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Abstract: A central issue in systems biology is the study of efficient methods

inferring fluxes of biological reactions by starting from experimental data. Among

the different techniques proposed in the last years, the theory of Metabolic P systems,

which is based on the Log-Gain principle, proved to be helpful for deducing biologi-

cal fluxes from temporal series of observed dynamics. According to this approach,

the algebraic systems provided by the Log-Gain principle determine the reaction

fluxes underlying a system dynamics when initial fluxes are known. Here we propose

a heuristic algorithm for estimating the initial fluxes, that is tested in two case studies.

Keywords: Biological modeling, P systems, MP systems, Metabolic flux esti-

mation, Heuristic algorithms.

1 Introduction

In the last years, the problem of reverse-engineering of biological phenomena from experimental data

has spurred increasing interest in scientific communities. For these reasons, many computational models

inspired from biology have been proposed. Among these models, the Metabolic P systems [11, 12],

shortly MP systems, proved to be relevant in the analysis of dynamics of biochemical processes, that is,

structures where matter of different type is transformed by reactions. By means of MP systems models of

several interesting phenomena were provided, among which we mention: the Lotka-Volterra dynamics

[2, 3, 15], a Susceptible-Infected-Recovered epidemic [2], the Leukocyte Selective Recruitment in the

immune response [2], the Protein Kinase C Activation [3], the Mitotic Cycle [14], the Pseudomonas

Quorum Sensing [4] and the Non-Photochemical Quenching phenomenon [16].

The importance of MP systems is their potential applicability to the reverse-engineering problem of

biological phenomena. In fact, in the framework of MP systems, a theory called Log-Gain [10, 11, 12]

has been introduced, specifically devoted to the deduction of reaction fluxes, that is, the amount of

reactants transformed by the reactions at any step of the system.

As we will show, a key point for achieving this task consists in the discovery of the fluxes associated

to the passage of a metabolic system from the state at the initial observation instant to the next one. In

this paper a heuristic algorithm is proposed for estimating the initial fluxes vector from few steps of ob-

servation. In few words, the algorithm first roughly computes the initial fluxes by assuming they have a

form recalling the mass action principle, and then solves a system of equations to deduce the correspond-

ing fluxes at the next step. From these values, the algorithm evaluates how much of each substance is

necessary to activate the first evolution step, and finally the actual initial fluxes are computed by solving

a minimization problem.

The present paper is organized as follows. Section 2 is devoted to the definition of Metabolic P

Systems, while in Section 3 Log-Gain theory is briefly recalled. In Section 4 we describe the algorithm

Copyright c© 2006-2009 by CCC Publications
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which solves the initial fluxes problem. Section 5 reports the simulations of a couple of systems obtained

by starting with initial fluxes computed by our algorithm. Further remarks and some directions for future

research are discussed in the last Section.

2 Metabolic P systems

MP systems are a special class of dynamical systems (the reader can find some details concerning

dynamical aspects of MP systems in [13]), based on P systems [5, 18, 19], which are related to metabolic

processes. MP systems are essentially constituted by multiset grammars where rules are regulated by

specific functions depending on the state of the system. From a membrane computing point of view, MP

systems can be seen as deterministic mono-membrane P systems where the transitions between states

are calculated by a suitable recurrent equation. In an MP system the variation of the whole system is

considered in a macroscopic time interval. In this manner, the evolution law of the system includes the

knowledge of the contribution of each reaction in the evolution from one state to the next one. Therefore,

dynamics is given at discrete steps, and in each step, it is ruled by a partition of matter among the

reactions transforming it. The principle underlying the partitioning is called mass partition principle,

and it defines the transformations of object populations, rather than single objects, according to a suitable

generalization of chemical laws [11].

The following definition introduces the MP systems in a formal way (N, Z, and R denote the sets of

natural, integer, and real numbers, respectively).

Definition 1 (MP system). An MP system M is specified by the following construct:

M = (X ,R,V,H,Φ ,ν ,µ,τ)

where X , R and V are finite disjoint sets, and moreover the following conditions hold, with n,m,k ∈ N:

• X = {x,x, . . . ,xn} is a finite set of substances. This set represents the types of molecules;

• R = {r,r, . . . ,rm} is a finite set of reactions. A reaction r is a pair of type αr → βr, where αr

identifies the multiset of the reactants (substrates) of r and βr identifies the multiset of the products

of r (λ represents the empty multiset). The stoichiometric matrix A of a set R of reactions over

a set X of substances is A = (Ax,r | x ∈ X ,r ∈ R) with Ax,r = |βr|x − |αr|x, where |αr|x and |βr|x
respectively denote the number of occurrences of x in αr and βr. Of course, a reaction r can be seen

as the vector r = (Ax,r | x ∈ X) of Rn. We also set Rα(x) = {r ∈ R | x ∈ αr}, Rβ (x) = {r ∈ R | x ∈ βr},

and R(x) = Rα(x)∪Rβ (x);

• V = {v,v, . . . ,vk} is a finite set of parameters. This set represents entities which affect the dynam-

ics but are not transformed by reactions;

• H = {hv | v ∈V } is a set of parameters evolution functions. The function hv : N → R states the value

of parameter v, and H[i] = (hv(i) | v ∈V );

• Φ = {ϕr | r ∈ R} is the set of flux regulation maps, where, for each r ∈R, ϕr : Rn+k → R. Let q∈Rn

be the vector of substance values and s ∈ Rk be the vector of parameter values. Then (q,s) ∈ Rn+k

is the state of the system. We set by U(q,s) = (ϕr(q,s) | r ∈ R) the flux vector in the state (q,s),
constituted by the state q and by the parameters state s;

• ν is a natural number which specifies the number of molecules of a (conventional) mole of M;

• µ is a function which assigns, to each x ∈ X , the mass µ(x) of a mole of x (with respect to some

measure units).
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• τ is the temporal interval between two consecutive observation steps;

Let X [i] = (x[i],x[i], . . . ,xn[i]), for each i ∈ N, be the vector of substances values at the step i, and

let X [] be the initial values of substances. The dynamics of an MP system is completely identified by

the following recurrent equation, called Equational Metabolic Algorithm, shortly EMA:

X [i+] = A×U(X [i],H[i])+X [i] (1)

where A is the stoichiometric matrix of reactions having dimension n×m, while ×, +, are the usual

matrix product and vector sum. We denote by EMA[i] the system (1), which allows us to obtain the

vector X [i+] from vectors X [i] and U(X [i],X [i]).

If in an MP system the elements ν , µ , and τ are omitted, then the result is called MP grammar. It is a

multiset rewrite grammar where rules are regulated by specific functions. Such a grammar is completely

specified by: i) reactions, ii) flux regulation functions, iii) parameter evolution functions, iv) substances,

which are the elements occurring in the reactions, and their initial values and v) parameters, which are

the arguments of flux regulation functions different from substances. Parameter evolution maps and/or

initial values of substances may be omitted when only the MP grammar structure is specified.

3 Log-Gain Theory: a brief recall

The starting point of the Log-Gain theory [10, 11, 12] for MP systems is the Allometry Law [1, 7],

which has many possible formulations [10], but, in the case here discussed, it can be expressed in a

simple way. Namely, a proportion can be assumed, at each step, between the relative variations of the

flux of a reaction and the sum of relative variations of its reactants, with a possible gap, called offset.

Given the dynamics of an MP system, we will use the following simplified notations, for i ∈ N, and

r ∈ R:

ur[i] = ϕr(X [i],H[i]) and U [i] = (ur[i] | r ∈ R). (2)

Assuming to know the vectors X [i] and X [i + ], the equation (1) can be rewritten in the following

form, which we call ADA[i] (Avogadro and Dalton Action [12]):

X [i+]−X [i] = A×U [i]. (3)

Formula (3) expresses a system of n equations and m variables (n is the number of substances and

m the number of reactions) which is assumed to have maximal rank. This assumption is not restrictive.

In fact, if it does not hold, the rows which are linearly dependent on other rows can be removed, by

keeping the notations A, X [i+] and X [i] for the stoichiometric matrix and the vectors of concentration of

substances, respectively. We assume thus that A has maximum rank, which we newly call n. Then there

exist n linearly independent reactions of R, and we call R such a subset of reactions. From a metabolic

point of view, this means that fluxes of each reaction of R can be obtained as linear combination of fluxes

of the reactions of R.

Formally, ADA[i] is essentially the system EMA[i] introduced in Section 2. However, these two

systems have dual interpretations. In fact, in EMA[i], the vectors U [i] and X [i] are known, and the vector

X [i + ] is computed by means of them, while in ADA[i], the vector X [i +]− X [i] is known and U [i] is

computed by solving a system comprised of both the equations in ADA[i] and further equations, dictated

by the following Log-Gain principle, to state the reaction regulation level, as we will see by formula (6).

Indeed, since the number of reactions is realistically assumed greater than the number of substances,

then system (3) has more than one solution. Therefore, fluxes cannot be univocally deduced by means

of ADA[i]. The Log-Gain principle allows us to add more equations in order to get a univocally solvable

system which could provide the flux vector.
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The two following definitions state the Log-Gain principle. For the detailed motivations of this prin-

ciple we refer to papers on MP systems theory [10, 11, 12]. Further developments providing theoretical

and experimental evidences of this principle will be matter of forthcoming papers.

Definition 2 (Discrete Log-Gain). Let (z[i] |i ∈ N) be a real valued sequence. Then, the discrete log-gain

of z, for each step i, is given by the following equation:

Lg(z[i]) =
z[i+]− z[i]

z[i]
. (4)

Principle 1 (Log-Gain regulation). Let U [i] be the vector of fluxes at step i, for i ≥ , and let R ⊂ R be

a set of n linearly independent vectors of Rn. Then, the Log-Gain regulation can be expressed in terms

of matrix and vector operations:

(U [i+]−U [i])/U [i] = B×Lg(X [i])+C⊗P[i+] (5)

where:

• B = (pr,x |r ∈ R,x ∈ X ) where pr,x ∈ {,} with pr,x =  if x is a reactant of r and pr,x =  otherwise;

• Lg(X [i]) = (Lg(x[i]) |x ∈ X ) is the column vector of log-gains of substances;

• C = (cr |r ∈ R), where cr =  if r ∈ R, while cr = ;

• P[i+] is a column vector of values associated with the reactions and called (Log-Gain) offsets at

step i+;

• × denotes the usual matrix product;

• +, −, /, ⊗ denote the component-wise sum, subtraction, division and product of vectors.

If we assume to know the flux unit vector at step i and put together the equations (5) and (3) at steps

i and i+ respectively, we get the following linear system called Offset Log-Gain Adjustment module at

step i, shortly OLGA[i], where the number of variables (reported in bold font) is equal to the number of

equations:

A×UUU [iii+] = X [i+]−X [i+] (6)

(UUU [iii+]−U [i])/U [i] = B×Lg(X [i])+CCC⊗PPP[iii+].

Given the vector Lg(X [i]), for i = ,, . . . , l, where l ∈ N, it is possible to prove that OLGA[i], for

i = ,, . . . , l −, univocally provides U [i] for i = ,, . . . , l −.

4 An algorithm to estimate initial metabolic fluxes

The iteration of the OLGA module, introduced in the previous section in order to deduce the fluxes

of reactions, assumes the knowledge of the initial values of fluxes. This leads to the formulation of the

following problem.

Problem 1 (Initial Fluxes Problem). Given X [] and X [], find a flux vector U [] such that it satisfies the

initial dynamics, that is:

X [] ≅ A×U []+X []

where ≅ means that we are searching for the vector U [] providing the minimum value of the stoichio-

metric error, defined as (‖·‖ represents the Euclidean norm)

‖A×U []− (X []−X [])‖ .

The algorithm given below solves the Initial Fluxes Problem by using the knowledge about the dy-

namics in the first evolution steps in order to evaluate the amount of each substance which is necessary

to activate the first evolution step.
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4.1 The proposed algorithm

Our algorithm consists of three phases, some of which include different computational steps. The

first phase consists in the approximation of initial fluxes by assuming that fluxes are proportional to

the reactant quantities product. In the second phase an OLGA module is employed to approximate the

amount of substances which needs as a fuel for the first evolution step. In the third phase an optimization

problem is solved, which is based on the ADA system (3). The details of the algorithm work-flow are

described in the following.

Phase 1. The goal here is to roughly evaluate the initial reaction fluxes by assuming that they are

proportional to the reactants for certain initial evolution steps i. This could appear restrictive, but at this

stage we require only an initial approximation. Therefore, at a given step i, for all r ∈ R, we set:

ûr[i] = kryr[i] (7)

where kr ∈ R, and yr[i] is the product of all substance quantities, at the step i, which are reactants for r.

We suppose that if αr = λ then yr[i] = , and we set

Û [i] = (ûr[i] | r ∈ R). (8)

For example, in a metabolic system having three kinds of substances, a, b, c, and as a set of reactions

those given in the first column of Table 1, the relationships between the fluxes of these reactions and their

reactants are reported in the second column of Table 1.

For any x ∈ X , let us consider the following system, called Local-Stoichiometric Module at the step

i, where A is the stoichiometric matrix:

x[i+]− x[i] =
∑

r∈R(x)

Ax,rûr[i]. (9)

If we assume that the constants kr, with r ∈ R, do not sensibly change in few steps, then by applying

the system (9), in at most m − n steps either we obtain a square linear system of dimension m having

maximum rank or the algorithm ends without an output. In fact, under the assumption that the rank of

Local-Stoichiometric Module is n (that is, the number of equations) and that the number of variables is

m, with n < m, then the system is completely determined if we add other m−n equations. Assuming to

gain at least one new significant equation at each step i, then in at most m−n steps we obtain a system of

(m−n)n+n equations with m variables and rank equals to m. In this way, we can obtain a square linear

system having unique solution.

In the example reported in Table 1, we have a Local-Stoichiometric Module of  equations having

rank  which initially has  variables. At the second iteration of this module, starting from the step , we

Reactions Maps

r : a → bc kra

r : b → a krb

r : c → ab krc

r : c → cc krc

Table 1: Reactions and corresponding flux regulation maps of the Local-Stoichiometric Module.
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get other  equations finally giving the following system:

aaa[]−aaa[] = −kkkaaa[]+ kkkbbb[]+ kkkccc[]

b[]−b[] = ka[]− kb[]+ kc[]

ccc[]− ccc[] = kkkaaa[]− kkkccc[]+ kkkccc[]

a[]−a[] = −ka[]+ kb[]+ kc[]

bbb[]−bbb[] = kkkaaa[]− kkkbbb[]+ kkkccc[]

ccc[]− ccc[] = kkkaaa[]− kkkccc[]+ kkkccc[]

where a[] = , b[] = , c[] = , a[] = ., b[] = ., and c[] = .. This system has

rank , and  linearly independent equations are reported in bold font. Thus, we can obtain a system

of equations having unique solution. In general, if we start with the Local-Stoichiometric Module at

the step  then we can compute the vector Û [] = (ûr[] |r ∈ R) by applying the Local-Stoichiometric

module for a suitable number of steps. The algorithm stops with no output if after m−n iterations of the

above technique, the number of equations linearly independent is less than m.

Phase 2. The aim of this step is to estimate the amount of substance necessary to start the first system

evolution step. We describe this step along with two sub-phases.

In the first sub-phase we solve OLGA[] module, withU [] = Û [], where Û [] is the vector of fluxes

computed in the previous step. Let us callU∗ = (u∗r | r ∈ R) the solution of this system. However, if some

elements of this vector have a negative value, then we choose a different set of n linearly independent

reactions in OLGA and newly apply the above procedure. The algorithm stops with no answer if a

positive solution is not found after a number of attempts equal to the number of such different sets.

However, general methods are under investigation which systematically and efficiently search for an

unique positive solution U∗.

In the second sub-phase we compute, for each x ∈ X , the amount of substance x̄ occurring for the

application of the reactions in the first evolution step. If A− is the activation matrix defined by A−
x,r =

|αr|x, for x ∈ X , r ∈ R, then the searched values are obtained by computing the vector X̄ = A−×U∗.

Phase 3. In the last step we obtain the actual vector of fluxes U◦ by solving a norm minimization

problem [9] such that U◦ provides the minimum of the following (Euclidean) norm

‖A×ξ −(X []−X [])‖ (10)

over all the positive vectors ξ = (ξr | r ∈ R) of Rm such that

A
−×ξ = X̄ , (11)

where X̄ is the vector computed at the previous step.

5 Experiments

In this section, in order to evaluate the performance of our algorithm, we apply it to two case studies:

i) a synthetic oscillatory metabolic system and ii) the Belousov-Zhabotinsky reaction [8, 20, 21].

5.1 A synthetic metabolic system

Let us consider the synthetic non-cooperative metabolic system without parameters called Sirius [11]

and given by Table 2. Firstly, we compute U [] = (ϕ(X [],ϕ(X []), . . . ,ϕ(X []). Then, we use our

algorithm to approximate the vector of fluxes U◦. The two vectors are essentially the same.
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Reactions Flux regulation maps

r : a → aa ϕ = ka/(k + kc+ kb+ k)

r : a → b ϕ = kac/(k + kc+ kb+ k)

r : b → λ ϕ = kb/(k + k)

r : a → c ϕ = kab/(k + kc+ kb+ k)

r : c → λ ϕ = kc/(k + k)

X [] = (  ) k = k = k = ,k = k = .,k = 

Table 2: The Sirius MP grammar.

5.2 A biochemical case study

In this subsection the application of the algorithm to approximate the initial fluxes of the Belousov-

Zhabotinsky reaction, also known as BZ reaction, is discussed. This system represents a well-known

example of biochemical oscillatory phenomenon, in fact this is the first evidence of a chemical clock.

Although the stoichiometry of the BZ reaction is quite complicated, several simplified mathematical

models of this phenomenon have been proposed. In particular, Prigogine and Nicolis [17] proposed a

simplified formulation of the dynamics of the BZ reaction, called Brusselator, whose oscillating be-

haviour is represented by only two substances, x and y respectively, and it is governed by the following

system of differential equations:

dx

dt
= k − kx+ kxy− kx (12)

dy

dt
= kx− kxy

where k = ,k = ,k = − and k =  represent constant rates. We use the oscillatory dynamics

obtained by solving the system (12), with initial conditions x =  and y = , as experimental data on

which testing our algorithm. MP formulation of the Brusselator is expressed by the set of rewriting

rules reported in Table 3, where, according to the literature, the fluxes of each rule r depend on the

concentrations of the reactants of r. In fact, species x has two positive and two negative contributions,

while one positive and one negative contributions characterize y. Thus, the equations can be mapped into

suitable stoichiometry by following the strategy described in [6].

Rules

r : λ → x

r : x → y

r : xxy → xxx

r : x → λ

Table 3: A set of rewriting rules that describes the Brusselator stoichiometry.

In the case of BZ we adopt a different strategy of validation of our algorithm. In fact, there is a com-

plete correspondence between the dynamics computed by the differential model and that one computed

by the equational metabolic algorithm using the fluxes deduced by OLGA module (Figure 1), starting

from the initial fluxes inferred by means of our algorithm.

6 Conclusions

The study of efficient methods for defining MP systems from experimental data is of crucial im-

portance for systematic applications of MP systems to complex dynamics. An essential component of
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Figure 1: The BZ reaction fluxes calculated by solving the system (6) with initial vector of fluxes inferred

by our algorithm.

the regulation level of an MP system can be deduced by applying the Log-Gain theory to data that can

be collected from observations of the system. A crucial task to perform in this context is the reliable

determination of the initial vector of fluxes.

In this paper we have devised an algorithm to infer the initial reaction fluxes of a biological net-

work. The proposed algorithm has been validated on test cases of a synthetic metabolic oscillator and

the Brusselator phenomenon. Future investigations will be developed with the aim i) to develop the com-

putational features of this algorithm and ii) to show the applicability of our method to complex biological

cases.
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