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Abstract

Graph Transformations provide a uniform and precise framework for the speci�ca-

tion of access control policies. States are represented by graphs and state transi-

tions by graph transformations. A policy is formalized by four components: a type

graph, positive and negative constraints and a set of rules. This formalism allows

the detailed comparison of di�erent policy models and the precise description of the

evolution of a policy and of the integration of policies.
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1 Introduction

Access Control (AC) protects the computing system against unauthorized ac-
cess to or modi�cation of information, whether in storage, processing or tran-
sit. In this respect, AC is concerned with determining the legitimate activities

of users of a computing system [San94]. Several models have been proposed
to address the AC requirements of computing applications. Traditional AC

models are broadly classi�ed as Discretionary Access Control (DAC) [San94],

and Mandatory Access Control (MAC) [San93] models.

In DAC models, the access authorization rules are speci�ed for each pair
(subject, object) in the computing system. A subject can be a user, a group

or a process that acts on behalf of other subjects. If a subject is the owner of

object O, the subject is authorized to grant or revoke access rights on O to

other subjects at his discretion. The DAC models have an inherent 
exibility
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and are the most widely used in commercial systems, e.g. in the Unix operat-

ing system. However, these models do not provide high security assurance and

su�er from Trojan Hoarse attacks. For example, if the authorized user access

object O executing a program containing a Trojan Hoarse, O could be copied

maliciously into another object with a lower autorization, which results in al-

lowing access to a copy of O to a user who does not have access to the original

O. Most of the existing implementation of DAC follow the HRU model [HRU].

This model is based on an access control matrix where each element speci�es

the access rights of a particular subject for accessing a particular object in the

system. Safety in HRU is in general undecidable. The basic safety problem is

to determine whether there exists a reachable state in which a given subject

possesses a given authorization that it did not previously possess.

The MAC models appear more rigid, all subjects and objects are classi�ed

based on prede�ned security levels that are used during the authorization

decision. The MAC models focus on the problem of controlling and enforcing

information 
ow, which is not addressed by DAC models. In MAC the access

control policy is enforced by the system and cannot be overridden by a user

or a compromised application. For example, to ensure information secrecy
in military applications, the MAC model is implemented using a multilevel

security restriction that employs no read-up and no write-down rules. These
rules are designed to ensure that information does not 
ow from a higher
security level to a lower security level even if a compromised application at

higher security level contains a malicious Trojan Hoarse. Despite o�ering these
attractive properties of containment, MAC models have not been used outside
of the classi�ed information processing area. Systems with MAC features

have no longer supported standard applications or management tools, and
they became much more complicated to manage and use than those based on

DAC. Moreover, MAC systems implement a form of containment that is too
strong and restrictive, that is, the standard applications often can no longer
function normally.

New models such as Role-Based Access Control (RBAC) [San98,SFK00]
have been proposed to address the security requirements of a wider range of

applications. In particular, RBAC models introduce the new concept of role
to organize users and access privileges, where roles represent organizational

responsibilities of the users of the information system. RBAC models provide

several well-recognized advantages. They have been shown to be \policy neu-

tral", meaning that using the RBAC features a wide range of security models

can be expressed, including traditonal DAC and MAC. Security administra-

tion can also be simpli�ed by the use of role. For example, if a user is assigned

a new task within the organization, the user is revoked from the old role and

assigned to the new one, whereas in other models, the users's old permissions

would have to be individually removed, and new permissions would have to

be granted.

Given the variety of di�erent AC models de�ned in the literature, an im-
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portant issue is how to evaluate and compare the features of all these models

in terms of expressive power and complexity of their implementation. Hence

there seems to be a need for the development of a formal framework to specify

and compare the features of di�erent AC models.

In particular, this paper addresses the speci�cation of evolution, transition

and integration of any AC models using the formal framework of graph trasfor-

mation. The evolution of an AC model consists of changing the AC rules and

constraints of an existing model. The changes have to preserve coherence in

the sense that the constraints are not violated by the modi�ed functional-

ity. Similar problems occur for the transition from one AC policy to a new

one. Besides the evolution and the transition of AC models, the integration

of existing AC policies forms the third mechanism for producing a new policy.

The integration of policies is relatively simple as long as there are no con
icts

in the access allowed by di�erent policies. If there are con
icts, they can be

studied and reconciled more easily if the di�erent policies are described within

a uniform formal framework.

The major goal of our ongoing work is to describe in a systematic way the

evolution of di�erent AC policies, the integration of diverse AC policies and

the transition from one policy to another one. A unique formal framework is
proposed to tackle these two problems. This paper uses graph transformations
to specify a RBAC model.

We are aware of two recent articles ([BDS00,BCFP01]) on putting together
AC policies. In the �rst one, an algebra of models is de�ned using a standard

language of expressions, whose semantics is based on triples <subject, object,
rights> and the fact that rules are Horn clauses. We focus instead on graph
rules and on the formal tools available to assist in the process of evolving and

integrating policies to guarantee a coherent model.

2 Security Policy Framework

This section introduces the framework for the speci�cation of AC policies
based on graph transformations. The framework is called security policy

framework and consists of four components: The �rst component is a type

graph that provides the type information of the AC policy [CELP96]. The

second component is a set of graph rules specifying the policy rules that gen-

erate the graphs representing the states of the system accepted by the AC
policy. For some AC policies, it is meaningful to restrict the set of system

graphs constructed by the graph rules, since not all of them represent valid

states. Therefore, a security policy framework contains also two sets of con-

straints that specify graphs that shall not be contained in any system graph

(negative constraints) and graphs that must be explicitly constructed as parts

of a system graph (positive constraints). In the actual implementation of

an AC policy, the constraints are redundant since the only acceptable states

are those explicitly built by the implemented rules. But when developing an
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AC policy through successive re�nement steps, or when comparing di�erent

policies, or when trying to predict the behavior of the policy obtained by

integrating two di�erent ones, it is useful to have the additional information

provided by the constraints. Furthermore, it is usually diÆcult to extract neg-

ative information from "constructive" rules. Positive and negative constraints

can be considered as formal documentation of the initial requirements and the

development process of rules.

In the sequel, we �x a type graph TG and all graphs and graph morphisms

are supposed to be typed in TG.

Graph rules p : (L
r

! R;A(p)) are speci�ed by a rule name p, a partial

graph morphism r and a set of negative application conditions (NAC) A(p) =

fL ! Ni : i 2 Ig containing total graph morphisms with source L [HW95].

For the derivation of graphs by graph rules, the Single-Pushout approach is

chosen because of its (in the �eld of AC policies) desired property of automatic

deletion of dangling edges.

Both positive and negative constraints are formally speci�ed by morphisms.
Only their semantics distinguishes them.

De�nition 2.1 [Negative and positive constraints] A constraint (positive or

negative) is given by a total graph morphism c : X ! Y . A graph G satis�es

a positive (negative) constraint c if for each total injective graph morphism

p : X ! G there exists (does not exist) a total injective graph morphism

q : Y ! G such that X
c

! Y
q

! G = X
p

! G.

De�nition 2.2 [Security Policy Framework] A security policy framework, or
just framework, is a tuple SP = (TG; (P; rP ); P os;Neg), where TG is a type

graph, the pair (P; rP ) consists of a set of rule names and a total mapping
rP : P ! jRule(TG)j 4 , Pos is a set of positive and Neg is a set of negative
constraints.

Example 2.3 [Role-Based Access Control] The example presents the security

policy framework for a variant on the Role-based Access Control (RBAC)
model [San98,OSM00]. This model considers several user roles, or just roles,
and several administrator roles responsible for the user-role assignment. Both

roles and administrative roles are ordered in a hierarchy given by a partial
order. In Fig. 1 an example of an administrative role hierarchy (on the left-

hand side) and a role hierarchy (on the right-hand side) is shown, where the
hierarchies are given by graphs. Roles as well as administrative roles are given

by nodes of type r and ar, respectively, and edges between roles show the

inheritance relation.

Typically, a role Head of a Division higher in the hierarchy than the role

Head of a Department inherits all the permissions associated with a Head of a

4 The categoryRule(TG) has as objects all pairs (r; A), where r : L! R is a partial graph

morphism and A is a set of total graph morphisms with source L.
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Department. A user Smith assigned to a role Head of a Department is granted

all the permissions associated with the role.

r

ar

ar

ar r

r

r r

r

r

Fig. 1. Administrator role hierarchy

(left) and role hierarchy (right).

r uar s

Fig. 2. The type graph for the

RBAC model.

Graphs generalize the notion of a partial order, and by de�ning speci�c
rules one could restrict the graph structure to any role hierarchy. Additionally,

Fig. 1 shows edges between administrative roles and user roles, representing
the authorization to modify the user role by the administrative role. The set

of roles reachable by such edges from an administrative role is the range of
the administrative role. For instance, the range of the upper administrative
role is given by the upper �ve roles, whereas the lower administrator has the

authorization only for the lowest role.

A user can be assigned to or revoked from a role by an administrator. A

user is a member of a role if she/he is directly assigned to a role. She/he
is authorized for a role, if the role is inherited from a role to which the user

is assigned. A user can establish a session during which the user activates a
subset of roles of which she/he is authorized.

Considering this RBAC model, the type graph for the SPF (see Fig. 2)
consists of a node type ar for administrator roles, a node type r for roles, a
node type u for user and a node type s for user sessions. The loops for ar and

r nodes, respectively, are used to specify the hierarchy. The edge from node u
to a node r is called assignment edge and assigns a user to a role, the loop at

node u speci�es the non-existence of an assignment edge. The edge between
node s and a node u assigns a session to a user.

The creation and deletion of roles is not considered in this paper, so that

the basic operations of the RBAC model are add user, remove user, add as-

signment, remove assignment, add session, remove session, activate role and

deactivate role. All these operations are modeled by the graph transformation

rules in Fig. 3.

The rule add user introduces a new user to the system. The newly created
user gets a loop to indicate that the user is not yet assigned to a role. The

rule remove user removes a user and all his/her sessions as well to ensure
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*
activate role

*

new session

remove session

remove user

deactivate role

add user

add to role remove from role

Fig. 3. Graph rules for the centralized RBAC model.

that there are no active sessions of the removed user. This is indicated by

the double circled session node in the left-hand side of rule remove user. The

interpretation is that all sessions connected to the user are deleted. The role is
an abbreviation for a set of roles consisting a rule for each number of possible

sessions. Negative application conditions can ensure that a rule is applicable
if and only if the number of occurring session nodes is the same for which that
the rule is speci�ed.

The rules for the creation and deletion of sessions are new session and
remove session. A session node s is immediately connected by an edge to

the user who is using s. A session can be deleted at any time regardless of the
presence of active roles of the session.

The rule add to role assigns a user to a role by connecting both by the
assignment edge. The idea is to have at most one assignment per user, i.e.

a user can be in at most one role. Membership is indicated by the non-
existence of a loop at the user node u. The rule add to role requires the
loop and deletes it when the rule sets the assignment. The rule remove from

role removes the assignment edge and deactivates all sessions of the user. All
sessions can be deactivated since all activated roles for a session are authorized

by the one assignment edge. There cannot be roles activated that are not

authorized by this assignment. The user node is equipped with a loop again.

A user can activate any role r for which she/he is authorized. A user is

authorized for r, if there is a path starting with an assignment edge and ending
in r. The corresponding graph rule is activate role. This edge is created

by the user of the session. The star � at the edge between the roles indicate

a (possibly empty) path through the role hierarchy. An empty path indicates
that a user can also activate a role to which she/he is directly assigned. Role

r can only join a session if r is not already a member of that session, as
indicated by the dashed edge for the NAC between the session node and the

role node. The deactivation of a role from a session is speci�ed by deleting
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the edge between the session and the role node.

Examples of negative and positive constraints are given in Fig. 4. The neg-

ative constraints require that the loop at a user node u cannot simultaneously

occur with an assignment edge (upper constraint) and that a user cannot be

in two or more roles (lower constraint). This ensures that a user is assigned to

at most one role. The positive constraint requires that whenever a user session

is activated for a role, the user of the session is authorized for the session.

u

rs

u

r

r
u r

u
r

r

s

negative constraints: positive constraints:

*

Fig. 4. Constraints for the RBAC model.

The graphs that can be constructed by the rules of a framework represent

the system states possible within the policy model. These graphs are called
system graphs in the sequel. A security policy framework is coherent if all
system graphs satisfy the positive and negative constraints in the framework.

A security policy framework morphism f : SP1 ! SP2, or just framework

morphism, relates security policy frameworks by a total graph morphism fTG :
TG1 ! TG2 between the type graphs and a mapping fP : P1 ! P2 between

the sets of rule names. The mapping fP must preserve the behavior of rules
in the sense that a rule name x can be mapped to a rule name fP (x) only
if fP (x) does on the renamed types everything which x does and possibly

more. The set of positive constraints in SP2 can contain, in addition to Pos1,
new positive constraints and positive constraints of SP1 extended w.r.t. new

types. The set of negative constraints in SP2 may contain additional negative
constraints on new types, but must not impose new negative constraints on
old types.

De�nition 2.4 [Framework Morphism] A framework morphism between se-

curity policy frameworks SPi = (TGi; (Pi; rPi); P osi; Negi) for i = 1; 2 is a pair

f = (fTG; fP ) : SP1 ! SP2, where fTG : TG1 ! TG2 is a total graph mor-

phism and fP : P1 ! P2 is a total mapping, so that VfTG(rP2(fP (p))) = rP1(p)
for all p 2 P1, Pos1 � VfTG(Pos2) and VfTG(Neg2) � Neg1.

5

The category of security policy frameworks, denoted by SP, has as objects

all security policy frameworks and as morphisms all framework morphisms.

5
VfTG is the forgetful functor induced by fTG.
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For each framework SP , idSP = (idTG; idP ) is the identity and composition is

de�ned componentwise. The category SP is �nitely cocomplete [KMPP01b].

3 Evolving policies

As in practically any development activity, the speci�cation of a security policy

is an incremental process: an initial description of the wanted (positive con-

straints) and of the unwanted (negative constraints) states must evolve as the

requirements are better understood. The process of modifying an AC policy

may deal with local changes (a policy evolves through the addition/removal of

individual constraints and rules), with modular changes (two policies are com-

bined to form a larger policy of which the original ones are subcomponents)

and with global changes (the replacement of one policy by another one).

Local changes are needed when a policy must be modi�ed to take into

account a better understanding of, or a change in, the security requirements.

A security policy framework SP = (TG; (P; rP ); P os;Neg) can be changed

by modifying its components, that is, the extension or reduction of the type

graph, the addition/removal of a graph rule to/from P , the addition/removal

of a positive constraint to/from Pos and the addition/removal of a negative
constraint to/from Neg. A framework morphism f : SP1 ! SP2 describes

the change of the framework SP1 to the framework SP2, but also from SP2

to SP1. We de�ne an evolution as a sequence of framework morphisms in the
category SP that can be travelled in both directions.

De�nition 3.1 [evolution] An evolution of a framework SP to a framework

SP 0 is a sequence e = (SP0SP1:::SPn�1SPn) of frameworks such that SP0 =
SP , SPn = SP 0 and, for each i = 0; :::; n� 1, there is a framework morphism
m

f

i
: SPi ! SPi+1 or m

b

i
: SPi+1 ! SPi.

The evolution of a security policy framework yields a new security policy
framework that re
ects the desired changes. The changes, however, do not
ensure generally that the new security policy framework is coherent. From a

semantical point of view, this problem can be solved by considering the full
sub-category SPc of SP that contains only coherent security policy frame-
works. Evolution is possible only in this sub-category. From an operational

point of view, we can solve the problem by using a mechanical construction

originally introduced in [HW95]. The construction manipulates the rules of a

framework by adding application conditions to ensure that the rules do not cre-

ate graphs that do not satisfy the constraints. A methodology for generating
a coherent security policy framework is presented in [KMPP00,KMPP01a].

Modular changes can occur when two companies merge while keeping the

main part of their rights and their behavior so that the security information

of the two companies must be merged as well. Merging takes place at the syn-
tactical level with the security policy frameworks, and at the semantical level

with the system graphs representing the state of the companies at the point
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of the merge. The merge on the semantical level is what distinguishes an evo-

lution from an integration: evolution is expressed syntactically by considering

only the security policy frameworks, integration includes semantical changes,

too. The integration of two AC policies on the syntactical level yields a new

security policy framework via a pushout of the security policy frameworks in

the category SP. Two security policy frameworks SP1 and SP2 are related

by an auxiliary framework SP0 that identi�es the common parts (types and

rules) in both frameworks; the actual integration is expressed by framework

morphisms f1 : SP0 ! SP1 and f2 : SP0 ! SP2. The pushout of f1 and f2
in SP integrates the frameworks SP1 and SP2 in a new security policy frame-

work SP called the integrated framework. Note that the integration concepts

of the paper can be easily generalized to an integration of several frameworks

because of the existence of (�nite) colimits in SP.

An important integration aspect is the preservation of coherence: if the

frameworks SP1 and SP2 are coherent, is SP ? Coherence w.r.t. negative

constraints is always preserved by a pushout [KMPP01b]. Coherence w.r.t.

positive constraints is generally not preserved by the pushout construction.

The reason for incoherence w.r.t. positive constraints, however, can be reduced
to the parts of positive constraints referring to common types. Coherence of

positive constraints referring to types occuring only in SP1 or only in SP2 is
preserved.

Another important issue in integrating two policies is the overlapping of
rules. If two similar rules can be applied at a given moment and, say, they
are not parallel independent (i.e., the application of one may prevent the

application of the other one), an (outside) decision must be made to determine
the "strategy". Di�erent strategies are possible, ranging from Priority for one

policy to Priority for rules. In the �rst case, one of the two policies is chosen
and the rules of the other one are either discarded altogether (radical solution)
or equipped with a NAC to eliminate the con
ict; to in the second case, each

pair of rules is analyzed and one (not always from the same policy) is preferred
modifying the other one (static) or the choice is made at run time (dynamic)
on which rule to apply.

A global change for a policy occurrs when AC policy is deemed inadequate

for a particular company that wants to replace the current one with a new one
and the new one is the only one to be used henceforth. The transition from

policy A to policy B can be viewed as a two-step evolution, where the �rst

step is the embedding of A into A+B and then the inverse morphism to B,
after adopting the strategy giving priority for policy A with a radical solution.

4 Concluding Remarks

We have presented a formalism to specify AC policies. States are represented
by graphs and their evolution by graph transformations. A policy is formal-

ized by four components: a type graph, positive and negative constraints (a
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declarative way of describing what is wanted and what is forbidden) and a

set of rules (an operational way of describing what can be constructed). The

change over time of a policy can described in terms of sequences of framework

morphisms, corresponding to step-by-step addition/deletion of rules and con-

straints. We have also discussed the e�ect of integrating two policies using a

pushout in the category of policy frameworks and framework morphisms.

Among the remaining problems under investigation is that of comparing

not only the expressive power of the di�erent access control models (DAC,

MAC, RBAC) but also their relative complexity. This could be approached

by expressing the graph rules in the di�erent models as built using expressions

[GRPPS00] from a small number of basic operations easily implementable in

common security systems.
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