mass flow rate) that minimizes the CO, emissions. This
stems from the trade-off between low values of mass flow rate, for which only a small fraction of the energy
demand is satisfied, and high values of mass flow rate, for which the heating and cooling demands cannot
be satisfied at the same time because one of the two would be exceeded (and no partial bypass is allowed
by the system). To clarify this concept, consider a high value of water mass flow rate during a time of the
year in which the heating demand is higher than the cooling one (e.g. autumn). The water would circulate
through the heat pump, hence meeting the heating demand; however, it would bypass the heat exchangers
(as too much cooling would be provided), hence not providing any cooling. Similar considerations hold true
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Figure 4: Specific CO, emissions of the HPL demand cluster as function of (a) normalized average mass flow rate circulating
in the network, p, and (b) minimum-power fraction of the heat pump, ¢, and of the presence of hot water thermal storage,
HWTS. Three different mass flow rate profiles are shown in (a), corresponding to the three strategies introduced in Section 4.
A shifted mass flow rate profile with = 2.18, which enables the lowest value of CO, emissions, is used in (b).

when the cooling demand is higher than the heating one. Hereafter, we use strategy (iii) to fix the water
mass flow rate, as it results in the lowest values of CO, emissions and allows operating the system with the
lowest mass flow rates.

Fig. 4-b shows the impact of the HP minimum-power fraction on the total CO, emissions of the system
(see Eq. (6)). The same analysis is performed with and without the possibility of installing the HWTS. The
value of ¢ identifies the minimum heating demand the can be satisfied by the heat pump; lower values of §
imply the possibility of covering a wider range of heating demand and result in lower CO, emissions. From a
design perspective, this allows quantifying the advantage of having a modular heat pump installation (lower
minimum-power fraction) over having a unique technology (higher minimum-power fraction).

Deploying the HWTS allows to reduce the CO, emissions at high values of §, where the storage system
is needed to satisfy heating demands smaller than the HP minimum-power fraction. The larger the value
of §, the larger the fraction of heating demand satisfied by the HWTS, the larger the benefit in terms of
CO,, emissions; when § = 0 there is no advantage in installing the HWTS, since the HP can cover the entire
range of heating demand. Overall, the short-term flexibility provided by the storage system allows to (i)
operate the HP during more hours of the year, and (ii) directly compensate the mismatch between heat
generation and demand. HWTS is a mature and relatively cheap technology, which makes its installation a
low hanging fruit for reducing the system’s emissions. A reference value of § = 0.1 is considered across the
paper, which characterizes the technologies installed in the Anergy Grid system [42, 72].

5.1.2. System operation

Let us now investigate in more detail the optimal operation of the single HPL cluster. Fig. 5 shows the
optimal operation of the heat pump and of the heat exchangers during every hour of the year. On the left-
hand side we compare the hourly energy production with the corresponding energy demand (transparent).
On the right-hand side we show the frequency with which the technologies are switched ON and OFF, by
defining the ON/OFF switching time as the number of hours after which a technology changes its status
from ON to OFF or viceversa. The yearly operating hours, H, and the yearly switches, s, are also reported.

The HP supplies about 98% of the heating demand required by the cluster, either directly or through
the HWTS, with the central boiler mostly contributing during the winter peaks. During the year, the heat
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Figure 5: Optimal operation of HPL demand cluster. Time profiles of energy generation (left) and number of counts of ON/OFF
switch times (right) for heating, LT cooling and HT cooling. Heating is supplied via HP, LT cooling via LTHE, and HT cooling
via HTHE. On the left, the energy generation is superposed to the corresponding energy demand (transparent). On the right,
the number of yearly operating hours, H, and the number of yearly switches, s, are reported. Shifted mass flow rate profile
with g = 2.18 and § = 0.1.

pump is operated for about 7000 hours and it is most often switched ON/OFF every one or two hours,
though longer operating periods of about 10 and 20 hours are not uncommon. The longest periods without
switches last about 800 hours, but periods longer than 60 hours occur about 20 times per year.

The LTHE supplies about 79% of the LT cooling demand and is operated for about 7900 hours. It is
most often switched ON/OFF every one or two hours and common operating periods are shorter than 10
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Figure 6: Optimal storage operation for the HPL demand cluster. (a) Optimal temperature profile of the geothermal field
(green line - left vertical axis) and of the injected/extracted heat (positive/negative values of the yellow line - right vertical
axis). (b) Optimal profile of stored energy within HWTS. Shifted mass flow rate profile with p = 2.18 and § = 0.1.

hours. The longest periods without switches last about 1700 hours, but periods longer than 50 hours occur
about 20 times per year.

Similar considerations can be made for the HTHE, which supplies about 66% of the HT cooling demand,
with the central chiller mostly contributing during the summer peaks. It is most often switched ON/OFF
every one, two or three hours, but longer operating periods up to 30 hours are not uncommon. The longest
periods without switches last about 1100 hours, but periods longer than 70 hours occur about 20 times per
year.

Furthermore, the relatively low coverage of cooling demand demonstrates that the heating demand is
the major responsible for CO, emissions. This is because conventional heat generation is based on natural
gas, while conventional cold generation is based on electricity coming from renewable energy sources [73].

The optimal behavior of the storage systems is illustrated in Fig. 6, which shows (a) the temperature
profile and the extracted /injected heat of the geothermal field and (b) the energy stored within the HWTS.
In Fig. 6-a the heat (yellow line - right vertical axis) is positive when extracted from the ground (the water
circulating though the geothermal field is heated up) and negative when injected into the ground (the water
circulating through the geothermal field is cooled down). Heat is extracted during winter, which results
in a decreasing temperature of the geothermal field (green line - left vertical axis), and is injected during
summer, which results in an increasing temperature of the geothermal field. Two distinct temperature
peaks are observed in summer following two greater heat injections. After these, the temperature tends to
settle to the undisturbed value of 14 °C. The periodicity constraint given by Eq. (17) imposes that the field
temperature at the beginning and at the end of the year is equal to the undisturbed value, hence constraining
the heat extraction/injection and ensuring a long-term sustainable operation of the field.

Fig. 6-b shows the operation of the HWTS. While this is mostly used to compensate the short-term
mismatch between heat generation and demand, longer storage cycles are observed in winter, where heat
storage is most needed. This increases the flexibility of the heat pumps, which can operate also when no
heat is required. Furthermore, it complements the use of the geothermal field, which is intrinsically more
suited to compensate longer-term, i.e. seasonal mismatches between energy generation and demand because
of its slower storage dynamics.
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5.2. Entire Anergy Grid of ETH Zurich

The analysis performed in Section 5.1 for the HPL cluster and geothermal field is applied to the entire
network shown in Fig. 7, which describes the Anergy Grid of ETH Zurich, and where the blue and red
arrows indicate the direction of the water flowing in the network branches, which is optimized but remains
constant during the year. All demand clusters are modeled as described for the HPL cluster, i.e. series
of HP, LTHE and HTHE, with the possibility of storing heat in the HWTS. Here we do not present the
impact of the HP minimum-power fraction, which is similar for all clusters, but we present and discuss the
possibility of dissipating energy to the environment, i.e. of exceeding the energy demands, which becomes
more relevant when optimizing the entire system.

5.2.1. Minimum CO, emissions

Fig. 8 shows the specific CO, emissions of the entire system as function of the normalized average mass
flow rate circulating in the network, p (Fig. 8-a), of the amount of energy dissipated to the environment, ¢
(see Eqgs. (28) and (29)), and of the presence of HWTS (Fig. 8-b). The value of i is calculated by considering
all the branches of the thermal network. For comparison, Fig. 8 reports (i) the value of CO, emissions of
the Anergy Grid obtained by using the centralized heating and cooling technologies, without deploying the
thermal network (horizontal black dashed line), and (ii) the value of CO, emissions of the Anergy Grid
achieved with the current operation (horizontal gray dotted-dashed line) [42, 72]. Currently the system is
operated by following seasonal patterns, with heat pumps and heat exchangers determining the operation
in winter and summer, respectively.

In the Anergy Grid of ETH Zurich, energy dissipation to the environment is permitted and represents an
additional form of flexibility, which allows (i) to satisfy a higher fraction of energy demand via the Anergy
Grid by better handling the unbalance between the overall heating and cooling demands of every cluster,
and (ii) to balance the heat injection and extraction to and from the geothermal fields, respectively, hence
enabling sustainable field operations (i.e. same ground temperature at the beginning and the end of the

C] Demand clusters from HEZ to HEZ
C] Geothermal fields
HPL HPL
< <
< < A
HWN 1
v Y HPZ
y N
HWO l
—> > >
— > >
HCO l—b HCP HC

Figure 7: Schematic of the Anergy Grid of ETH Zurich reporting the demand clusters (yellow) and the geothermal fields (gray).
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Figure 8: Specific CO, emissions of the Anergy Grid (AG) of ETH Zurich as function of (a) normalized average mass flow
rate circulating in the network, p, and (b) normalized amount of energy dissipated to the environment, ¢, and of the presence
of hot water thermal storage, HWTS. A shifted mass flow rate profile with 4 = 1.42, which enables the lowest value of CO,
emissions, is used in (b).

year, see Eq. (17)). To clarify this concept, consider the same example above, namely a high value of mass
flow rate circulating through the network during a time of the year in which the heating demand is higher
than the cooling one. With reference to Fig. 2, assume a mass flow rate of 5 kg/s, a temperature variation
of 3.6 °C across the heat pump and the heat exchangers, 100 kWh of heating demand, and 10 kWh of LT
and HT cooling demands (i.e. 120 kWh of total energy demands). Such mass flow rate and temperature
variations result in the production of about 100 kWh of heat and 75 kWh of LT and HT cold. Therefore, we
can decide among the following three options for operating the system: (i) satisfying both the heating and
cooling demands via the Anergy Grid and release 130 kWh of cold to the environment (65 kWh each of LT
and HT cold - ¢ = 130/120 = 1.1), (ii) only satisfying the heating demand via the Anergy Grid and inject
the cold into the geothermal fields (¢ = 0), (iii) satisfying both the heating and cooling demands via the
conventional system (¢ = 0). The algorithm minimizes the CO, emissions by selecting option (ii), as this
allows storing the excess energy for later use. However, the prolonged injection of cold into the geothermal
field would result in a sustained cooling of the geothermal field, hence provoking a ground temperature at
the end of the year lower than at the beginning. This is not compatible with sustainable field operations.
When option (ii) is not feasible because it would impair future operations of the geothermal field, the
algorithm selects option (i). If option (i) is not feasible (e.g. because no more energy can be released to the
environment), the algorithm is forced to select option (iii) resulting in high CO, emissions, mostly because
the conventional heat generation is based on natural gas. Similar considerations apply when the cooling
demand is higher than the heating one.

Fig. 8-a reports the CO, emissions obtained with ¢ = 0 and by fixing the mass flow rate through the
heuristic approach (iii) described in Section 4, namely by considering a time-dependent mass flow rate profile
computed by shifting up the one obtained with the relaxed MILP optimization problem. When comparing
to the single HPL cluster, one can see that (i) smaller values of p are obtained, which means that the
optimal value of average mass flow rate (i.e. the value leading to minimum CO, emissions) is more similar
to the one obtained with the relaxed MILP optimization problem; (ii) overall, larger mass flow rates are
circulating into the thermal network, implying that the optimal operation strategy consists in satisfying
either the heating or the cooling demand at a given point in time (with one of the two being bypassed);
(iii) overall, higher CO, emissions can be attained, as a smaller fraction of the overall energy demand is
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satisfied through the thermal network. This is because the entire system must comply with the constraints
of several demand clusters coupled with different geothermal fields and with their simultaneous heating and
cooling requirements, which results in a lower flexibility than the case of a single demand cluster exploiting
a dedicated geothermal field. Contrary to the single-cluster case, the CO, emissions of the system can be
reduced with respect to the current operation only by installing HWTS and/or dissipating energy to the
environment.

As shown in Fig. 8-b, such emissions are decreased by installing HWTS, with 7% emissions reduction
obtained with one HWTS, 19% with three HWTS and 35% with five HWTS (these two cases are reported
in Fig. 8-b). Similar to the single cluster, this is because the HWTS enables a wider range of operation for
the HP and allows satisfying a larger fraction of the energy demand.

Moreover, a further reduction in CO, emissions is achieved by dissipating energy, as this allows to satisfy
simultaneously the heating and cooling demands even when one of the two is exceeded. The benefit resulting
from dissipating energy (i) does not vary significantly when increasing the number of installed HWTS, since
HWTS is mostly used to meet high energy demands and energy dissipation is mostly used to meet low
energy demands; (ii) is greater for the entire system than for the single HPL cluster, where both high and
low energy demands can be satisfied via HWTS. A value of CO, emissions similar to the current operation
is obtained for three HWTS and ¢ = 0.15, i.e. an amount of energy equal to 15% of the total energy
demand can be dissipated to the environment. For five HWTS, and for values of ¢ equal to 0.15, 0.5 and
1, a CO, emissions reduction of 78%, 83% and 87% is obtained with respect to conventional technologies,
respectively (an improvement compared to the value of 72% obtained with the current operation). A value
of ¢ = 1 results in a system where the excess energy is released to the environment rather than stored
underground. The fact that this allows reducing the CO, emissions highlights the difficulties in controlling
the ground temperature in a sustainable long-term fashion (i.e. same ground temperature is enforced at
the beginning and at the end of the year for the sustainability of the geothermal field design) and points
towards an optimal expansion of the Anergy Grid where heating and cooling demands are better balanced.

Both CO, emissions and operation costs are calculated based on the amount of consumed electricity
and natural gas, and therefore a parallel exists between minimizing CO, emissions and the operation costs.
However, minimizing the CO, emissions results in a shift from natural gas to electricity, hence in a higher
share of electricity consumption with respect to the conventional system. Considering unit costs of natural
gas and electricity equal to 60 EUR/MWh and 120 EUR/MWHh, respectively, the conventional system using
centralized heating and cooling incurs in operation costs of about EUR 55 per MWh of total energy demand.
The proposed optimization strategy allows decreasing the operations to 33 EUR/MWh with three HWTS
and ¢ = 0, and to 15 EUR/MWh with five HWTS and ¢ = 1.

5.2.2. System operation

The detailed investigation of the optimal operation of the HPL cluster when inserted within the entire
Anergy Grid provides additional insights into the management of multi-energy systems coupled with seasonal
geothermal energy storage. Compared to the stand-alone operation of the HPL cluster, the conversion
technologies are generally operated for less hours during the year and are switched ON and OFF more
often, due to the larger average mass flow rates circulating through the network and to the difficulty in
simultaneously meeting the heating and energy demands of several clusters.

When resorting to three HWTS and in case of no energy dissipation (¢ = 0), the HP supplies about
68% of the heating demand required by the cluster, being operated for about 4900 hours during the year.
It is most often switched ON/OFF every one, two or three hours, but longer operating periods of about
10 and 20 hours are not uncommon. The low coverage of heating demand is the reason why higher CO,
emissions are attained in the case of the entire system. In this case, all the tools available to enhance the
system flexibility, i.e. HWTS and energy dissipation, are needed to increase the fraction of heating demand
satisfied by the thermal network. The LTHE supplies about 73% of the LT cooling demand and is operated
for about 6000 hours a year on an hourly basis. It is most often switched ON/OFF every one, two, and
three hours and common operating periods are shorter than 15 hours. Similar considerations can be made
for the HTHE, which supplies about 77% of the HT cooling demand.
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Figure 9: Optimal storage operation of the Anergy Grid of ETH Zurich. (a) Optimal temperature profile of the HPL geothermal
field (green line - left y-axis) and of the corresponding injected/extracted heat (positive/negative values of the yellow line -
right-axis). (b) Optimal profile of stored energy within the HWTS installed in HPL. Shifted mass flow rate profile with u = 1.42,
6 =0.1and ¢ =0.

The optimal behavior of the HPL geothermal field and cluster HWTS is illustrated in Fig. 9. As shown
in Fig. 9-a, the temperature variation is less pronounced than for the HPL cluster when considered stand-
alone. In both cases, such a temperature variation is significantly smaller than the exploitable range (from
8°C to 22°C, see Table 1) and than the temperature variation experienced by the geothermal fields under
the current operation [42]. This suggests that a smaller geothermal storage capacity would be enough for
the optimal operation of the Anergy Grid. Together with the evidence that lower CO, emissions can be
achieved by coupling a demand cluster with a dedicated geothermal field (see comparison between Fig. 4-a
and Fig. 8-a), this suggests an improved design of the Anergy Grid with more and smaller geothermal fields.
Furthermore, two peaks are observed both in summer and winter, indicating a storage dynamic faster than
seasonal. This is due to the necessity of meeting the variable energy demands of all clusters at the same
time, and therefore to exploit the geothermal field through two storage cycles per year.

Fig. 9-b shows the operation of the HWTS. This is mostly used to compensate the short-term mismatch
between heat generation and demand, and it is mostly exploited in summer, hence allowing the heat pump
to operate even in moments of low heat demand (low heat demands must be satisfied via HWTS since no
energy dissipation occurs, i.e. ¢ = 0).

6. Conclusions

This paper investigates the optimal operation of MES deploying geothermal energy storage to cope with
the seasonal variability of heating and cooling demands. The benefits of seasonal geothermal storage are
assessed and optimized with reference to a real-world system, namely the Anergy Grid installed at ETH
Zurich, in Switzerland. In such a system, centralized heat and cold production based on fossil fuels is replaced
by a dynamic underground thermal network connecting geothermal fields, which serve as energy source and
storage, with demand clusters requiring thermal and cooling energy. The current system operation allows
reducing the CO, emissions of the university campus by 72% with respect to the conventional system using
centralized heating and cooling. The scope of this contribution is developing an optimization framework
enabling further increase in energy efficiency, hence further emissions reduction.
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To this end, we develop a novel optimization model that is able to address the complexity of the physical
system, and that improves on the state-of-the-art by (i) accounting for the nonlinearities of the physical
system, and (ii) capturing both the short- and long-term dynamics of energy conversion, storage and con-
sumption. These features allow improving the current operation strategies and explaining the rationale
behind the optimal system operation and design.

More specifically, the optimal system operation enables a CO, emissions reduction up to 87% with
respect to the conventional system using centralized heating and cooling (though such a value comes at the
cost of dissipating to the environment an amount of energy equal to the energy demand). This is achieved
by operating the heat pumps and the heat exchangers on an hourly basis, i.e. by switching them ON/OFF
every one, two and three hours. Furthermore, only deploying seasonal energy storage through geothermal
fields enables a CO, emissions reduction up to 76% with respect to the conventional system. The full
potential of the Anergy Grid is obtained by (i) selecting the optimal value of mass flow rate circulating
through the network, which should vary with time and be high enough to satisfy the heating and cooling
demands, but without exceeding either of the two, (ii) coupling the geothermal fields with HWTS, which
allows maximizing the efficiency of energy storage from daily to seasonal cycles, (iii) releasing energy to the
environment, which provides additional system flexibility when the heating and cooling demands are very
different from each other. Finally, the optimal temperature evolution of the geothermal fields suggests that
the design of the Anergy Grid could be improved by installing more and smaller geothermal fields, with
each geothermal field having a dedicated demand cluster. Also, the positive effect of releasing energy to the
environment points towards an optimal expansion of the Anergy Grid where heating and cooling demands
are better balanced, and the geothermal fields better exploited.
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Nomenclature

Symbols

CHER N DY IOTI FIINTIIO O MY

heat exchange area, [m?]

specific heat of water, [kJ/(kg K)]

carrier demand, [kWh]

binary defining flow direction in network branches
energy stored in hot water thermal storage, [kWh)]
CO, emissions, [gco2]

input power, [kW]

function defining dynamic behavior of geothermal fields
number of yearly operating hours

function defining thermal losses of hot water thermal storage
depth of geothermal fields, [m]

mass flow rate, [kg/s]

auxiliary variable for MILP relaxation [kg °C/s]
number of boreholes

output power, [kW]

net injected thermal power, [kW]

thermal resistance, [m K/W]

radius of the geothermal field, [m]

technology size, kW]

number of yearly switches

temperature, [°C]

overall heat transfer coefficient, [W/K m?

import energy price, [EUR/kWh]

export energy price, [EUR/kWh]

binary defining scheduling of cluster technology
binary defining node configuration

Greek symbols

YOmP 9 OMTE XA NN 20 %o
[
wn

thermal diffusivity of soil, [m?/s]

parameter defining temperature dependence of technology performance
FEuler-Mascheroni constant

parameter defining minimum size constraint
carrier carbon intensity, [gcoz2/kWh]

mass flow rate multiplication factor

technology efficiency

mass flow rate additive factor

self-discharge efficiency, [1/h]

thermal conductivity of soil, [W/(K m)]
normalized average mass flow rate

mass flow rate constant factor

Carnot efficiency

ambient thermal losses

charging/discharging time, [1/h]

normalized energy dissipated to the environment

set of branches of thermal network
set of energy carriers
set of clusters
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g set of geothermal fields

T set of intersection points of thermal network
M set of available technologies

Mop set of technologies available in the clusters
O set of all nodes of thermal network
Subscripts

HT high temperature

LT low temperature

Superscripts

amb ambient

b borehole

c cooling

cond condensation

eva evaporation

F geothermal field

in inlet

int internal

max maximum

min minimum

out outlet

w wall

Acronyms

AG Anergy Grid

B Boiler

C Compression Chiller

EMS Energy Management Systems

GF Geothermal Field

HE Heat Exchanger

HP Heat Pump

HT High-Temperature

HTHE High-Temperature Heat Exchanger
LT Low-Temperature

LTHE Low-Temperature Heat Exchanger
MES Multi-Energy Systems

MILP Mixed-Integer Linear Program
MINLP Mixed-Integer NonLinear Program
HWTS Hot Water Thermal Storage

PV Photo-Voltaic
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Appendix A: Energy demand profiles of all demand clusters

The hourly-resolved heating and cooling demand profiles of 2018 for all clusters of the Anergy Grid of
ETH Zurich (see Section 5.2) are shown in Fig. S1 and provided in the Supporting Information. These are
the experimental values measured by the system operator [42, 72]. The total annual value, D', is reported
within each box.

Heating demand [kW] LT cooling demand [kW] HT cooling demand [kW]
1000 300 1000
D™ = 1.1 GWh °t - 0.8 GWh D= 1.1GWh
HPL 500 150 500
0 0 0
500 100
500 D' = 0.9 GWh ot = 51 MWh
HPZ 50 250 50
0 0 0
400
D' =03 GWh 100 D' = 0.2 GWh
HCP 200 0 50
0 0
1400 300
! = 0.8 GWh
HCO 700 150 0
0 0
1000
D= 1.7 GWh 101 pot - 36 mwh
HWN 500 0 5
0" 0
Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov

Figure S1: Hourly-resolved heating and cooling demand profiles of 2018 for all clusters of the Anergy Grid of ETH Zurich.
Experimental values measured by the system operator [42, 72]. The total annual value is reported in each box.
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Appendix B: Model of the geothermal field

With respect to the Anergy Grid of ETH Zurich, and specifically to the HPL geothermal field (see
Fig. 1), Fig. S2 compares the temperature evolution provided by our model with the one measured by
the system operator for the profile of injected/extracted heat in 2018 [42]. The model predicts well the
qualitative behavior of the temperature dynamics. The discrepancy between the modeled and the measured
evolution (with the latter decreasing/increasing faster than the former) might be due to the position of the
temperature sensors, to the modeling assumptions, as well as to the impact of previously injected/extracted
heat not considered in the model.
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Figure S2: Temperature evolution provided by the model (green line) and measured by the system operator (blue line) following
the measured profile of injected/extracted heat (red bars) in 2018 [72].

The hourly-resolved g-function used to describe the dynamic behavior of all geothermal fields (see
Eq. (13)) is shown in Fig. S3 and provided in the Supporting Information. Such a g-function is modeled on
the behavior of the HPL geothermal field [42].

1 0 T T T T T T T T T T T T

g-function

O | 1 | | 1 1 1
Jan Mar May Jul Sep Nov

Month of the year

Figure S3: g-function used to describe the dynamic behavior of the geothermal fields [42].
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