
Extending Conceptual Schemas

with Business Process Information

Marco Brambilla1, Jordi Cabot2, Sara Comai1

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano

Piazza L. Da Vinci, 32. I20133 Milano, Italy
{mbrambil, comai}@elet.polimi.it

2 Estudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya

Rbla. del Poblenou, 156 E08018 Barcelona, Spain
jcabot@uoc.edu

Abstract. The specification of business processes is becoming a more and more criti-

cal aspect for organizations. Such processes are specified as workflow models ex-

pressing the logical precedence among the different business activities (i.e., the units

of work). Typically, workflow models are managed through specific subsystems,

called workflow management systems, to ensure a consistent behaviour of the appli-

cations with respect to the organization business process. However, for small organi-

zations and/or simple business processes, the complexity and capabilities of these

dedicated workflow engines may be overwhelming. In this paper we therefore advo-

cate for a different and lightweight approach, consisting in the integration of the busi-

ness process specification within the system conceptual schema. We show how a

workflow-extended conceptual schema can be automatically obtained, which serves

both to enforce the organization business process and to manage all its relevant do-

main data in a unified way. This extended model can be directly processed with cur-

rent CASE tools, for instance, to generate an implementation of the system (includ-

ing its business process) in any technological platform.

Keywords: business process models, BPMN, integrity constraints, UML, OCL

1. Introduction

All software systems must include a formal representation of the knowledge of the

domain. In conceptual modeling, this representation is known as the conceptual

schema of the software system [22]. However, software development processes for

complex business applications usually require the additional definition of a workflow

model to express logical precedence and process constraints among the different

business activities (i.e., the units of work).

Workflow models are usually specified through dedicated languages (e.g., Busi-

ness Process Management Notation - BPMN [35]) and implemented with the help of

specialized workflow management systems (WFMSs), e.g., see [36] [21], which are

heavy-weight applications focused on the control aspects of the business process

enactment. This is clearly the best option to manage large workflow models. How-

ever, in some cases organizations may prefer a more lightweight approach that does

not require acquiring a specific workflow subsystem.

This paper tackles the problem of defining a light-weight approach to the imple-

mentation of business processes within software applications, without the use of spe-

cialized WFMSs, which represents a relevant issue in several application scenarios.

Indeed. alternative solutions to complete WFMSs can be preferred in case of simple

business requirements, small organizations, or when the business process needs are

going to be drowned into a larger system that is being implemented ad hoc for the

organization. In these cases, designing and implementing the workflow using the

same methods, notations and tools used to develop the rest of the system can be con-

venient and cost effective for the organization.

Along these development lines, some approaches have focused on the implementa-

tion of workflow models in specific technology platforms, as relational databases

(generally in the form of triggers [3]), Web applications (by means of hypertextual

links and buttons properly placed in Web pages, thus restricting the user navigation

[9]), or Web services (through transformation into Business Process Execution Lan-

guage for Web Services - BPEL4WS [25] specifications). This way, the workflow

definition becomes part of the system implementation and no specific workflow en-

gine is required. However, these approaches can be hardly generalized to technolo-

gies different from the ones for which they have been conceived (e.g., to new tech-

nology platforms), make difficult a wider adoption of business processes within the

organizations, and present some limitations regarding the supported expressivity for

the initial workflow model and/or its integration with the conceptual schema.

As an alternative, in this paper we propose a formalized model-driven develop-

ment (MDD) approach for developing workflow-based applications and advocate for

the automatic integration of the workflow model within the (platform-independent)

conceptual schema. The resulting workflow-extended conceptual schema includes in

a single schema both the business process specifications and the domain knowledge,

providing a unified view of the system and allowing treating both dimensions in a

homogeneous way when implementing, verifying, and evolving the system. The inte-

gration is done at the model level. Therefore, current modeling tools can be used to

manage our workflow extended schema, no matter the target technology platform or

the purpose of the tool (e.g. verification, code-generation, …).

The rest of the paper is structured as follows: Sections 2 summarizes and moti-

vates our approach and its advantages. In sections 3 and 4 the conceptual schema, the

workflow concepts, and our case study are illustrated. Section 5 introduces the nor-

malization phase. In Sections 6 and 7 we provide the definition of the workflow-

extended conceptual schema and of the OCL (Object Constraint Language [32])

process constraints, respectively. Section 8 sketches possible implementation strate-

gies for this extended model. Section 9 portrays our prototype tool implementation.

Then, Section 10 compares our approach with related work and in Section 11 we

draw our conclusions and discuss future work.

Fig. 1. MDD process for workflow-based applications

2. Overview of the proposed approach and of its benefits

Our MDD approach for developing workflow-based applications is sketched in

Fig. 1: the designer specifies the conceptual schema (e.g., in UML) and the workflow

model of the application (e.g., in BPMN), using the appropriate design tools. At this

stage some links between the workflow model and the conceptual schema can be

already identified. Typically, they represent the usage relationship that associates

objects of the application domain to activities in the workflow model.

The workflow model may need a normalization transformation for homogenizing

the notation and making it fit for the next (automatic) steps.

The conceptual schema and the workflow model undergo to the integration trans-

formation phase that produces the workflow-extended conceptual schema. More spe-

cifically, given a conceptual schema c and a workflow model w, it is possible to auto-

matically derive a full fledged conceptual schema c’ enriched with the types needed

to record the required workflow information in w (mainly its activities and the enact-

ment of these activities in the different workflow executions) and with a set of proc-

ess constraints over such types to control the correct workflow execution. Several

workflow models can be integrated with the same conceptual schema since the proc-

ess constraints of each workflow model do not interfere. This is guaranteed by the

construction process of the workflow-extended model. This extended schema can

then be managed using any commercial UML CASE tool.

The whole approach has been implemented in a prototype tool that automatically

translates the workflow specifications into a set of types and constraints on the con-

ceptual schema, according to a set of translation patterns described in the paper.

The focus of the paper will be on the platform-independent transformations of the

conceptual models; however, some ideas on how to implement the workflow-

extended conceptual schema into target platforms will be provided. As reference

models, throughout the paper we will use UML class diagrams for the representation

of conceptual schemas and OCL constraints to represent the process constraints. For

the workflow, we will adopt a particular business process notation, namely BPMN

[35], for sake of readability and concreteness. Indeed, business analysts are well

aware of business process modeling techniques but are not so familiar with software

engineering notations and practices. Recently, BPMN and other domain-specific

notation have been increasingly accepted in the field, thus we based our examples on

a notation that business roles in the enterprises are familiar with.

Our model transformations are based on the concepts and definitions specified by

BPDM (Business Process Definition Metamodel [34]), a platform- and notation-

independent metamodel for defining business processes. Since BPDM is a common

metamodel for all business process notations (e.g., it includes all concepts of BPMN

and UML activity diagrams), our approach can be used exactly in the same way when

using activity diagrams or any other BPDM-compliant notation to model the work-

flows. The proposed approach is therefore general-purpose and is valid regardless of

the adopted business process notation.

2.1. Motivation and discussion

The main advantage of the proposed approach is that the workflow-extended con-

ceptual schema includes in a single conceptual schema both the business process

specifications and the domain knowledge. Since the workflow-extended model is

automatically generated from the workflow model and the conceptual schema, a uni-

fied view of the system is hence available without any additional effort by the de-

signer. This allows treating both dimensions in the resulting model in a homogeneous

and consistent way when implementing, verifying, and evolving the system. Thanks

to this unified view, our workflow-extended schemas enable the definition of more

expressive business constraints, generally not allowed by common business process

definition languages such as timing conditions [13] or conditions involving both

business process and domain information.

Moreover, since the integration of the workflow and conceptual schemas is done at

the model level, the resulting workflow-extended conceptual schema is a platform-

independent model. Thanks to the current state of the art of model-to-model and

model-to-text transformation tools, integrating different notations in the same ap-

proach (e.g., UML class diagrams, OCL, and BPMN) does not make a difference.

Indeed, the extraction and integration process will simply consider models conform-

ing to different metamodels (e.g., UML and BPDM). Anyway, the model transforma-

tions involved are straightforward and compliant with the MDD approach.

Once the final workflow-extended schema is produced, it can benefit from any

method or tool designed for managing a generic conceptual schema, no matter the

target technology platform or the purpose of the tool, spawning from direct applica-

tion execution, to verification/validation analysis, to metrics measurement, and to

automatic code-generation in any final technology platform. Those methods do not

need to be extended to cope with the workflow information in our workflow-

extended schema, since it is a completely standard UML model [30]. In this sense,

with our approach we do not need to develop specific techniques for workflow mod-

els nor to use specific tools for managing them.

Finally, once (automatically) implemented (with the help of any of the current

UML/OCL CASE tools offering code-generation capabilities), the workflow-

extended conceptual schema ensures a consistent behavior of all enterprise applica-

tions with respect to the business process specification. As long as the applications

properly update the workflow information in the extended model, the generated proc-

ess constraints enforce that the different tasks are executed according to the initial

business process specification.

2.2. Original contributions of the paper

To our knowledge, ours is the first approach that automatically derives a platform-

independent conceptual schema integrating both domain and business process infor-

mation in a unified view. A first version of this proposal has been published in [7];

however, this paper extends [7] in several directions. In particular, the main original

contributions of this paper include:

- The introduction of a normalization phase to simplify the initial workflow mod-

els and extend the set of workflow patterns we can directly cover with our method.

- A complete description of the process that allows obtaining the workflow-

extended conceptual schema starting from the domain model and the workflow mod-

el.

- An extended and refined version of the translation of process constraints, includ-

ing also the management of the start, end, and intermediate events in the business

process specification. Such events can represent different event types (message, ex-

ception, rule, timer, and so on).

- The specification of different integration scenarios that can be used in the trans-

formation process and a discussion on their trade-offs in terms of the complexity of

the resulting extended schema and of the process constraints.

- The description of different implementation alternatives for the workflow ex-

tended schema towards target platforms.

- The description of our tool implementation, supporting all the (automatic) model

transformations.

3. Conceptual schemas

A conceptual schema (also known as domain model) defines the knowledge about the

domain that an information system must have to perform its business functions. With-

out loss of generality, we will represent conceptual schemas using UML [30].

The most basic constructors in conceptual schemas are entity types (i.e., classes in

the UML terminology), relationship types (i.e., associations) and generalizations.

An entity type E describes the common characteristics of a set of entities (i.e., ob-

jects) of the domain. Each entity type E may contain a set of attributes.

A binary relationship type R has a name and two participants. A participant is an

entity type that plays a certain role in the relationship type. Each relationship (i.e.,

link) between the two participants represents a semantic connection between the enti-

ties. A participant in R may have a minimum and maximum cardinality. The mini-

mum cardinality min between participants p1 and p2 in R indicates that all entities of

E1 (type of the participant p1) must be related at least with min entities of E2 (type of

the participant p2). A maximum cardinality max between p1 and p2 in R defines that

entities of E1 cannot be related with more than max entities of E2.

A generalization is a taxonomic relationship between a more general entity type E

(supertype) and a set of more specific entity types E1,…,En (subtypes).

As an example, Fig. 2 shows a conceptual schema, represented in UML, meant to

(partially) model a simple e-commerce application. It consists of the entity types

Product, Quotation, QuotationLine (to record the details of the products included in

the quotation), and Order (an order is generated by each quotation accepted by the

customer, and then, its quotation lines are referred to as order lines). According to the

cardinality constraints in the relationship types, all quotation must include at least one

product and orders must be of a single quotation.

OrderProduct Quotation

amount

state
date

id
amount
date

idname
price QuotationLine

quantity

1.. 0..11

Fig. 2. A partial conceptual schema for an e-commerce application

4. Business Processes Concepts

Several visual notations and languages have been proposed to specify workflow mod-

els, with different expressive power, syntax, and semantics. Without loss of general-

ity, in our work we have adopted the Workflow Management Coalition terminology,

the Business Process Definition Metamodel [34] (BPDM), and the Business Process

Management Notation [35] (BPMN).

BPDM is a standard proposed by OMG for representing and modeling business

processes independent of any notation or methodology. This is done by proposing a

unified metamodel that captures the common meaning behind the different notations

and technologies. The metamodel is a MOF-compliant [33] metamodel. As such,

BPDM also defines a XML syntax for storing and transferring business process mod-

els between tools and infrastructures. BPDM has been evaluated in [27] as the best

business process interchange format in terms of expressivity.

BPMN perfectly fits with the BPDM metamodel and provides a graphical notation

to express BPDM business processes. However, the specification of the business

process can be provided with any other notation or language, including UML Activity

Diagrams [30]. Several works evaluated and compared the different notations for

specifying business processes (e.g., see [26], [27], [40], [2]), highlighting strengths

and weaknesses of every proposal. The results of our approach using one of these

alternative notations would be quite similar. Indeed, our approach can be directly

applied to any specification compliant with BPDM.

In our work, we focus on the core part of the BPDM metamodel. The workflow

model is hence based on the concepts of Process (the description of the business

process), Case (a process instance, that is, a particular workflow execution), Activity

(the elementary unit of work composing a process), Activity instance (an instantiation

of an activity within a case), Actor (a user role intervening in the process), Event

(some punctual situation that happens in a case), and Constraint (logical precedence

among activities and rules enabling activities execution). Processes can be internally

structured using a variety of constructs: sequences of activities; gateways implement-

ing AND, OR, XOR splits, respectively realizing splits into independent, alternative

and exclusive threads; gateways implementing joins, i.e., convergence point of two or

more activity flows; conditional flows between two activities; loops among activities

or repetitions of single activities. Each construct may involve several constraints over

the activities.

In the sequel, we will exemplify the proposed approach on a case study consisting

of a simplified purchase process, illustrated using the BPMN notation in Fig. 3.

According to the BPDM semantics, the depicted diagram specifies a process in-

volving two actors (represented by the two swimlanes): a customer and a seller. The

customer starts the process by asking for a quotation about a set of products (Ask

quotation activity). The seller provides the quotation (Provide quotation activity) and

the customer may decide (exclusive choice) to modify the request (Change quotation

activity, followed by the repetition of the Provide quotation activity) or to accept it

(then the order is submitted). For simplicity, it is not modeled what happens if they

never reach an agreement. Depending on the complexity of the order, the process can

follow two alternative paths: the first consists only of a Standard Shipment activity,

while the second requires the customer to specify the kind of shipment he prefers

(Choose shipment). After the choice, the Seller takes the order in charge and performs

two parallel activities: the arrangement of the transport plan and the processing of

each order line. The latter is represented by the multi-instance activity called Process

order line: a different instance is started for each order line included in the order.

Once all order lines have been processed and the shipment has been defined (i.e.,

after the AND merge synchronization), the path reaches the join point with the alter-

native path of the standard shipment. Independently on the kind of shipment, the Ship

order activity is performed, and then two uncontrolled branches take place: the cus-

tomer receives the goods and the seller issues and sends the invoice. When both ac-

tivities have completed (synchronization AND gateway), the user pays for the goods,

and thus closes the process.

Fig. 3. Example of a workflow model

5. Normalization Phase

Before addressing the actual integration of the workflow model and the conceptual

schema, the business process specification usually needs to be normalized. This step

simplifies the processing of the workflow model later on without losing generality in

the coverage of the business process specification admitted in our method.

Workflow languages allow different equivalent representations of the same busi-

ness semantics (see [35] for details) and define several complex constructs that can be

derived from more basic ones. The normalization phase tackles these problems by

applying a set of model to model transformations that ensure a coherent representa-

tion and render all the complex concepts in terms of simple ones. Notice that this

phase does not aim at the reconciliation of different business processes. Instead, it

aims at unifoming the notation of different design styles that could be adopted even

within the same notation. The main issues addressed in this phase are:

• Nested structures: if the business process is specified by means of nested sub-

processes, they are flattened into a single-level business process that includes all

tasks that were included in the subprocesses. If the subprocess contained only

one lane, all the activities are moved inside the current lane of the main process;

if more lanes were contained in the subprocess, they are transferred to the current

pool of the main process, together with their respective activities, thus introduc-

ing new lanes in the flattened process.

• Different notation styles: all different notations with the same BPDM semantics

are homogenized in a single BPMN notation style (some examples are shown

next). Thanks to this step, the business process will use only a single representa-

tion for each modeled behavior.

• Concatenation of gateways: if two or more gateways are directly connected by a

control flow, the transformation adds a fake intermediate activity in the middle of

every gateway pair. This simplifies the integration job, since it permits to work in

a modular fashion when generating the constraints and the rules imposed by the

gateways. Fake activities can be treated as activities that can be immediately en-

acted as soon as their process constraints are satisfied, and then automatically

completed without neither user interaction nor business action execution.

 Fig. 4 shows the result of applying the normalization phase on the workflow model

specified in Fig 3. The elements added because of the normalization are highlighted

in color and bold line face. Only the last two transformations apply to this example.

To avoid the alternative notation for XOR-merge (consisting in directly connecting

two incoming arrows to an activity), the XOR-merge after the Ask quotation activity

is made explicit and added to the model; analogously, to avoid two outgoing arrows

from the Ship order activity, an AND-spit gateway is added. To remove the configu-

rations of two connected gateways, a fake activity is added (EmptyActivity1).

Fig. 4. Example of a normalized workflow schema

6. Extending Conceptual Schemas with Business Process Information

Given an initial conceptual schema c, the workflow-extended conceptual schema c’

of the workflow-based application w is obtained by extending c with some additional

elements derived from the business process specification w. We will focus on the case

of a single business process; however, our extensions to the conceptual schema suf-

fice when considering different business processes on the same domain. Indeed, in

our approach several workflow models can be integrated with the same conceptual

schema since the process constraints of each workflow model do not interfere due to

the construction process of the workflow-extended model.

6.1. Generation of the workflow-extended conceptual schema

The workflow-extended conceptual schema must include: (i) the original conceptual

schema, (ii) user-related information, (iii) workflow-related information, (iv) a set of

possible relationships between the conceptual schema, the workflow information and

the user information, and (v) a set of process constraints guaranteeing a consistent

state of the whole model with respect to the workflow definition (see Section 7). To

illustrate the generation of these different parts of the workflow-extended conceptual

schema we will use the workflow model of Fig. 34 and we will assume that the initial

conceptual schema is the one shown in Fig. 2.

 More formally, we define a workflow-extended conceptual schema as follows.

Given an initial conceptual schema with entity types (i.e., classes) E={e1,…,en}, rep-

resenting the knowledge about the domain, and a workflow model w with activities

A={a1,…,am}, the workflow-extended conceptual schema is obtained in the follow-

ing way:

(i) Domain subschema: All entity types in E and their relationships (i.e., associa-

tions) and generalizations remain unchanged in the workflow-extended model

(bottom part of Fig. 5).

(ii) User subschema: User-related information is added to the extended model by

means of two entity types (see the top-left part of Fig. 5): entity type User

represents individual workflow actors; entity type Role represents groups of

users, having access to the same set of tasks. A user may belong to different

roles.

(iii) Workflow subschema: Workflow-related information (top-right part of Fig. 5)

includes several fixed types (i.e., independent of the particular workflow mod-

el):

• Entity type Process represents the supported workflows. As an example, an

instance of the Process type would be our Purchase workflow. Other in-

stances would represent additional workflows over the same domain sub-

schema.

• Entity type Case denotes an instance of a process, which has a name, a start

time, an end time, and a status, which can be: ready, active, cancelled, ab-

orted, or completed [35]. Every execution of a process results in a new in-

stance of this type. This new instance is related with the appropriate process

instance.

• Entity type ActivityType represents the different activities that compose a

process. Activity types are assigned to roles, which are responsible for exe-

cuting them. In our case study, AskQuotation, ProvideQuotation, etc. would

be instances of ActivityType.

ProcessOrderLine ChooseShipment

ProvideQuotationChangeQuotation

Arrange
Transport

ReceiveGoods

Case

status
start
end

id

EventType

eventTrigger
eventResult
eventKind
name

Order

amount

state
date

id

AskQuotation

SubmitOrder

Quotation

amount
date

id

User

password
name

ActivityType

description
name

SendInvoice

Activity
status
start
end

Role
name

EmptyAct1ShipOrder

Product
name
price

Process

description
name

PayGoods

Event
eventTime

:ActivityType

PartOf
1*

PartOf
1

*

*

1

Manages

*
1..*

Performs *1

QuotationLine
quantity

1..

PartOf* 1

0..1

1

PartOf 1*

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

1

0..1

0..11

1

0..1

RelatedWith
**

1

0..1

BelongsTo

1..*

1..*

1

0..1

InstanceOf
1

*
InstanceOf

1

*

1

0..1

InstanceOf
1

*

Precedes
+previous
*

+next*

W
orkflow

 subschem
a

U
ser subschem

a

D
om

ain
subschem

a

 Fig. 5. Workflow-extended conceptual schema

• Entity type Activity denotes the occurrence of a particular activity within a

Case, described by the start time, the end time, and the current status, which

can be: ready, active, cancelled, aborted, or completed. Only one user can

execute a particular activity instance, and this is recorded by the relationship

type Performs. The Precedes relationship keeps track of the execution order

between occurred activities.

• Entity type EventType represents the events that may affect the sequence or

timing of activities of a process (e.g., temporal events, messages etc.). There

are three different kinds of events (eventKind attribute): start, intermediate,

and end. For start and intermediate events we may define the triggering me-

chanism (eventTrigger). For end events, we may define how they affect the

case execution (eventResult).

• Entity type Event denotes the occurrence of a particular type of event in the

system.

and a set of workflow-dependent subtypes:

• For each activity a ∈ A, a new subtype sa is added to the entity type Activity

(ActivityType is a powertype [30] for this set of generalizations). The name

of the subtype is the name of a (e.g., in Fig. 5 we introduced ProcessOrder-

Line, AskQuotation, ShipOrder, and so on). These subtypes record the in-

formation about the specific activities executed during a workflow case. For

instance, the action of asking a quotation for the purchase X in a case C of a

workflow W would be recorded in the system as an instance in the AskQuo-

tation subtype related with the corresponding instance “C” in the Case type

(in its turn related with the “W” instance in the Process type).

(iv) Relationships between workflow subschema and domain subschema: each

subtype sa is related with a (possibly empty) set of entity types Ea ⊆ E.

These new relationship types are useful to record the objects modi-

fied/managed during the execution of a certain activity. Also, they are re-

quired to evaluate conditions appearing in some process constraints. In the

case study (see Fig. 5), a set of relationship types are established: Quotations

are associated with the activities Ask Quotation and Provide Quotation;

QuotationLines are associated with the ProcessOrderLine activity; and Or-

ders are associated with the activities Submit Order, Process OrderLine,

Ship Order, Pay for goods and so forth. When necessary, these associations

between the domain and the workflow subschemata may be automatically

generated if the workflow specification includes auxiliary primitives for de-

scribing the data flow between activities and/or when the designer defines

some pattern-matching among the names of the activities and of the entity

types. Otherwise, they must be manually specified.

6.2. Complexity of the workflow-extended conceptual schema

Clearly, the workflow-extended schema is more complex than the original conceptual

schema. However, we believe that this increased complexity is compensated by the

fact that it may be automatically generated (with our method) and processed (for

instance, with code-generation tools) and thus, the designer does not need to directly

manipulate it. Moreover, the size of the extension is 1) constant regardless the size of

the initial conceptual schema and 2) linear with respect to the number of activities in

the workflow. Therefore, in most cases, the extension will be small when compared

with the size of the initial conceptual schema.

We would like to remark that when proposing our workflow-extended schema we

opted for balancing the size of the workflow subschema with the complexity of the

process constraints. Richer schemas with further relationship types and/or attributes

could be defined, according to the requirements of the specific workflow application

(for example, we could have used a more complex pattern for the specification of the

role-user relationship [10]). Similarly, simpler extensions could be used instead but

then, as a trade-off, the process constraints would become much more complex. To

better illustrate this discussion, two other alternative workflow-extended models are

provided in the Appendix A. All three alternatives share the same philosophy and

provide the same kind of benefits, and thus, designer may choose any of them when

applying our method.

7. Translation of Process Constraints

The structure of a workflow model implies a set of constraints regarding the execu-

tion order of the different activities, the number of possible instances of each activity

in a given case, the conditions that must be satisfied in order to start a new activity,

and so forth. These constraints are usually referred to as process constraints. The

behavior of all enterprise applications must always satisfy these constraints. Thus, the

generation of the workflow-extended model must consider all process constraints.

Process constraints are translated into constraints over the population of the

sa1,…,sam subtypes of Activity (see previous section). The generated constraints guar-

antee that any update event over the population of one of these subtypes (for instance,

the creation of a new activity instance or the modification of its status) will be consis-

tent with the process constraints defined in the workflow model.

We specify process constraints by means of invariants written in the OCL lan-

guage [32]. Invariants in OCL are defined in the context of a specific type, the context

type. The actual OCL expression stating the constraint condition is called the body of

the constraint. The body is always a boolean expression and must be satisfied by all

instances of the context type, that is, the evaluation of the body expression over every

instance of the context type must return a true value. For instance, a constraint like:

context A inv: condition

implies that all instances of the type A must verify condition.

Constraints are defined to restrict only the execution of the workflow they are cre-

ated for (the context type of the constraints is always a specific activity and not an

entity type of the domain subschema). Therefore, no interferences among different

workflows occur, even if they are defined over an overlapping subset of the concep-

tual schema.

Even though some of the constraints may seem quite complex, we would like to

remark that all of them are automatically generated from the workflow model, and

thus, they do not need to be manipulated (nor even necessarily understood) by the

designer but for other tools. However, to simplify its presentation in the extended

model, we could easily define a stereotype for each constraint type, as done in [14].

Next subsections define a set of patterns for the generation of the process con-

straints corresponding to the different typical constructs appearing in workflow mod-

els (sequences, split gateways, merge gateways, conditions, loops, and so on). The

patterns can be combined to produce the full translation of the workflow model.

7.1. Sequences of activities

A sequence flow between two activities (Fig. 6) indicates that the first activity (A)

must be completed before starting the second one (B). Moreover, if A is completed

within a given case, B must be eventually started before ending the case (we do not

require B to be completed since, for instance, it could be interrupted by the trigger of

an intermediate exception event). This behavior can be enforced by means of the

definition of three OCL constraints.

BA

Fig. 6. Sequence flow

The first constraint (seq1 constraint) is defined over the entity type corresponding

to the destination activity (B in the example) stating that for all activity instances of

type B the preceding activity instance must be of type A and that it must have been

already completed. Its specification in OCL is the following:

context B inv seq1: previous->size()=1 and previous->exists(a| a.oclIsTypeOf(A)

and a.status=‘completed’)

This OCL definition enforces that B instances (since B is the context type of the

constraint) have a previous activity (because of the size operator over the value of the

navigation through the role previous) and that such activity is of type A (enforced by

the exists operator). B and A are Activity subtypes as defined in Section 6.

The other two required constraints are:

• A constraint seq2 over the second activity to prevent the creation of two different

B instances related with the same A activity instance

context B inv seq2: B.allInstances()-> isUnique(previous)

• A constraint seq3 over the Case entity type verifying that when the case is com-

pleted there exists a B activity instance for each completed A activity instance.

This B instance must be the only instance immediately following the A activity

instance.

context Case inv seq3: status=‘completed’ implies self.activity-> select(a|

a.oclIsTypeOf(A) and a.status=‘completed’)->forAll(a|a.next->exists(b|

b.oclIsTypeOf(B)) and a.next->size()=1)

7.2. Split gateways

A split gateway is a location within a workflow where the sequence flow can take two

or more alternative paths. The different split gateways differ on the number of possi-

ble paths that can be taken during the execution of the workflow. For XOR-split gate-

ways only a single path can be selected. In OR-splits several of the outgoing flows

may be chosen. For AND-splits all outgoing flows must be followed.

For each kind of split gateway, Table 1 shows the process constraints required to

enforce the corresponding behavior.

Besides the process constraints appearing in the table, we must also add to all the

activities B1…Bn the previous constraints seq1 and seq2 to verify that the preceding

activity A has been completed and that no two activity instances of the same activity

BBi are related with the same preceding activity A. We also require that the activity

instance/s following A is of type B1 B or … or BBn.

Table 1. Constraints for split gateways

Split gateway Process constraints

Bn

A

B1

XOR Split

• Only one of the B B1..Bn activities may be started

context A inv: next->select(a| a.oclIsTypeOf(BB1) or … or

a.oclIsTypeOf(BnB))->size()<=1

• If A is completed, at least one of the BB1..Bn activities

must be created before ending the case

context Case inv: status=‘completed’ implies activities-> se-

lect(a|a.oclIsTypeOf(A) and a.status=‘completed’)-> forAll

(a|a.next->exists(b|b.oclIsTypeOf(B B1) or..or b.oclIsTypeOf(BnB)))

B1

Bn

A

OR Split

• Since several BB1..Bn activities may be started, we just

need to verify that if A is completed, at least one of

the B1B ..Bn activities is created before ending the case

(like in the XOR split above)

A

Bn

B1

AND Split

• If A is completed all B B1..Bn activities must be eventu-

ally started

context Case inv:status=‘completed’ implies activity->select(a|

a.oclIsTypeOf(A) and a.status=‘completed’)->forAll(a| a.next-

>exists(b| b.oclIsTypeOf(BB1)) and … and a.next->exists(

b|b.oclIsTypeOf(BnB)))

7.3. Merge gateways

Merge gateways are useful to join or synchronize alternative sequence flows. De-

pending on the kind of merge gateway, the outgoing activity may start every time a

single incoming flow is completed (XOR-Merge) or must wait until all incoming

flows have finished in order to synchronize them (AND-Merge gateways). The se-

mantics of the OR-Merge gateways is not so clear. If there is a matching OR-split, the

OR-Merge should wait for the completion of all flows activated by the split. If no

matching split exists, several interpretations are possible, being the simplest one to

wait just till the first incoming flow. This is the interpretation adopted in this paper.

For a complete treatment of this construct see Ref. [42].

Table 2 presents the different translation patterns required for each kind of merge

gateway. Besides the constraints included in the table, a constraint over A should be

added to all the gateways to verify that two A instances are not created for the same

incoming set of activities (i.e., the intersection between the previous instance/s of all

A instances must be empty).

Table 2. Constraints for merge gateways

Merge gateway Process constraints

B1

A

Bn
XOR Merge

• All A activity instances have as a previous activity in-

stance a completed activity instance of type BB1 or … or

BnB

context A inv: previous->size()=1 and previous->exists(b|

(b.oclIsTypeOf(B1) or … or b.oclIsTypeOf(BBn)) and

b.status=‘completed’)

• Each B B1..Bn activity instance is followed by an A activ-

ity

context Case inv: status=‘completed’ implies activity->select(b|

b.oclIsTypeOf(B B1) or … or b.oclIsTypeOf(BnB))-> forAll(b|b.next-

>exists(a| a.oclIsTypeOf(A)))

A

Bn

B1

OR Merge

• An A activity instance must wait for at least an incoming

flow

context A inv: previous->select(b| (b.oclIsTypeOf(B B1) or … or

b.oclIsTypeOf(BnB)) and b.status=‘completed’)->size()>=1

B1

Bn

A

AND Merge

• An activity instance of type A must wait for a set of

activities B B1..Bn to be completed

context A inv: previous->exists(b| b.oclIsTypeOf(BB1) and

b.status=‘completed’) and … and

previous->exists(b| b.oclIsTypeOf(BnB) and b.status=‘completed’)

• Each set of completed B B1..Bn activity instances must be

related with an A activity instance.

context Case inv: status=‘completed’ implies not (

activity->exists(b|b.oclIsTypeOf(B1) and b.status=‘completed’

and not b.next->exists(a| a.oclIsTypeOf(A)) and … and activity-

>exists(b| b.oclIsTypeOf(B Bn) and b.status=‘completed’ and not

b.next->exists(a| a.oclIsTypeOf(A)))

7.4. Condition constraints

The sequence flow and the OR-split and XOR-split gateways may contain condition

expressions to control the flow execution at run-time. As an example, Fig. 7 shows a

conditional sequence flow. In the example, the activity B cannot start until A is com-

pleted and the condition cond is satisfied. The condition expression may require ac-

cessing the entity types of the domain subschema related to B in the workflow-

extended model. Through the Precedes relationship type, we can also define condi-

tions involving the previous A activity instance and/or its related domain information.

To handle these condition expressions we must add, for each condition defined in

a sequence flow or in an outgoing link of OR and XOR gateways, a new constraint

over the destination activity. The constraint ensures that the preceding activity satis-

fies the specified condition, according to the following pattern:

context B inv: previous->forAll(a| a.cond)

Note that these additional constraints only need to hold when the destination activity

is created, and thus, they must be defined as creation-time constraints [29].

A Bcond

Fig. 7. A conditional sequence flow

7.5. Loops

A workflow may contain loops among a group of different activities or within a sin-

gle activity. In this latter case we distinguish between standard loops (where the

activity is executed as long as the loop condition holds) and multi-instance loops

(where the activity is executed a predefined number of times). Every time a loop is

iterated a new instance of the activity is created. Fig. 8 shows an example of each

loop type.

BAAA

Standard Multi-Instance External

Fig. 8. Loop examples

Management of external loops does not require new constraints but the addition

of a temporal condition in all constraints stating a condition like “an instance of type

B must be eventually created if an instance of type A is completed”. The new tempo-

ral condition on those constraints ensures that the B instance is created after the A

instance is completed (earlier B instances may exist due to previous loop iterations).

Standard loops may be regarded as an alternative representation for conditional

sequence flows having the same activity as a source and destination. Therefore, the

constraints needed to handle standard loop activities are similar to those required for

conditional sequence flows. We need a constraint checking that the previous loop

instance has finished and another one stating that the loop condition is still true when

starting the new iteration (again, this is a creation-time constraint). The loop condi-

tion is taken from the properties of the activity as defined in the workflow model.

Moreover, we need also to check that the activity/ies at the end of the outcoming

flows of the loop activity are not started until the loop condition becomes false. To

prevent this wrong behavior we should treat all outgoing flows from the loop activity

as conditional flows with the condition ‘not loopCondition’. Then, constraints gener-

ated to control the conditional flow will prevent next activity/ies to start until the

condition ‘not loopCondition’ becomes true.

Multi-instance loop activities are repeated a fixed number of times, as defined by

the loop condition, which now is evaluated only once during the execution of the case

and returns a natural value instead of a boolean value. At the end of the case, the

number of instances of the multi-instance activity must be an exact multiple of this

value. Assuming that the multi-instance activity is called A, the OCL formalization of

this constraint would be:

context Case inv: (activity->select(a|a.oclIsTypeOf(A))->size() mod loopCondition)=0

For multi-instance loops the different instances may be created sequentially or in

parallel. Besides, we can define when the workflow shall continue. It can be either

after each single activity instance is executed (as in a normal sequence flow), after all

iterations have been completed (similar to the AND-merge gateways), or as soon as a

single iteration is completed (similar to the basic OR-merge gateway).

7.6. Event management

An event is something that “happens” during the course of the workflow execution.

There are three main types of events: Start, Intermediate and End (see Fig. 9). A

workflow schema may contain several start, intermediate, and end events.

A

B

A A

IntermediataEvent1

StartEvent1
EndEvent1

Fig. 9. Examples of events

Start events initiate a new flow, while end events indicate the termination of a

flow. Intermediate events are instead used to change the normal flow (for instance, to

handle exceptions or to start additional activities). Intermediate events can be attached

to an activity (the triggering of the event aborts the activity execution) or can be

placed in the middle of a sequence flow between two activities (the flow does not

continue until the event is issued).

When a start event is issued, an instance of each activity connected to the event

has to start afterwards. Conversely, no activity instance is created in a case before the

occurrence of at least a start event. In particular, activity instances for activities con-

nected only to flows coming from one or more start events (as activity A in the previ-

ous figure) cannot be created until one of those start events is issued. The formaliza-

tion of these constraints is the following:

• context Event inv: eventType.name=’StartEvent1’ and case.status=‘completed’

implies case.activity-> select(a|a.oclIsTypeOf(A) and a.event=self)->size()=1

• context Case inv: activity->notEmpty() implies event->exists(e|e

.eventType.eventKind=’StartEvent’)

• context A inv: self.event->exists(ev| ev.eventType.name=’StartEvent1’)

For end events defined as terminate end events we must add a new constraint stat-

ing that no activity instances can be created in the case after the event has been is-

sued. Assuming that EndEvent1 (Fig. 9) is defined as a terminate event, the following

constraint must be added to the workflow-extended model:

 context Event inv: eventType.name=’EndEvent1’ implies

 case.activity->forAll (a| a.start< eventTime)

For intermediate events, the target activity of the event must be executed after the

triggering of the event (and it cannot be executed otherwise). Depending on the kind

of intermediate event, the interrupted activity will change its status to cancelled or

aborted (which, for instance, may prevent the next activity in the normal sequence

flow to be started).

The following process constraints are generated for the IntermediateEvent1 ex-

ample in Fig. 9:

• context Event inv: eventType.name=’IntermediateEvent1’ and

case.status=‘completed’ implies case.activity-> exists(a|a.oclIsTypeOf(B))

• context Case inv: activity-> exists(a| a.oclIsTypeOf(B)) implies event->

exists(e|e.eventType.name=’IntermediateEvent1’)

Obviously, this last constraint is true as long as B has no other incoming flows.

Otherwise, all incoming flows form an implicit XOR-Merge over B and we should

generate the constraints according to the pattern for the XOR-Merge gateway.

7.7. Applying the translation patterns

As an example, Table 3 summarizes the process constraints resulting from applying

the translation patterns over the workflow running example (Fig. 4 and Fig. 5).

For the sake of brevity, in this section constraints are described in an informal and

compact way. The complete set of constraints and their OCL specification is exempli-

fied in Table 4 only for the Provide Quotation activity. The translation of all the other

constraints is provided in the Appendix B.

The Provide Quotation activity involves a set of constraints due to the incoming

XOR-merge from Ask Quotation and Change Quotation activities and a set of con-

straints due to the subsequent XOR split with Submit Order and Change Quotation.

Table 3. Process constraints for the workflow running example

Activity Constraints

Ask

Quotation
• A new Ask Quotation activity must be created every time a start

event occurs.

Provide

Quotation
• A quotation cannot be provided until an Ask Quotation or a

Change Quotation finishes. A single new Provide Quotation in-

stance must exist for each completed Ask Quotation or Change

Quotation activity.

• After providing a quotation we can either ask for a change in the

quotation or submit the order, but not both (at least one of them

must be executed).

Change

Quotation
• The previous Provide Quotation activity must have been com-

pleted (a single new ask quotation activity can be generated). Oth-

erwise, it must have been created in response to the occurrence of

a start event (due to the implicit XOR merge gateway correspond-

ing to the two incoming arrows).

Submit

Order
• The previous Provide Quotation activity must be completed. Be-

sides, only a single Submit Order instance must be created for the

same Provided Quotation instance.

• After submitting an order, a Choose Shipment or a Standard Ship-

ment activities must be executed (but not both).

Standard

Shipment
• The previous Submit Order activity must be completed. Besides,

only a single Standard Shipment instance must be created for the

same Submit Order instance.

• Once the standard shipment is completed, a new Ship Order activ-

ity must be created.

Choose

Shipment
• The previous Submit Order activity must be completed. Besides,

only a single Choose Shipment instance must be created for the

same Submit Order instance.

• After choosing the shipment, both the Arrange Transport and

Process Order Line activities must be executed.

Arrange

Transport
• The preceding Choose Shipment activity instance must be com-

pleted. Besides, a single Arrange Transport activity instance must

be executed for each Choose Shipment activity instance.

Process

OrderLine
• The preceding Choose Shipment activity must be completed.

• The system must exactly execute as many Process OrderLine

activity instances as the number of order (quotation) lines for the

related order.

Empty

Activity1
• The new Empty activity instance can be created (as completed)

when the transport has been arranged and all order lines have been

processed.

• Then, a new Ship Order instance must be executed before ending

the case.

Ship

Order
• Once a Standard Shipment xor an Empty Activity1 instance has

been completed, the order can be shipped.

• For each order shipped, an invoice must be sent and the reception

of the goods must be acknowledged by the customer.

Send

Invoice
• The preceding Ship Order activity instance must be completed.

Besides, a single Send Invoice activity instance must be executed

for each Ship Order activity instance.

Receive

Goods
• The preceding Ship Order activity instance must be completed.

Besides, a single Receive Goods activity instance must be exe-

cuted for each Ship Order activity instance.

Pay

Goods
• An order cannot be paid until the invoice has been send and the

good have been received. When both previous activities have been

done, a single pay goods activity shall be created in response.

Table 4. Constraint definitions for the Provide Quotation activity

The preceding activity must be of type Ask Quotation or Change Quotation and

must be completed

context ProvideQuotation inv: previous->size()=1 and previous->exists(a|

(a.oclIsTypeOf(AskQuotation) or a.oclIsTypeOf(ChangeQuotation)) and

a.status=‘completed’)

No two instances may be related with the same Ask Quotation or Change Quota-

tion instance

context ProvideQuotation inv: ProvideQuotation.allInstances()-> is-

Unique(previous)

A Provide Quotation instance follows each completed Ask Quotation or Chan-

geQuotation activity

Constraints

due to

incoming

XOR-

merge

context Case inv: status=‘completed’ implies activity->select(b|

b.oclIsTypeOf(AskQuotation) or … or b.oclIsTypeOf(ChangeQuotation))->

forAll(b|b.next->exists(a| a.oclIsTypeOf(ProvideQuotation)))

The next activity must be either another Change Quotation instance or a Submit

Order instance, but not both

context ProvideQuotation inv: next->select (a|

a.oclIsTypeOf(ChangeQuotation) or a.oclIsTypeOf(SubmitOrder))->size()<=1

If the Provide Quotation instance is completed, a Change Quotation or a Submit

Order must necessarily be created before ending the case.

context Case inv: status=‘completed’ implies activity->select(a|a.oclIsTypeOf(

ProvideQuotation) and a.status=‘completed’)-> forAll (a| a.next-> exists(b|

b.oclIsTypeOf(ChangeQuotation) or b.oclIsTypeOf(SubmitOrder)))

Only Change Quotation activity instances or Submit Order instances may follow

a Provide Quotation instance

Constraints

due to the

outgoing

XOR- split

context ProvideQuotation inv: next->forAll(b| b.oclIsTypeOf(ChangeQuotation)

or b.oclIsTypeOf(SubmitOrder)

8. Implementation of the Workflow-Extended Conceptual schema

Once the workflow-extended schema is available, we may automatically generate an

implementation of the system that ensures a consistent behavior of all enterprise ap-

plications with respect to the business process specification.

Since a workflow-extended conceptual schema is a completely standard UML

model (i.e., no new modeling primitives have been created to express the extension of

the original model with the required workflow information) any method or tool able

to provide an automatic model-to-code generation from UML models to a final tech-

nology platform P can also cope with the automatic generation of our workflow-

extended schema in the same platform P, using general-purpose MDD techniques and

frameworks.

For instance, a tool able to generate a database schema from an UML/OCL model

can follow exactly the same procedure to generate a database implementation for our

extended schema that guarantees the satisfaction of all workflow constraints. As

usual, classes (including also the classes in the workflow subschema) will be trans-

formed into tables, while OCL constraints (either domain or workflow constraints)

will be expressed as triggers (this is not the only option, see [6] for a discussion of the

different mechanisms to implement OCL constraints in databases). Similarly, a tool

able to generate Java schemas from UML/OCL models could be directly used to

generate a Java-based implementation of the workflow-extended schema. In this case,

classes will be expressed as Java classes while constraints could be implemented as

method preconditions that prevent the execution of the method if the system is not in

the right workflow state.

As an example, Fig. 10 shows a possible (i) database implementation and (ii) Ja-

va-based implementation for two sequential activities A and B (Fig. 6), performed by

the same user. In the former, the constraint is implemented as a trigger over the table

AtoB representing the Precedes relationship type (see Fig. 5) between both activities

(AtoB table has only two columns, a_id and b_id and records the information about

which A activities precede each B activity; this is the typical database implementation

for many-to-many associations in conceptual schemas). In the latter, the constraint is

verified as part of the method AssignPreviousActivity redefined in the B class (corre-

sponding to the B activity in the workflow-extended model). In both situations, when

the user tries to create a new B activity and the previous A activity is not completed,

an exception is raised since the B activity cannot start yet. The tables, triggers and/or

Java classes and method bodies to implement the workflow-extended model transla-

tion (including the OCL constraints) can be automatically generated using current

code-generation tools such as [12], [15], and [23] among others.

 class B
{
 . . .
 void AssignPreviousActivity(A a)
 throws Exception
 {
 if (! a.status.equals(“completed”))
 throw new Exception(“Invalid Activity”);
 else previous.add(a);
 }
}

(ii)

create trigger AtoBSeqConstraint
before insert on AtoB
for each row
Declare v_Status Varchar(10);
 EInvalidActivity Exception;
Begin
 SELECT status into v_Status
 FROM A a
 WHERE a.id = :new.a_id;
 If (v_Status<>’completed’)
 then raise EInvalidActivity; end if;
End; (i)

Fig. 10. Examples of a sequence constraint implemented in particular technologies

Note that the previous strategies to implement the sequence constraint between A

and B activities are efficient ones since the constraint is only checked when linking a

B activity instance with an A activity instance, regardless how many activities are part

of the workflow (and the checking just compares that exact pair of instances, instead

of checking all existing A and B instances). We can benefit from the fact that in our

workflow-extended conceptual schema the process constraints are expressed in OCL

and rely on existing methods for analyzing OCL expressions (as in [11]) to automati-

cally compute the information about when and how checking the constraints in order

to get an efficient implementation for all process constraints.

For Web applications, an interesting alternative is to fully exploit MDD ap-

proaches, such as [12] [37]: an initial hypertext model can be derived from the work-

flow-extended conceptual schema so that the hypertext structure enforces some of the

process constraints among activities assigned to the same usera (or group of users) by

means of driving the user navigation through the Web site. This can be done by de-

signing in the proper way the set of pages and links that can be browsed. For instance,

Fig. 11 shows a hypertext model that from the home page forces the user to go

through the Web pages implementing A before starting B. The hypertext model is

defined in WebML[12], a conceptual language for the specification of Web applica-

tions, already extended with workflow-specific primitives [4]. The operation units

StartActivity and EndActivity are in charge of recording the information about the

activities’ progress in the corresponding entity types of the conceptual schema. More

complicated constraints appearing in the workflow-extended model can be enforced

by means of appropriate branching and task assignment primitives.

Fig. 11. Example of a sequence constraint implemented within the hypertext model of a Web application

Usually, designers will be able to choose among different strategies/platforms

when implementing the workflow-extended conceptual schema. For instance, assum-

ing a typical three tier (or n-tier) architecture, designers can decide whether to check

the process constraints in the presentation layer (for example, as shown in Fig. 11), in

the business layer (as in Fig. 10 ii) or in the persistence layer (as in Fig. 10 i). Each

alternative may imply a slightly different behavior of the system at run-time in terms

of its consistency, user experience, flexibility, reliability, and so on. For instance, a

database-based implementation represents a safer alternative in terms of the data

consistency (regardless how users interact with the system to update the data, the data

a Process constraints involving activities belonging to different users must be enforced using one of the
previous techniques, they cannot be controlled at the hypertext level

will be always consistent). Instead, enforcing the constraints at the hypertext level

provides a better user experience since it reduces the probability that the user actions

end up in an error due to a wrong activity selection.

9. Tool Support

To show the viability of the approach, we describe the tool framework we used for

realizing the whole development process presented in Fig. 1. Our framework tries to

reuse as many existing tools as possible. We directly developed only the pieces that

were missing for covering all the design phases. Once the designer provides the initial

models, the rest of the process is performed automatically. Fig. 12 shows the tools

we used for each step of the design.

Fig. 12. Tools used for the MDD generation of Workflow-extended conceptual schemas.

The design of the conceptual schema has been done using MagicDraw [28] that

exports it as an XMI file [31].

For workflow design and transformation, we have developed a visual editor proto-

type [5] that supports the design of BPMN diagrams and their automatic model trans-

formations. This BPMN editor has been implemented as an Eclipse plugin and it is

flexible and extensible. It covers the whole BPMN notation (including subprocesses)

and can manage user-defined properties of objects and new transformations of the

workflow models. The workflow schema is stored as an XML document according to

an internal format, but proper transformations are available for importing and export-

ing in standard notations (e.g., to BPDM, XPDL, BPEL, and so on). The tool includes

the normalization transformation, implemented as an XSLT transformation over the

workflow XML representation.

Given the XML representation of the normalized workflow model and the XMI

representation of the initial conceptual schema, our main transformation generates a

new XMI file containing the workflow-extended model and the process constraints,

according to the guidelines presented in this paper. This XMI file can be imported

back and used within the MagicDraw tool.

10. Related Work

With respect to traditional approaches to workflow management, implemented in a

plethora of commercial WFMSs, our work takes a radically different point of view,

by focusing on the business process modeling and on its transformation to a software

engineering specification that integrates the domain information and that can be re-

fined and exploited by automatic code generation tools.

 This approach allows for more control and personalization of the system imple-

mentation and presents a number of additional benefits as commented in Section 2.

As a downside, some aspects such as integration with legacy systems, monitoring and

supervision, fault management and so forth, if needed, must be provided by the appli-

cation that embeds the business specification itself, instead of relying on a WFMS for

providing them.

In the software engineering field, research on business process has mainly ad-

dressed the correctness of the design of the workflow model (see [18] as a representa-

tive example). Other works address the direct implementation of business process

models in specific final technology platforms: for instance, [3] proposes an imple-

mentation of process constraints over relational database structures, by exploiting

event-condition-action rules; [9] implements workflow models using Web technolo-

gies by mapping the workflow specification to a DSL for Web design called WebML;

and [25] exploits BPEL4WS for implementing them. All these approaches are hardly

reusable when trying to implement our workflow schema in different technologies or

when we want to migrate our current implementation to an alternative platform. In-

stead, since our method works at a platform-independent level, we are able to gener-

ate an implementation of the workflow-extended method in any final technology

platform using current model-driven development (MDD) approaches, as seen in

Section 8. Integrating the workflow and the domain information in a single schema

also allows us treating both dimensions in a homogeneous and consistent way (for

instance, this enables the possibility of defining more complex business rules mixing

domain and workflow information). This is not contemplated in the previous ap-

proaches.

Up to now, integration of workflows and MDD approaches has only been explored

from a general framework perspective. For instance, [20] proposes to transform the

workflow model to a DSL specification. However, it only provides some general

guidelines for the transformation and a comprehensive framework specifying the

different components that lead from the design-time specification to the runtime exe-

cution of the workflow model. However, no details are provided on the transforma-

tion rules that map a workflow model to a specific DSL. [38] proposes an approach

for configuring generic process models depending on the domain information pro-

vided by the stakeholders by mean of filling questionnaires developed ad-hoc for that

specific process. Questionnaires are created from the information in the initial domain

model defined by the designers. Their goal is to generate, as a result, an adapted and

individualized business process but not to integrate in a single conceptual schema

both the process and domain information.

Some proposals (as in [41], [17], or [19]) tried to extend and adapt the UML nota-

tion for workflow modeling purposes but they did not address the unification of the

business process and the conceptual schema’s views of the system. As far as we

know, ours is the first proposal where both workflow information and process con-

straints are automatically derived from a workflow model and integrated within the

platform-independent conceptual schema.

Moreover, ours is also the first translation of a workflow model into a set of

equivalent OCL declarative constraints. An explicit definition of all the workflow

constraints induced by the different workflow constructs is necessary regardless how

these constraints are to be enforced and managed in the final workflow implementa-

tion. Very few examples of translations from process constraints to other declarative

languages exist (e.g., see [8] for a translation to LTL temporal logics). In literature,

OCL has only been used in relation with workflow models as an auxiliary tool for a

better specification of the business process. For instance, in [16] OCL is used to ma-

nually specify workflow access control constraints and derive authorization rules, in

[1] to express constraints with respect to the distribution of work to teams, in Ar-

goUWE [24] to check for well-formedness in the design of process models, in [39] to

manually specify business models with UML, and in [25] to specify the contracts for

the transformation of activity diagrams into BPEL4WS.

11. Conclusions

In this paper we presented an automatic approach to integrate the semantics of busi-

ness process specifications within conceptual schemas. The main advantage of using

conceptual schemas to handle the workflow information is that we can develop work-

flow-based applications without requiring the use of a specific workflow management

subsystem.

Once the designer has specified both the workflow and the conceptual schemas,

we build an integrated workflow-extended conceptual schema by adding to the con-

ceptual schema (i) the definition of a set of new entity and relationship types for

workflow status tracking and (ii) the rules for generating the integrity constraints on

such types, needed for enforcing the business process specification. The integration

of both the domain and the workflow aspects in a single extended conceptual schema

permits a homogeneous treatment of both dimensions of the workflow-based applica-

tion.

The workflow-extended conceptual schema is a completely standard UML model.

This provides additional benefits. For instance, we can apply the usual model-driven

development methods over our extended model to generate its automatic implementa-

tion in any technology platform. As long as these methods are able to deal with

UML/OCL models, they will be able to directly manage our workflow-extended

schema. In the same way, we could reuse verification and validation tools for UML

models and apply them to check our extended schema.

As a further work, we would like to explore the possibility of using our extended

schema as a bridge to facilitate reverse-engineering of existing applications into their

original workflow models and to ease keeping them aligned. We also plan to develop

a method that, from the generated process constraints, is able to compute the list of

activities that can be enacted by a user in a given case (i.e., those activities that can be

created without violating any of the workflow process constraints according to the

case state at that specific time) to provide a better user-experience when executing the

workflow-based applications. Instead of letting the user choose the desired activity

and then check whether the activity can be started, we would directly provide the list

of secure activities avoiding possible errors in the activity selection. Along this line,

we also plan to investigate the different application layers (data layer, business logic

layer, presentation layer) where the process constraints can be implemented, and

define some recommendation framework for the developers (and the automatically

generated code) for the best implementation strategy of constraints depending on the

kind of experience the application is supposed to provide to the users.

Future investigations will also address the empirical evaluation of our approach. In

particular, we would like to compare the quality of manually developed applications

with respect to the ones produced with our approach. For instance, we would like to

compare the percentage of workflow constraints detected and included by program-

mers when manually developing the applications with the coverage of workflow

constraints obtained when using our approach. We are confident that a manual appli-

cation development will miss many workflow constraints since a manual detection of

all relevant constraints and possible inconsistencies is an error-prone activity. We

also plan to evaluate the effort required to develop this kind of applications with and

without our approach.

Acknowledgments

This work has been partially supported by the Italian grant FAR N. 4412/ICT, the

Spanish-Italian integrated action HI2006-0208 and the Spanish Research Project

TIN2008-00444.

References

1. van der Aalst, W. M. P., Kumar, A.: A reference model for team-enabled workflow

management systems. Data & Knowledge Engineering 38 (2001) 335-363

2. van der Aalst, W. M. P., Weske, M., Wirtz, G.: Advanced Topics in Workflow Man-

agement: Issues, Requirements and Solutions. Journal of Integrated Design and Proc-

ess Science 7 (2003) 49-77

3. Bae, J., Bae, H., Kang, S.-H., Kim, Y.: Automatic Control of Workflow Processes

Using ECA Rules. IEEE Transactions on Knowledge and Data Engineering 16

(2004) 1010-1023

4. Brambilla, M.: Extending Hypertext Conceptual Models with Process-Oriented

Primitives. In: Proc. 22nd Int. Conf. on Conceptual Modeling (ER'03), LNCS, 2813

(2003) 246-262

5. Brambilla, M.: Generation of WebML Web Application Models from Business Proc-

ess Specification. In: Proc. Tool presentation at 6th Int. Conf. on Web Engineering

(ICWE'06), (2006) 85-86

6. Brambilla, M., Cabot, J.: Constraint tuning and management for Web applications.

In: Proc. 6th Int. Conf. on Web Engineering (ICWE'06), (2006) 345-352

7. Brambilla, M., Cabot, J., Comai, S.: Automatic Generation of Workflow-Extended

Domain Models. In: Proc. 10th Int. Conf. on Model Driven Engineering Languages

and Systems (MoDELS'07) LNCS, 4735 (2007) 375-389

8. Brambilla, M., Deutsch, A., Sui, L., Vianu, V.: The Role of Visual Tools in a Web

Application Design and Verification Framework: a Visual Notation for LTL Formu-

lae. In: Proc. 5th Int. Conf. in Web Engineering (ICWE'05), LNCS, 3579 (2005)

557-568

9. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web

Applications. ACM Transactions on Software Engineering and Methodology 15

(2006) 360-409

10. Cabot, J., Raventós, R.: Conceptual Modelling Patterns for Roles. Journal on Data

Semantics V (2006) 158-184

11. Cabot, J., Teniente, E.: Incremental Evaluation of OCL Constraints. In: Proc. 18th

Int. Conf. on Advanced Information Systems Engineering (CAiSE'06), LNCS, 4001

(2006) 81-95

12. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing

Data-Intensive Web Applications. Morgan Kaufmann (2002)

13. Combi, C., Pozzi, G.: Temporal Conceptual Modelling of Workflows. In: Proc. 22nd

Int. Conference on Conceptual Modeling (ER'03), LNCS, 2813 (2003) 59-76

14. Costal, D., Gómez, C., Queralt, A., Raventós, R., Teniente, E.: Facilitating the defini-

tion of general constraints in UML. In: Proc. 9th Int. Conf on Model Driven Engi-

neering Languages and Systems (MODELS'06), LNCS, 4199 (2006) 260-274

15. Demuth, B., Hussmann, H., Loecher, S.: OCL as a Specification Language for Busi-

ness Rules in Database Applications. In: Proc. 4th Int. Conf. on the Unified Modeling

Language (UML'01), LNCS, 2185 (2001) 104-117

16. Domingos, D., Rito-Silva, A., Veiga, P.: Workflow Access Control from a Business

Perspective. In: Proc. ICEIS, vol. 3 (2004) 18-25

17. Dumas, M., Hofstede, A. H. M. t.: UML Activity Diagrams as a Workflow Specifica-

tion Language. In: Proc. 4th Int. Conf. on the Unified Modeling Language (UML'01)

LNCS, 2185 (2001) 76-90

18. Eshuis, R., Wieringa, R.: Verification support for workflow design with UML activ-

ity graphs. In: Proc. 22rd Int. Conf. on Software Engineering (ICSE'02), (2002) 166-

176

19. Hruby, P.: Specification of Workflow Management Systems with UML. In: Proc.

OOPSLA'98 Workshop on Implementation and Application of Object-oriented

Workflow Management Systems, (1998)

20. Hur, W., Jung, J.-y., Kim, H., Kang, S.-H.: Model-Driven Approach to workflow

execution. In: Proc. 2nd Int. Conf. on Business Process Management (BPM'04),

LNCS, 2080 (2004) 261-273

21. IBM. WebSphere MQ Workflow.

http://www.ibm.com/software/ts/mqseries/workflow/v332/

22. ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and

Information Base. ISO, (1982)

23. KlasseObjecten. Octopus: OCL Tool for Precise Uml Specifications.

http://www.klasse.nl/octopus/index.html

http://www.ibm.com/software/ts/mqseries/workflow/v332/
http://www.klasse.nl/octopus/index.html

24. Knapp, A., Koch, N., Zhang, G., Hassler, H.: Modeling Business Processes in Web

Applications with ArgoUWE. In: Proc. 7th Int. Conf. on the Unified Modeling Lan-

guage (UML'04), LNCS, 3273 (2004) 69-83

25. Koehler, J., Hauser, R., Sendall, S., Wahler, M.: Declarative techniques for model-

driven business process integration. IBM Systems Journal 44 (2005) 47-65

26. List, B., Korherr, B.: An evaluation of conceptual business process modelling lan-

guages. In: Proc. 2006 ACM Symposium on Applied Computing, (2006) 1532 –

1539

27. Mendling, J., Neumann, G., Nüttgens, M.: A Comparison of XML Interchange For-

mats for Business Process Modelling. In: Workflow Handbook. WfMC (2005)

28. NoMagicInc. MagicDraw UML v. 10.5. http://www.magicdraw.com/

29. Olivé, A.: A method for the definition of integrity constraints in object-oriented

conceptual modeling languages. Data & Knowledge Engineering 58 (2006) 243-262

30. OMG: UML 2.0 Superstructure Specification. OMG Adopted Specification (ptc/03-

08-02) (2003)

31. OMG: XML Metadata Interchange (XMI) Specification v.2.0. OMG Adopted Speci-

fication (formal/03-05-02) (2003)

32. OMG: UML 2.0 OCL Specification. OMG Adopted Specification (ptc/03-10-14)

(2003)

33. OMG: MOF Core Specification. OMG Available Specification (formal/06-01-01)

(2006)

34. OMG: Business Process Definition Metamodel (BPDM). OMG Standard, dtc/2007-

07-01 (2007)

35. OMG/BPMI: Business Process Management Notation v.1. OMG Adopted Specifica-

tion (2006)

36. Oracle. Workflow 11i.

http://www.oracle.com/appsnet/technology/products/docs/workflow.html

37. Pastor, O., Fons, J., Pelechano, V., Abrahão, S.: Conceptual Modelling of Web Ap-

plications: The OOWS approach. In: Web Engineering. Springer-Verlag (2006) 277-

302

38. Rosa, M. L., Gottschalk, F., Dumas, M., Aalst, W. M. P. v. d.: Linking Domain

Models and Process Models for Reference Model Configuration. In: Proc. Business

Process Management Workshops 2008, LNCS, 4928 (2008) 417-430

http://www.magicdraw.com/
http://www.oracle.com/appsnet/technology/products/docs/workflow.html

39. Takemura, T., Tamai, T.: Rigorous Business Process Modeling with OCL. In: Proc.

OCL Workshop in MODELS'06, (2006)

40. White, S. A.: Process Modeling Notations and Workflow Patterns. BPTrends (2004)

41. Wirtz, G., Weske, M., Giese, H.: Extending UML with Workflow Modeling Capa-

bilities. In: Proc. 7th Int. Conf. on Cooperative Information Systems (CoopIS'00),

LNCS, 1901 (2000) 30-41

42. Wynn, M. T., Edmond, D., Aalst, W. M. P. v. d., Hofstede, A. H. M. t.: Achieving a

general, formal and decidable approach to the OR-join in Workflow using Reset nets.

In: Proc. 26th Int. Conf. on Application and Theory of Petri Nets (ICATPN'06),

LNCS, 3536 (2005) 423-443

Appendix A

As we have seen in Section 6, our workflow-extended schema is the result of a trade-

off between the size of the model and the complexity of the OCL expression needed

to represent the process constraints. However, that is not the only feasible alternative.

In this Appendix we present two different alternatives: the first one aims at minimiz-

ing the size of the workflow-extended schema, while the second one tries to reduce

the complexity of the required OCL expressions. The designer may choose among the

three alternatives (these two plus the one presented in the main part of the paper)

when following our approach for the integration of business processes and conceptual

schemas.

A.1. A minimal workflow-extended conceptual schema

In a “minimal” workflow extended schema (Fig. 13), to reduce the size of the model,

no workflow-dependent subtypes (i.e., the Activity subtypes recording the information

about specific activities executed during the workflow case) are created. This implies

that the Activity entity type must be extended with an additional attribute type to dis-

tinguish and classify the enacted activities (before we could directly determine that by

examining the specific subclass of each activity instance). In our running example,

the possible values for this type attribute are: AskQuotation, ProvideQuotation, Sub-

mitOrder, and so forth.

Moreover, with this model, all relationships between the workflow subschema and

the domain subschema must be done now at the Activity type level, instead of linking

the domain classes with their specific related activities. As a result, there must exist a

different relationship type between the Activity type and each domain class in the

model (except for domain classes not related with any activity). An additional set of

integrity constraints must be defined to ensure a correct instantiation of these new

relationship types. For instance, in our example, an AskQuotation activity is only

related to a Quotation instance. In our original workflow extended schema this was

already enforced by the model itself (AskQuotation was only linked to the Quotation

type) but in this minimal model, we need to add the following constraint:

context Activity inv:

self.type=”AskQuotation” implies self.product->isEmpty() and

self.order->isEmpty() and self.quotationLine->isEmpty()

to ensure that activity instances of type AskQuotation are only associated with quota-

tion instances. A similar constraint must be added for each workflow activity related

to business data objects.

Case

status
start
end

id

Activity

status
start

type
end

EventType

eventTrigger
eventResult
eventKind
name

Order

amount

state
date

id

Quotation

amount
date

id

ActivityType

description
name

Role

name

Product

name
price

User

password
name

Process

PartOf
1*

Manages

1..

description
namePartOf 1*

BelongsTo

1..*

1..*

Event

eventTime

:ActivityType

*

1

PartOf
1*

InstanceOf
1

* InstanceOf
1

*
InstanceOf

1

*

Performs *1

QuotationLine

quantity

1..

0..1

PartOf* 1RelatedWith
**

Precedes

+previous

*

+next*

0..10..1
0..1

0..11

Fig. 13. A minimal workflow-extended conceptual schema

The definition of process constraints also becomes more complex. Now the activ-

ity type must act as context type for all the process constraints. Therefore, the first

part of all constraints must be devoted to select from all activities those affected by

the constraint. For instance, the first sequence constraint presented in Section 7.1:

context B inv seq1: previous->size()=1 and previous->exists(a| a.oclIsTypeOf(A)

and a.status=‘completed’)

is now expressed as:

context Activity inv seq1: Activity::allInstances()->select(type=”B”)->forAll(b|

b.previous->size()=1 and previous->exists(a| a.type=”A” and

a.status=‘completed’))

Note that the constraints we obtain are more complex, and also the model becomes

much less readable since now it is not trivial to detect all constraints affecting a par-

ticular activity type; indeed all constraints are attached to the Activity concept and are

therefore mixed.

A.2. A maximal workflow-extended conceptual schema

As an opposite approach, we could prefer to sacrifice the size of model in order to get

a simpler translation of the process constraints.

In this maximal workflow-extended conceptual schema (Fig 14), the set of work-

flow-dependent subtypes includes the definition of an entity type for each activity

and, additionally, a different entity type for each gateway. Each gateway type is re-

lated to the activity types corresponding to the activities linked by the gateway in the

workflow model. All gateway types are defined as subtypes of the Gateway super-

type, which includes a type attribute with information on the gateway kind: AND-

merge, AND-split, OR-merge, and so forth.

On the one hand, this gateway subtypes increase the size of the workflow-

extended schema and complicate its management since now the system must take care

of creating at run-time the appropriate instances of the gateway types whenever one

of their incoming activities are completed (split gateways are automatically created as

completed gateways; merge gateways are declared completed when all required in-

coming activities have finished).

On the other hand, process constraints can be now defined in terms of the gate-

ways, which results in a more clear and readable definition of the constraints. That is,

if an activity is affected by several gateways (for instance, an activity may be the

outgoing activity of an AND-merge and the initial activity for an AND-split), the set

of constraints of each gateway is attached to the corresponding gateway type instead

of being mixed altogether in the activity type.

Additionally, some of the OCL constraints can be avoided because they are al-

ready enforced by the model definition itself. For instance, one of the common con-

straints for all split gateways among an activity A and a set of B B1…Bn activities states

that the previous activity for a BiB activity must be unique, of type A, and completed.

The first two conditions are ensured in this maximal model due to the associations

(and multiplicities) between the B B1…Bn activities and the split gateway type and be-

tween the gateway and the A type. The condition that the A activity must be com-

pleted still needs to be defined as an OCL constraint, which could be expressed as

simply as follows (Split1 is assumed to be the type corresponding to the split gate-

way):

context Split1 inv: self.previous.completed

This situation is illustrated in the example of Fig. 14, showing the AND-Split be-

tween ShipOrder, ReceiveGoods and SendInvoice. Note that ReceivedGoods and

SendInvoice instances must be related with an instance of the gateway, which, in turn,

must be related with an instance of ShipOrder. This guarantees that ReceiveGoods

and SendInvoice instances cannot be executed without creating first a ShipOrder

instance.

ANDSplit-Ship-Send-Receive

ProcessOrderLine ReceiveGoods

Case

status
start
end

id

EventType

eventTrigger
eventResult
eventKind
name

Order

amount

state
date

id

. . .

Quotation

amount
date

id

ActivityType

description
name

SendInvoice

Activity

status
start
end

Role

name

User

password
name

Product

name
price

ShipOrder

Process

PartOf
1*

description
name

Event

eventTime

Gateway
:ActivityType

PartOf
1*

0..11
*

1

Manages

1..

PartOf 1*

BelongsTo

1..*

1..*

InstanceOf
1

*InstanceOf

1

*

InstanceOf
1

*

Performs *1

PartOf* 1RelatedWith
**

Precedes

+previous

*

+next*

1

0..1

QuotationLine

quantity

1..

0..1 1

0..11

1

0..1

Fig. 14. A partial representation of the maximal workflow-extended conceptual schema for the workflow

model of Fig. 3, showing the new entity type for one of the workflow gateways

Appendix B

The application of the translation patterns over the workflow schema of Fig. 34 pro-

duces the workflow-extended conceptual schema of Fig. 5 plus the following set of

process constraints expressed in OCL.

To simplify its presentation, constraints are grouped according to the main activity

they affect. For each constraint we also indicate the workflow construct generating

the constraint. Apart from the constraints specific for each activity, all activity in-

stances must not start before the occurrence of a start event or after the occurrence of

a terminate end event, as already seen in Section 7.6.

Ask Quotation activity

• Constraints due to the start event

(i) A single Ask Quotation activity instance must eventually exist for each is-

sued Start event

context Event inv: eventType.name=’Start’ and case.status=‘completed’

implies case.activity->select(a| a.oclIsTypeOf(AskQuotation) and

a.event=self)->size()=1

Provide Quotation activity

• Constraints due to the XOR-Merge

(i) The preceding activity must be of type Ask Quotation or Change Quotation

and must be completed

context ProvideQuotation inv: previous->size()=1 and previous->exists(a|

(a.oclIsTypeOf(AskQuotation) or a.oclIsTypeOf(ChangeQuotation)) and

a.status=‘completed’)

(ii) No two instances may be related with the same Ask Quotation or Change

Quotation instance. Note that when we iterate over the loop between

Change Quotation and Provide Quotation activities, new activity instances

are generated in each iteration.

context ProvideQuotation inv: ProvideQuotation.allInstances()-> is-

Unique(previous)

(iii) A Provide Quotation instance follows each completed Ask Quotation or

Change Quotation activity

context Case inv: status=‘completed’ implies activity->select(b|

b.oclIsTypeOf(AskQuotation) or … or b.oclIsTypeOf(ChangeQuotation))->

forAll(b|b.next->exists(a| a.oclIsTypeOf(ProvideQuotation)))

• Constraints due to the XOR-split

(i) The next activity must be either another Change Quotation instance or a

Submit Order instance, but not both

context ProvideQuotation inv: next->select(a|

a.oclIsTypeOf(ChangeQuotation) or a.oclIsTypeOf(SubmitOrder))->

size()<=1

(ii) If the Provide Quotation instance is completed, a Change Quotation or a

Submit Order must necessarily be created before ending the case

context Case inv: status=‘completed’ implies activity->select(a|

a.status=‘completed’ and a.oclIsTypeOf(ProvideQuotation))->

forAll (a| a.next-> exists(b| (b.oclIsTypeOf(ChangeQuotation) or

b.oclIsTypeOf(SubmitOrder)) and b.start>=a.end))

(iii) Only Change Quotation activity instances or Submit Order instances may

follow a Provide Quotation instance

context ProvideQuotation inv: next->forAll(b|

b.oclIsTypeOf(ChangeQuotation) or b.oclIsTypeOf(SubmitOrder))

Change Quotation activity

• Constraints due to outgoing flow from the Provide Quotation XOR-split

(i) The previous activity must be of type Provide Quotation and must be com-

pleted

context ChangeQuotation inv: previous->size()=1 and previous->exists(a|

a.status=‘completed’ and a.oclIsTypeOf(ProvideQuotation))

(ii) No two instances of Change Quotation may be related with the same Pro-

vide Quotation instance

context ChangeQuotation inv: ChangeQuotation.allInstances()-> is-

Unique(previous)

• Constraints due to the subsequent XOR-merge

(i) The next activity must be of type ProvideQuotation.

context Change Quotation inv: next-> forAll(

a|a.oclIsTypeOf(ProvideQuotation))

Submit Order activity

• Constraints due to outgoing flow from the Provide Quotation XOR-split

(i) The previous activity must be of type Provide Quotation and must be com-

pleted

context SubmitOrder inv: previous->size()=1 and previous->exists(a|

a.status=‘completed’ and a.oclIsTypeOf(ProvideQuotation))

(ii) No two instances of Submit Order may be related with the same Provide

Quotation instance

context SubmitOrder inv: SubmitOrder.allInstances()-> is-

Unique(previous)

• Constraints due to the XOR-split between ChooseShipment and Standard Ship-

ment

(i) The next activity must be either of type ChooseShipment or Standard Ship-

ment, but not both.

context SubmitOrder inv: next->select(a| a.oclIsTypeOf(ChooseShipment)

or a.oclIsTypeOf(StandardShipment))-> size()<=1

(ii) If the Submit Order instance is completed, a Choose Shipment or a Stan-

dard Shipment activity must be created before ending the case

context Case inv: status=‘completed’ implies activity->select(a|

a.status=‘completed’ and a.oclIsTypeOf(SubmitOrder))->

forAll (a| a.next-> exists(b| (b.oclIsTypeOf(ChooseShipment) or

b.oclIsTypeOf(StandardShipment)) and b.start>=a.end))

(iii) Only ChooseShipment or StandardShipment activity instances may follow a

SubmitOrder instance

context SubmitOrder inv: next->forAll(b| b.oclIsTypeOf(ChooseShipment)

or b.oclIsTypeOf(StandardShipment))

Standard Shipment activity

• Constraints due to outgoing flow from the Submit Order XOR-split

(i) The previous activity must be of type Submit Order and must be completed

context StandardShipment inv: previous->size()=1 and previous->exists(a|

a.status=‘completed’ and a.oclIsTypeOf(SubmitOrder))

(ii) No two instances of Standard Shipment may be related with the same Sub-

mit Order instance

context StandardShipment inv: StandardShipment.allInstances()-> is-

Unique(previous)

• Constraints due to the subsequent XOR-merge

(i) The next activity must be of type ShipOrder.

context StandardShipment inv: next-> forAll(a|a.oclIsTypeOf(ShipOrder))

Choose Shipment activity

• Constraints due to outgoing flow from the Submit Order XOR-split

(i) The previous activity must be of type Submit Order and must be completed

context ChooseShipment inv: previous->size()=1 and previous->exists(a|

a.status=‘completed’ and a.oclIsTypeOf(SubmitOrder))

(ii) No two instances of Standard Shipment may be related with the same Sub-

mit Order instance

context ChooseShipment inv: ChooseShipment.allInstances()-> is-

Unique(previous)

• Constraints due to the AND-split between Arrange Transport and Process Or-

derLine

(i) For each Choose Shipment activity, the Arrange Transport and the Process

OrderLine activities must be executed

context Case inv: status='completed' implies activity->select(a|

a.status='completed' and a.oclIsTypeOf(ChooseShipment))-> fo-

rAll(a|a.next->exists(b| b.oclIsTypeOf(ArrangeTransport)) and a.next-

>exists(b| b.oclIsTypeOf(ProcessOrderLine)))

(ii) Only Arrange Transport activity instances or Process OrderLine instances

may follow a Choose Shipment instance

context ChooseShipment inv: next->forAll(b|

b.oclIsTypeOf(ArrangeTransport) or b.oclIsTypeOf(ProcessOrderLine))

Arrange Transport activity

• Constraints due to the outgoing flow of the Choose Shipment AND-split

(i) The previous activity must be of type Choose Shipment and must be com-

pleted

context ArrangeTransport inv: previous->size()=1 and previous->exists(a|

a.oclIsTypeOf(ChooseShipment) and a.status=‘completed’)

(ii) No two instances of Arrange Transport may be related with the same

Choose Shipment

context Arrange Transport inv: ArrangeTransport.allInstances()-> is-

Unique(previous)

• Constraints due to the subsequent AND-merge

(i) The next activity must be of type EmptyActivity1.

context ArrangeTransport inv: next-> forAll(

a|a.oclIsTypeOf(EmptyActivity1))

Process OrderLine activity

• Constraints due to the outgoing flow of the Choose Shipment AND-split

(i) The previous activity must be of type Choose Shipment and must be com-

pleted

 context ProcessOrderLine inv: previous->size()=1 and previous->exists(a|

a.oclIsTypeOf(ChooseShipment) and a.status=‘completed’)

(ii) No two instances of Process OrderLine may be related with the same

Choose Shipment instance

context ProcessOrderline inv: ProcessOrderline.allInstances()-> is-

Unique(previous)

• Constraints due to the multi-instance loop

(i) There must exist a Process OrderLine instance for each OrderLine of the

order related with the activity

context Case inv: (activity->select(a| a.oclIsTypeOf(ProcessOrderLine))->

size()) mod (ProcessOrderLine.allInstances()->

any(p|p.case=self).order.quotation.quotationLine ->size()) = 0

EmptyActivity1 activity

• Constraints due to the AND-Merge

(i) We cannot start (and complete) an Empty Activity1 instance until the Ar-

range Transport activity and all required Process OrderLine instances have

been executed.

context EmptyActivity1 inv: previous->exists(b|

b.oclIsTypeOf(ArrangeTransport) and b.status=‘completed’) and previ-

ous->select(b| b.oclIsTypeOf(ProcessOrderLine) and

b.status=‘completed’)-> size()=self.order.quotation.orderLines->size()

(ii) An Empty Activity1 instance must eventually exist if the Arrange Transport

and Process OrderLine activities have been issued.

context Case inv: status='completed' implies not (activity->exists(b|

b.oclIsTypeOf(ArrangeTransport) and b.status='completed' and not

b.next ->exists(a| a.oclIsTypeOf(EmptyActivity1))) and activity->exists(b|

b.oclIsTypeOf(ProcessOrderLine) and b.status='completed' and not

b.next->exists(a| a.oclIsTypeOf(EmptyActivity1))))

(iii) The previous instances of two different Empty Activity1 instances must have

an empty intersection.

context EmptyActivity1 inv: EmptyActivity1.allInstances()->forAll(s1,s2|

s1<>s2 implies s1.previous->intersection(s2.previous)-> isEmpty())

• Constraints due to the subsequent XOR-merge

(i) The next activity must be of type ShipOrder.

context EmptyActivity1 inv: next-> forAll(a|a.oclIsTypeOf(ShipOrder))

Ship Order activity

• Constraints due to the XOR-Merge

(i) The preceding activity must be of type Standard Shipment or EmptyActiv-

ity1 and must be completed

context ShipOrder inv: previous->size()=1 and previous->exists(a|

(a.oclIsTypeOf(StandardShipment) or a.oclIsTypeOf(EmptyActivity1)) and

a.status=‘completed’)

(ii) No two instances may be related with the same previous Standard Shipment

or Empty Activity1 instances.

context ShipOrder inv: ShipOrder.allInstances()-> isUnique(previous)

(iii) A Ship Order instance follows completed Standard Shipment or EmptyQuo-

tation1 activities

context Case inv: status=‘completed’ implies activity->select(b|

b.oclIsTypeOf(StandardShipment) or … or b.oclIsTypeOf(EmptyActivity1))

-> forAll(b|b.next->exists(a| a.oclIsTypeOf(ShipOrder)))

• Constraints due to following AND-split

(i) For each Ship Order activity, the Send invoice and the Receive Goods ac-

tivities must be executed

context Case inv: status='completed' implies activity->select(a|

a.status='completed' and a.oclIsTypeOf(ShipOrder))-> forAll(a|a.next

->exists(b| b.oclIsTypeOf(SendInvoice)) and a.next->exists(b|

b.oclIsTypeOf(ReceiveGoods)))

(ii) Only Send Invoice activity instances or Receive Goods instances may follow

a Ship Order instance

context ShipOrder inv: next->forAll(b| b.oclIsTypeOf(SendInvoice) or

b.oclIsTypeOf(ReceiveGoods))

Send invoice activity

• Constraints due to the outgoing flow of the Ship Order AND-split

(i) The previous activity must be of type Ship Order and must be completed

context SendInvoice inv: previous->size()=1 and previous->exists(a|

a.oclIsTypeOf(ShipOrder) and a.status=‘completed’)

(ii) No two instances of SendInvoice may be related with the same Ship Order

context SendInvoice inv:SendInvoice.allInstances()-> isUnique(previous)

• Constraints due to the subsequent AND-merge

(i) The next activity must be of type PayGoods.

context SendInvoice inv: next-> forAll(a|a.oclIsTypeOf(PayGoods))

Receive goods activity

• Constraints due to the outgoing flow of the Ship Order AND-split

(i) The previous activity must be of type Ship Order and must be completed

context ReceiveGoods inv: previous->size()=1 and previous->exists(a|

a.oclIsTypeOf(ShipOrder) and a.status=‘completed’)

(ii) No two instances of ReceiveGoods may be related with the same Ship Or-

der

context ReceiveGoods inv:ReceiveGoods.allInstances()-> is-

Unique(previous)

• Constraints due to the subsequent AND-merge

(i) The next activity must be of type PayGoods.

context ReceiveGoods inv: next-> forAll(a|a.oclIsTypeOf(PayGoods))

Pay Goods activity

• Constraints due to the AND-Merge

(i) We cannot start a Pay Goods instance until the Send Invoice and the Re-

ceiveGoods activities have been executed.

context PayGoods inv: previous->exists(b| b.oclIsTypeOf(SendInvoice)

and b.status=‘completed’) and previous->exists(b|

b.oclIsTypeOf(ReceiveGoods) and b.status=‘completed’)

(ii) A Pay Goods instance must eventually exist if the Send Invoice and the Re-

ceive Goods activities have been issued.

context Case inv: status='completed' implies not (activity->exists(b|

b.oclIsTypeOf(SendInvoice) and b.status='completed' and not

 b.next->exists(a| a.oclIsTypeOf(PayGoods))) and activity->exists(b|

b.oclIsTypeOf(ReceiveGoods) and b.status='completed' and not

 b.next->exists(a| a.oclIsTypeOf(PayGoods))))

(iii) The previous instances of two different Pay Good activities must have an

empty intersection.

context PayGoods inv: PayGoods.allInstances()->forAll(s1,s2| s1<>s2 im-

plies s1.previous->intersection(s2.previous)-> isEmpty())

	1. Introduction
	2. Overview of the proposed approach and of its benefits
	2.1. Motivation and discussion
	2.2. Original contributions of the paper
	3. Conceptual schemas
	4. Business Processes Concepts
	5. Normalization Phase
	6. Extending Conceptual Schemas with Business Process Information
	6.1. Generation of the workflow-extended conceptual schema
	6.2. Complexity of the workflow-extended conceptual schema

	7. Translation of Process Constraints
	7.1. Sequences of activities
	7.2. Split gateways
	7.3. Merge gateways
	7.4. Condition constraints
	7.5. Loops
	7.6. Event management
	7.7. Applying the translation patterns

	
	8. Implementation of the Workflow-Extended Conceptual schema
	9. Tool Support
	10. Related Work
	11. Conclusions
	Acknowledgments
	References
	 Appendix A
	A.1. A minimal workflow-extended conceptual schema
	A.2. A maximal workflow-extended conceptual schema

	 Appendix B

