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Abstract 

Due to their dimensions, long pipelines often cross areas that are highly susceptible to landslides. In Italy, this problem requires 
special attention, as many slow-moving landslides interact with buried pipelines. The paper analyzes such interaction problem 
with particular reference to buckling analysis, tackling the solution of the governing equations by an exponential matrix method. 
In the paper the basic equation, its computational aspects and numerical analysis options are outlined. Representative results of 
the proposed methodology and potential applications on buckling analysis of buried pipes are presented.  
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1. Introduction 

In recent years the use of pipelines for the transportation of oil and gas has greatly increased in many parts of the 
world. Long pipelines often cross areas susceptible to slow-moving landslides1 and it is therefore important to ensure 
their integrity under the stress deriving by the compressive load induced by the ground motion. In some 
circumstances buckling phenomena can also occur2. As critical load is in inverse proportion to the square root of the 
pipe length embedded in the moving ground, long pipes can buckle under very low values of the compressive load, 
and can be cause of human loss as well as economic and environmental damage. For example, the Guanabara oil 
spill, which occurred in Brazil on January 2000 and caused the spread of 1.3 million liters of oil into Guanabara bay, 
was caused by lateral buckling of offshore pipeline that eventuated in local buckling and rupture of the pipe wall3.  
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Nomenclature 

E modulus of elasticity  
I  Second moment of cross-sectional area 
L Overall length of pipeline 
L0 Imperfection half-wavelength 
Pi Concentrate load (anchorages) 
Re External radius of circular pipe 
Ri Internal radius of circular pipe 
q Distributed load (landslides) 
ks Winkler springs (elastic foundation) 
u Generalized in-plane displacement in buckling mode 
w Generalized out-of-plane displacement in buckling mode 
�� Bending rotation�

Similarly, buckling of onshore inclined pipelines was observed during construction in Colombia in the last years 
of the twentieth century4. 

Consequently, effective constant monitoring5 and prediction of buckling load and effective measures against this 
phenomenon are important aspects of design of pipelines6,7. However, buckling of pipes is quite complicate, 
involving complex pipe-soil interaction, dependence of initial imperfections and effect deriving from second-order 
displacement field.  

The scientific interest on the different aspects of the buckling analysis of buried pipes is proved by the growing 
number of papers devoted to this topic. For instance, Zhang et al.8 proposed a finite element model for analyzing the 
buckling behavior of a buried pipeline impacted by a cube-shaped rockfall, analyzing the effects of the impact 
velocity, buried depth, impact position, and base area on the stress of the pipeline. Xue et al9. presented a first order 
shear theory for the buckling analysis of cylindrical sandwich pipes subjected to undersea water pressure. In their 
model the authors examine the change of the circumferential radius due to the radial deflection of the cylindrical 
sandwich shell and its effect on the bending moments.  

This paper presents a simplified numerical model that captures the main features of the buckling of a beam on an 
elastic foundation. The effects of various parameters such as the amplitude of initial imperfection and presence of 
anchorage points are investigated. In the ensuing, the numerical model is derived in detail and some representative 
results are discussed.  

2. Method 

The problem under investigation consists of a circular pipeline of length L and mean radius R depicted, with the 
local coordinate system adopted in the paper, in Fig. 1.  Let the pipeline be subjected to a lateral external pressure q 
and concentrated loads P applied in different points of the pipe, both acting in the axial direction, and characterized 
by a continuous elastic restraints of stiffness ks. Also, in order to simulate the presence of local geometric 
imperfection, a variable cross-sectional moment of inertia I(z) has been considered. 

The main assumptions are that a) the plane section remains plane and normal to the axis of the beam before 
bending and b) the axis of the beam is inextensible. Such hypotheses are satisfied by the following choice of the 
displacement field: 

� � � � � � � � � � � � � �, , , ,x z

dw z
s x z w x s x z u z x z z

dz
� �� � � � �   (1) 

In order to capture the non-linear behavior ruling the buckling of the beam, one can consider the strain tensor:  
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du d dwz
dz dz dz

�	 
 �� � � � 
� �

   (2) 

in which, according with the von Karman hypothesis10,11, the second-order terms deriving from the in-plane 
displacement zs  have been considered negligible. 
 

 

Fig. 1. Geometry and reference system adopted for the beam. 

 
The governing equations for the buckling of Euler beam with continuous elastic restraints represented in Fig. 2 is 

given by: 

� � � �
2 2 2

2 2 2 0
0

z

i s

d d w d w d dwEI z P q z dz k w
dz dz dz dz dz


 � 
 �� � � �� � 
� �� �
�  (3) 

where zq q� is the distributed load and  iP  the concentrated force applied in the thi point acting in the axial 
direction. 

The boundary conditions involve specifying one element of each of the following two pairs at x=0 and x=L: 

 

2

2

3

3

0 0

0 0

dw d wor
dz dz

d w dww or EI N
dz dz

� �

� � �

   (4) 

Since Eq. (3) cannot be solved in closed form, a numerical approach has to be adopted. In this paper the 
exponential matrix method, previously employed for solving differential equations in one12 and two13 dimensions, is 
here proposed for solving the eigenproblem related to the critical behaviour of Euler beams.  
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Fig. 2. a) mathematical and b) physical model of the pipe. 

 
The original version of this method approximates the out-of-plane displacement w with a sum of 1N decaying 

exponential functions: 
 

� �
1

1
1 1

1 0

N
n z

N n
n

w z w a e�

�

� ��   (5) 

the first four of which are represented in Fig.3,  multiplied by the unknown coefficients 
1Na . 

 
 
 
 
 
 

Fig.3. Exponential functions adopted for the approximate solution. 

The method exploits the properties of the exponential function for obtaining a simple but powerful method for 
solving general differential equations. However, the decaying nature of the exponential basis results to be highly 
unstable for solving the eigenvalue problems ruling the buckling problem. For such a reason the original method has 
been here enriched with two more families of trigonometric function, i.e.: 

� � � � � � � �
31 2

1
1 2 3 1 2 3

1 2 3

1 2 3
2 3

0 0 0

sin sin
NN N

n z
N N N n n n

n n n

w z w w w a e a n z a n z�

� � �

� � � � � �� � �   (6) 

the first four of which are represented in Fig. 4. The exponential method with the new basis maintains the same 
advantages of the original method returning, in the same time, a more reliable numerical procedure.  

a) 

b) 
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By adopting the displacement field (6), it is possible to rewrite the integrodifferential equation (3) in the 
following algebraic form: 

� � � � � �1 1 2 2 3 3 0T T Tz z z� � � � � �C a C a C a          (7) 

 

 

 

 

 

 

 

Fig. 4. Trigonometric functions adopted for the approximate solution. 

in terms of the known coefficients: 
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  (8) 

depending on the applied loads, the beam properties and the spring stiffnesses, and of the unknown terms collected 
in the vectors:  
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In Eq. (8) i is the imaginary unit, the matrices iE collect both the exponential and trigonometric basis: 

3 31 1 2 21
1 2 3

1 1 1; ;
2 2 2

n i z n i zn z n z n i z n i zk ki i � � � � �� � � � � � � � ��� � � � � � �� � � �� � � � � �E e e E e e E e e   (10) 
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and: 
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By subdividing the beam in N subelements and by collocating the eq. (7) in the corresponding N+1 points (Fig. 
5), it is possible to obtain the square system: 

� � � � � �
� � � � � �

� � � � � �

1 0 2 0 3 0

1

1 1 2 1 3 1
2

3

1 2 3

T

T

T

N N N

x x x

x x x

x x x

� �
� �� �
� �� � � �� �� �
� �� � � �� �� �

C C C
a

C C C
a 0
a

C C C
�

   (12) 

in terms of the applied loads iP  and � �q z . By posing � �� �� �det , 0iq z P �C , it is finally possible to obtain the 
critical values of such loads. 

 
Fig. 5. Collocating points. 

3. Results and discussion 

The effects of various parameters on the buckling response of a pipe subjected to a landslide-generated axial load 
are evaluated and summarized in this section. The study considers local geometric imperfection, presence of 
concentrate axial load and effects of the elastic foundation. The geometric and material properties of the considered 
pipe, representative of typical cases encountered in real life14, are listed in Table 1.  

       Table 1. Pipe properties. 

Pipe external radius Re 11.4   cm 

Pipe internal radius Ri 10.0   cm 

Second moment of cross-sectional area I 5411  cm4 

Modulus of Elasticity E 207    GPa 
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3.1. Local geometric imperfection 

In this study, an imperfection �  varying along the pipe has been considered, according to the function: 

� � 0
0

sin n zz
L
�� ��    (13) 

which corresponds to a constriction of the pipe in one or more points (Fig. 6).  The two main parameters describing 
the local geometric imperfection are the imperfection amplitude 0�  and the half-wavelength 0 /L n . 
 

 
Fig. 6. Sinusoidal defect of the pipe. 

As a consequence of such imperfection, both the external and the internal radii Re ,Ri  and the corresponding 
cross-sectional moment of inertia I of the pipe change as follow: 
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Fig. 7. a) Imperfect pipes and b) corresponding inertia. 
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Fig. 7 reports examples of imperfect pipes with different values of �0 and L0 / n, and the corresponding variation 
of I. Such a figure shows that cross-sectional moment of inertia follows the same trend as the deflected shape, that is 
sinusoidal with a number of halfwaves equal to L0 / n with values oscillating around I0 corresponding to the perfect 
pipe. The extremes Imax / Imin depend exclusively on the ratio between �0 and (Re, Ri): the larger is this ratio, the 
larger are differences between Imax / Imin and I0. Table 2 reports the effect of some representative values of �0 on the 
inertia of a pipe characterized by the dimensions reported in Table 1. 

    Table 2. maximum/minimum second moment of cross-sectional area for different �0. 

�0 max 0/I I  min 0/I I  

0.1 cm 1.02822 0.97230 

0.5 cm 1.14641 0.86663 

1 cm 1.30648 0.74570 

2 cm 1.67002 0.53870 

5 cm 3.15178 0.15279 
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Fig. 8. Nondimensional critical vs. amplitude and half-wavelength of the defect. 

Figure 8 reports values of ηcr = Pcr / P0, i.e. the buckling load normalized by the critical load P0, with reference to 
a pipe without imperfection, for different values of �0 and n. The above Figure indicates that the critical load 
decreases by increasing the imperfection amplitude �0, with values lower than 00.2P  for �0  > 0.4 cm. Moreover, it 
can be noticed a substantial insensibility of ηcr on the number of half waves n, the differences in terms of critical 
load being lower than 5%. 

In addition to this, the results do not depend on the sign of �0 with the only exception of the case n=1, where the 
critical load ηcr  increases with �0, assuming values greater than unity (that is, the imperfect pipe has a critical load 
greater than the perfect one) for positive values of�0. Such peculiarity, which may appear as counterintuitive at first 
sight, can be explained by observing the first imperfect pipe reported in Fig. 7, for which n=1. In such a case �0 > 0 
leads to a larger value of cross-sectional moment of inertia (the opposite is true for �0 < 0). 

3.2. Effect of the elastic restrains on the critical load of underground pipelines 

The critical behavior of a pipeline generate by a landslide can be reduced by the stabilizing effect of the 
surrounding field. Such an effect can be adequately modelled by elastic restrains with a stiffeness ks derived by the 
physical characteristic of the land. The next example shows the beneficial effect deriving by the presence of elastic 
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restrains on the critical load of a pipeline for different values of load ratio P/q, stiffness sk and boundary conditions. 
In the figure symbols C, S and F identify the Clamped (w = φ = 0), Simply-supported (w = 0, φ ≠ 0) and Free (w ≠ 0, 
φ ≠ 0) boundary conditions applied to the ends, so that C-S denotes a pipe clamped at x = 0 and simply supported at 
x = L, C-F indicates a beam clamped at x = 0 and free at x = L and so on. 

The simultaneous presence of distributed and tip forces returns the buckling capacities curves represented, for 
different boundary conditions, in Fig. 9: when the values of � �,P q  are found under the curves, the pipe will not 
buckle.  

Conclusions 

A novel model able to determine the critical load of pipelines subjected to landslide load has been presented. The 
model allows for considering concentrate loads acting on a pipe of variable inertia resting on elastic foundation. 
Some examples have shown the potentiality of the method, as well as the effects of crucial parameters on the critical 
behavior of the pipeline. The model can be seen as a first step towards more complex models which can take into 
account, for instance, a non-linear constitutive behaviour of both pipeline and soil. 

Fig. 9. Resistance domain for different P/q ratio and values of the elastic restrains. 
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