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ing on a function u, and prove that the set of bifurcation points for the solutions of the system is
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function u, and prove that there exists λ∗ such that the set of the functions u, such that the system
admits nontrivial solutions, contains an accumulation point.
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1. Introduction

In the present paper, we will deal with nonautonomous Hamiltonian systems with periodic
boundary conditions, depending on a function u, of the following type:

v̈ = A(t)v +∇F
(
t, v + u(t)

)
a.e. in I,

v(0) − v(T) = v̇(0) − v̇(T) = 0,
(Nu)

where I = [0, T] is a real interval,A(·) is anN ×N symmetric, positive definite matrix; and the
function F : I × R

N → R, referred to as the potential, is measurable with respect to the scalar
variable and continuously differentiable with respect to the vector variable (note that by ∇F
we will always mean the gradient of F with respect to the vector variable).

The function u is regarded as a parameter, andwe are interested in studying the structure
of the set of the solutions of (Nu), as u varies in a suitable function space X. In particular, we
will focus on those functions u which are bifurcation points for the problem (see Definition 3.4
below), according to the very general definition given by Chow and Hale [1]. Actually, our
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result ensures that, under convenient assumptions on the potential F, the set of such bifurcation
points is “large,” that is, it is not σ-compact. Moreover, whenever u is not a bifurcation point,
(Nu) admits a finite number of solutions.

We will study (Nu) in the equivalent form of an equation in X, involving a nonlinear
operatorΦ fromX to itself: as the bifurcation points are exactly the singular values ofΦ, we will
be able to apply a result established by Ricceri [2], assuring that the set of the singular values
of Φ is not σ-compact. The equivalence between bifurcation points and singular values was
already employed by Ďurikovič and Ďurikovičová [3], where a single second-order nonlinear
differential equation is studied.

Our fundamental assumptions are that, for all t ∈ I, the function F(t, ·) is positively
homogeneous of degree α ∈ ]1, 2[ and not quasiconvex (see condition (F3) below for a more
precise statement). Homogeneity assumptions have already been used in the study of Hamilto-
nian system, for instance, Ben-Naoum et al. [4] proved the existence of a nonconstant solution,
provided that F satisfies certain sign assumptions and F(t, ·) is positively homogeneous with
degree α > 1, α /= 2. Our assumption that α ∈ ]1, 2[ places F in the class of subquadratic po-
tentials: in a similar framework, Tang and Wu proved in [5] the existence of a solution for a
Hamiltonian system involving a matrix A(·) which is not necessarily positive definite.

We will also present a result (based on another theorem from [2]) in the framework
of eigenvalue problems for linear second-order systems with periodic boundary conditions,
depending on the function u ∈ X and on the real parameter λ > 0 of the following type:

v̈ = A(t)v + λHF

(
t, u(t)

)
v a.e. in I,

v(0) − v(T) = v̇(0) − v̇(T) = 0,
(Lu,λ)

where HF(t, ·) denotes the Hessian matrix of some potential F(t, ·), which is assumed to be
twice differentiable. In this case, we replace the homogeneity condition by assuming a sub-
quadratic growth of the potential, and obtain the existence of a real λ∗ such that the set of the
functions u, such that the system (Lu,λ∗) admits nontrivial solutions, contains an accumulation
point.

2. Preliminaries

In this section, we introduce the common hypotheses and notation of the nonlinear and the
linear cases, and recall some results which will be useful in the sequel.

Let N ∈ N (N > 1), T > 0, I = [0, T]; let A(·) be an N ×N real symmetric matrix, whose
entries are functions aij ∈ L∞(I), and assume that there exists ν > 0 such that, for a.e. t ∈ I and
every x ∈ R

N ,
(
A(t)x

)·x ≥ ν|x|2. (2.1)

Following the monograph [6] by Mawhin and Willem, we denote byH1
T the space of the func-

tions u ∈ L2(I,RN) with weak derivative u̇ ∈ L2(I,RN) and satisfying u(T) = u(0). In partic-
ular, every u ∈ H1

T is an absolutely continuous function, hence it admits a classical derivative,
equal to u̇, a.e. in I. Due to the above assumptions on the matrix A, H1

T is endowed with a
scalar product defined by putting for every u, v ∈ H1

T ,

〈u, v〉 =
∫T

0

[
u̇(t)·v̇(t) + (

A(t)u(t)
)·v(t)]dt; (2.2)
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the induced norm is defined for every u ∈ H1
T by

‖u‖ =

√∫T

0

[∣
∣u̇(t)

∣
∣2 +

(
A(t)u(t)

)·u(t)
]
dt. (2.3)

It is well known that X := (H1
T , ‖·‖) is an infinite-dimensional real Hilbert space, compactly

embedded in C0(I,RN); in particular, there exists c > 0 such that

(C) ‖u‖∞ ≤ c‖u‖ for every u ∈ X.

In the proofs of our results, we will employ some basic facts about nonlinear operators in
Hilbert spaces, which we recall for the reader’s convenience.

Let X, Y be Banach spaces, Ψ : X → Y an operator. We recall that Ψ is proper if, for
any compact subset C of Y , the set Ψ−1(C) is compact. We also recall the following result by
Sadyrkhanov.

Theorem 2.1 (see [7, Theorem 1.1]). Let X be an infinite-dimensional Hilbert space, Ψ : X → X a
continuous, closed, nonconstant operator. Then, Ψ is proper.

We also present the following statement of the domain invariance theorem.

Theorem 2.2 (see [8, Theorem 16.C]). Let X be a Banach space, let G be an open subset of X, let
Ψ0 : G → X be a continuous, compact operator, and letΨ : G → X be defined byΨ(u) = u+Ψ0(u) for
every u ∈ G. Assume that Ψ is injective. Then, Ψ is an open mapping.

We recall that Ψ : X → Y is Gâteaux differentiable in X if there exists a mapping Ψ′ :
X → L(X,Y ) (by L(X,Y ) we mean the space of bounded linear operators mapping X into Y )
such that, for all u, v ∈ X,

lim
τ→0+

Ψ(u + τv) −Ψ(u)
τ

= Ψ′(u)(v); (2.4)

if Ψ′ is continuous, we will write Ψ ∈ C1(X,Y ).
We denote by SΨ the set of the singular points ofΨ, that is, the set of all the points u0 such

thatΨ is not a local homeomorphism at u0. A point v0 ∈ Y is said to be a singular value ofΨ if it
is the correspondent of some singular point, that is, if v0 ∈ Ψ(SΨ). If, in addition,Ψ ∈ C1(X,Y ),
we denote by ŜΨ the set of all the points u0 ∈ X such that Ψ′(u0) ∈ L(X,Y ) is not surjective.
Finally, we recall that a set is called σ-compact if it is the union of an at most countable family
of compact sets.

LetX be a Hilbert space, with scalar product 〈·, ·〉: we denote by (X∗, ‖·‖∗) the topological
dual of X and recall that, by the Riesz theorem, there exists a surjective linear isometry ϕ ∈
L(X,X∗), satisfying the following equality for all u, v ∈ X:

ϕ(u)(v) = 〈u, v〉. (2.5)

Let J : X → R be a Gâteaux differentiable functional, then its derivative is defined as amapping
J ′ : X → X∗, and we define an operator Φ : X → X by putting for all u ∈ X,

Φ(u) = u + ϕ−1(J ′(u)
)
; (2.6)

note that, if J ∈ C1(X,R), the mapping Φ is continuous.
The following result, due to Ricceri, will play a fundamental role in the study of problem

(Nu).
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Theorem 2.3 (see [2, Theorem 1]). Let X be an infinite-dimensional Hilbert space, J ∈ C1(X,R).
Assume that J is sequentially weakly lower semicontinuous, not quasiconvex, and positively homoge-
neous of degree α ∈]1, 2[; moreover, suppose that Φ is a closed mapping. Then, both sets SΦ and Φ(SΦ)
are not σ-compact.

Now, let J : X → R be a twice-differentiable functional, then its second derivative (i.e.,
the derivative of J ′) is defined as a mapping J ′′ : X → L(X,X∗); for all λ > 0, we define
Φλ : X → X by putting for all u ∈ X,

Φλ(u) = u + λϕ−1(J ′(u)
)
. (2.7)

We observe that Φλ is a Gâteaux differentiable mapping, whose derivative is a mapping Φ′
λ
:

X → L(X,X) expressed for all u ∈ X by

Φ′
λ(u) = IdX + λϕ−1 ◦ (J ′′(u)) (2.8)

(this follows from the composite map formula, see Ambrosetti and Prodi [9, Chapter 1, Propo-
sition 1.4]); in particular, if J ∈ C2(X,R) (i.e., J ′ ∈ C1(X,X∗)), then Φλ ∈ C1(X,X).

We will employ the following result, due to Ricceri as well, for the study of the problem
(Lu,λ).

Theorem 2.4 (see [2, Theorem 3]). Let X be an infinite-dimensional Hilbert space, let J ∈ C2(X,R)
be a non-quasiconvex functional. Assume that J ′ is compact and that

lim inf
‖u‖→+∞

J(u)
‖u‖2 ≥ 0. (2.9)

Moreover, suppose that

lim
‖u‖→+∞

∥∥Φλ(u)
∥∥ −→ +∞. (2.10)

Then, there exists λ∗ > 0 such that the set ŜΦλ∗ contains at least an accumulation point.

3. The nonlinear case

Let F : I × R
N → R be a function satisfying the following conditions:

(F1) F(·, x) is measurable for every x ∈ R
N , F(t, ·) ∈ C1(RN,R) for a.e. t ∈ I;

(F2) there exist a ∈ C0(R+,R+) and a nonnegative b ∈ L1(I) such that for every x ∈ R
N and

a.e. t ∈ I,

max
{∣∣F(t, x)

∣∣,
∣∣∣∣
∂F

∂xi
(t, x)

∣∣∣∣ : i = 1, . . . , N
}

≤ a
(|x|)b(t); (3.1)

(F3) there exist ρ, σ ∈ R, x1, x2 ∈ R
N , τ ∈]0, 1[, and a closed interval I0 ⊂]0, T[ such that for

a.e. t ∈ I0,

max
{
F
(
t, x1

)
, F

(
t, x2

)} ≤ ρ < σ ≤ F
(
t, τx1 + (1 − τ)x2

)
; (3.2)
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(F4) there exists α ∈]1, 2[ such that for every μ > 0, x ∈ R
N , and a.e. t ∈ I,

F(t, μx) = μαF(t, x). (3.3)

In (F2). we can assume a increasing, without loss of generality. Note that from (F4) it
follows that F(t, 0) = 0 a.e. in I.

In this section, we deal with the nonlinear problem (Nu), depending on the function
u ∈ X. We recall that, for every u ∈ X, a solution of (Nu) is a function v ∈ X such that for every
w ∈ X

∫T

0

[
v̇(t)·ẇ(t) +

(
A(t)v(t)

)·w(t) +∇F
(
t, v(t) + u(t)

)·w(t)
]
dt = 0. (3.4)

We observe that, by the results of [6, (Section 1.4)], whenever v ∈ X is a solution of (Nu) in the
above sense, actually v ∈ C1(I,RN)with derivative v̇ ∈ X. Thus, clearly v̇(T) = v̇(0); moreover,
v̇ is absolutely continuous, hence the second derivative v̈ exists a.e. in I and satisfies

v̈(t) = A(t)v(t) +∇F
(
t, v(t) + u(t)

)
for a.e. t ∈ I. (3.5)

Now, we are going to introduce a suitable variational setting for the problem (Nu). Firstly, we
put, for every u ∈ X,

J(u) =
∫T

0
F
(
t, u(t)

)
dt. (3.6)

The following lemma describes the properties of the functional J .

Lemma 3.1. Let (F1), (F2), (F3), and (F4) be satisfied. Then, the functional J ∈ C1(X,R) with com-
pact derivative J ′ : X → X∗. Moreover, J is not quasiconvex.

Proof. By standard arguments, it is proved that J ∈ C1(X,R), its derivative is an operator J ′ :
X → X∗, expressed by

J ′(u)(v) =
∫T

0
∇F

(
t, u(t)

)·v(t)dt (3.7)

for every u, v ∈ X. We are now going to prove that the map J ′ is compact: let (uk) be a bounded
sequence in X, then there exist a subsequence, still denoted by (uk), and some u ∈ X such that
‖uk − u‖∞ → 0; hence for all k ∈ N,

∥∥J ′
(
uk

) − J ′(u)
∥∥
∗ ≤ c

∫T

0

∣∣∇F
(
t, uk(t)

) − ∇F
(
t, u(t)

)∣∣dt, (3.8)

where c is as in (C). Conditions (F1) and (F2) ensure that the right-hand side tends to zero as
k → ∞, by an application of the Lebesgue theorem.

Let us prove now that the functional J is not quasiconvex, that is, it has a nonconvex
sublevel set. Define M = max{|x1|, |x2|}. Since b ∈ L1(I), there exists δ > 0 such that for every
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measurable set Ω ⊆ I with m(Ω) < δ (where m(Ω) denotes the Lebesgue measure of Ω), we
have

∫

Ω
b(t)dt <

(σ − ρ)m
(
I0
)

2a(M)
. (3.9)

Without loss of generality, we can choose δ such that

I1 :=
[
inf

(
I0
) − δ

3
, sup

(
I0
)
+
δ

3

]
⊂ ]0, T[, (3.10)

so that m(I1 \ I0) < δ, and functions ui ∈ C∞(]0, T[) for i = 1, 2, such that ui(t) = xi for every
t ∈ I0 and ui(t) = 0 for every t ∈ I \ I1, satisfying the condition ‖ui‖∞ = |xi|. Since F(t, 0) = 0
due to (F4), for i = 1, 2, we have

J
(
ui

)
=
∫

I0

F
(
t, xi

)
dt +

∫

I1\I0
F
(
t, ui(t)

)
dt ≤ ρm

(
I0
)
+ a(M)

∫

I1\I0
b(t)dt <

(σ + ρ)m
(
I0
)

2
.

(3.11)

Moreover, if u = τu1 + (1 − τ)u2, then an analogous argument leads to

J
(
u
)
>
(σ + ρ)m

(
I0
)

2
. (3.12)

Thus, it is proved that the set J−1(] −∞, (σ + ρ)m(I0)/2[) is not convex.

Lemma 3.2. Let (F1), (F2), and (F4) be satisfied. Then, J and J ′ are positively homogeneous with
exponents α, α − 1, respectively (in particular, they both vanish at 0). Moreover,

lim
‖u‖→+∞

∥∥J ′(u)
∥∥
∗

‖u‖ = 0. (3.13)

Proof. The homogeneity properties of J and J ′ are easily obtained from (F4). Condition (3.13)
is quickly deduced as well, as we recall that α − 1 < 1.

We define the operator Φ : X → X by putting, for every u ∈ X,

Φ(u) = u + ϕ−1(J ′(u)
)

(3.14)

(where ϕ is as in Section 2). The next lemma yields some properties of the operator Φ.

Lemma 3.3. Let (F1), (F2), and (F4) be satisfied. Then, Φ satisfies the condition

lim
‖u‖→+∞

∥∥Φ(u)
∥∥ = +∞, (3.15)

and it is closed and proper.
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Proof. Since ϕ is an isometry, for all u ∈ X, we get

∥
∥Φ(u)

∥
∥ =

∥
∥u + ϕ−1(J ′(u)

)∥∥ ≥ ‖u‖
(

1 −
∥
∥J ′(u)

∥
∥
∗

‖u‖

)

, (3.16)

so from condition (3.13) we deduce (3.15).
Now we prove that Φ is a closed mapping. Let C be a closed subset of X, we need to

prove that Φ(C) is closed as well. Assume that {un} is a sequence in C such that {Φ(un)}
converges to some v ∈ X. Then, by (3.15), {un} is bounded; since J ′ is compact (Lemma 3.1)
and ϕ is surjective, there exists a subsequence {unk

} such that {J ′(unk
)} converges to ϕ(w) for

some w ∈ X. We get

unk
= Φ

(
unk

) − ϕ−1(J ′
(
unk

)) −→ v −w, (3.17)

hence, v −w ∈ C. Since J ′ is continuous (Lemma 3.1), J ′(v −w) = ϕ(w), so

Φ(v −w) = v −w + ϕ−1(J ′(v −w)
)
= v, (3.18)

which implies v ∈ Φ(C).
Finally, we note that Φ is continuous and is not constant, then by Theorem 2.1, Φ is

proper.

The operator Φ provides the desired variational setting for (Nu). Indeed, let us define
the set

Σ =
{
(v, u) ∈ X ×X : v is a solution of

(
Nu

)}
, (3.19)

and for every u ∈ X,

Σu =
{
v ∈ X : (v, u) ∈ Σ

}
. (3.20)

By the definition of Φ, it is clear that, for every u ∈ X,

Σu =
{
v ∈ X : Φ(v + u) = u

}
. (3.21)

Indeed, for all v ∈ X, we have

Φ(v + u) = u (3.22)

if and only if for all w ∈ X,

0 =
〈
v + ϕ−1(J ′(v + u)

)
, w

〉
= 〈v,w〉 + J ′(v + u)(w), (3.23)

which is equivalent to v ∈ Σu.
Next, we give the definition of bifurcation point forΣ, equivalent to the one of [1, page 2].
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Definition 3.4. A bifurcation point for Σ is a function u ∈ X such that there exist v ∈ Σu and
sequences (un), (v1

n), and (v2
n) in X such that v1

n, v
2
n ∈ Σun

, v1
n /=v2

n for every n ∈ N, and

lim
n

un = u, lim
n

v1
n = lim

n
v2
n = v. (3.24)

As pointed out in the introduction, we are interested in the “size” of the set of the bifurcation
points for Σ. Our main result, which is based on Theorem 2.3, ensures that such set is not σ-
compact and that whenever u is not a bifurcation point, the set Σu is nonempty and finite. The
precise statement is the following.

Theorem 3.5. Let (F1), (F2), (F3), and (F4) be satisfied. Then, the following assertions hold:

(I) the set of the bifurcation points for Σ is closed and not σ-compact;

(II) for every u ∈ X which is not a bifurcation point for Σ, the set Σu is nonempty and finite.

Proof. In order to prove (I), we are going to apply Theorem 2.3, all of its hypotheses are fulfilled
due to Lemmas 3.1, 3.2, and 3.3 (in particular, we point out that, since J ′ is compact, J turns
out to be sequentially weakly continuous). Thus, the sets SΦ and Φ(SΦ) are not σ-compact.
Moreover, from the definition of a singular point, it is immediately deduced that SΦ is closed;
since Φ is a closed operator, Φ(SΦ) is closed too.

All that remains to prove is that Φ(SΦ) is the set of the bifurcation points for Σ.
Indeed, choose u ∈ Φ(SΦ), then by (3.21), there is a v ∈ Σu such that v+u ∈ SΦ. Moreover,

for every n ∈ N, denote Bn the open ball inX centered in v+uwith radius 1/n: since v+u ∈ SΦ,
Φ : Bn → Φ(Bn) is not a homeomorphism.

Now we prove that Φ : Bn → Φ(Bn) is not injective, arguing by contradiction. Assume
that Φ : Bn → Φ(Bn) is injective, we already know that J ′ : X → X∗ is a compact operator, so
clearly ϕ−1 ◦ J ′ : X → X is compact as well; thus, by Theorem 2.2, Φ : Bn → Φ(Bn) would be
open, hence a homeomorphism, which is a contradiction.

Thus, there are w1
n,w

2
n ∈ Bn with w1

n /=w2
n such that Φ(w1

n) = Φ(w2
n) =: un. Clearly,

lim
n

w1
n = lim

n
w2

n = v + u, lim
n

un = u, (3.25)

so, denoting vi
n = wi

n−un for i = 1, 2, Definition 3.4 is fulfilled and u is a bifurcation point for Σ.
On the other hand, choose u ∈ X \Φ(SΦ), then by (3.21), it clearly follows that

Σu ∩
(
SΦ − u

)
= ∅. (3.26)

Then, u is not a bifurcation point for Σ; indeed, for every v ∈ Σu we have v+u/∈SΦ, that is,Φ is
a local homeomorphism in v + u; in particular, there exists an open neighborhood V of v, such
that the restriction of Φ to V + u is injective, hence u cannot comply with Definition 3.4.

Nowwe prove (II). Choose again u ∈ X \Φ(SΦ). Let us define an energy functional E by
putting for every v ∈ X,

E(v) =
‖v‖2
2

+ J(v + u); (3.27)
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it is easily seen that E ∈ C1(X,R) and its derivative satisfies, for all v,w ∈ X, the following
equality:

E′(v)(w) = 〈v,w〉 + J ′(v + u)(w) =
〈
Φ(v + u) − u,w

〉
; (3.28)

so, by (3.21), Σu is the set of the critical points of E.
We prove now that E is coercive; with this aim in mind, we note that J , as a C1 functional

with compact derivative, is sequentially weakly continuous, hence its restriction to the closed
unit ball admits minimum k ∈ R; for ‖v‖ big enough, from (F4), we easily get

E(v) =
‖v‖2
2

+ ‖v + u‖αJ
(

v + u

‖v + u‖
)

≥ ‖v‖2
2

+ k‖v + u‖α, (3.29)

and the latter goes to +∞ as ‖v‖ → +∞ (since α < 2).
We observe, also, that E is sequentially weakly l.s.c. Thus, E admits a global minimum,

that is, Σu /=∅.
Finally, we prove that Σu has a finite number of elements: first, recalling that Φ is proper

(Lemma 3.3), we observe that Σu is compact due to (3.21). Besides, Σu is a discrete set. Indeed,
for every v ∈ Σu, we have already observed that v admits an open neighborhood V such that
the restriction of Φ to V + u is injective, in particular

V ∩ Σu = {v}. (3.30)

Being compact and discrete, Σu is finite, which concludes the proof.

Before concluding this section, we give an example of application of Theorem 3.5 to a
system of two equations.

Example 3.6. Let N = 2, A(·) = [aij(·)] be a 2 × 2 matrix as in Section 2, let α ∈]1, 2[ be a real
number, and consider the following problem, depending on the function u ∈ X:

v̈1 = a11(t)v1 + a12(t)v2 + α
∣∣v1 + u1(t)

∣∣α−2(v1 + u1(t)
)

a.e. in I,

v̈2 = a21(t)v1 + a22(t)v2 − α
∣∣v2 + u2(t)

∣∣α−2(v2 + u2(t)
)

a.e. in I,

v1(0) − v1(T) = v̇1(0) − v̇1(T) = 0,

v2(0) − v2(T) = v̇2(0) − v̇2(T) = 0.

(3.31)

We are led to the study of the potential F : R
2 → R defined by

F
(
x1, x2

)
=
∣∣x1

∣∣α − ∣∣x2
∣∣α, (3.32)

which satisfies all the assumptions of Theorem 3.5. Thus, the set of bifurcation points related
to the system is not σ-compact, and for every u ∈ X which is not a bifurcation point, the set of
solutions of the problem is nonempty and finite.
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4. The linear case

Let F : I × R
N → R be a function satisfying the following conditions:

(F5) F(·, x) is measurable for every x ∈ R
N , F(t, ·) ∈ C2(RN,R), and F(t, 0) = 0 for a.e. t ∈ I;

(F6) there exist a ∈ C0(R+,R+) and a nonnegative b ∈ L1(I) such that for every x ∈ R
N and

a.e. t ∈ I,

max
{∣∣F(t, x)

∣∣,
∣∣∣∣
∂F

∂xi
(t, x)

∣∣∣∣,
∣∣∣∣

∂2F

∂xi∂xj
(t, x)

∣∣∣∣ : i, j = 1, . . . ,N
}

≤ a
(|x|)b(t); (4.1)

(F7) lim|x|→+∞ ess supt∈I(|∇F(t, x)|/|x|) = 0.

As above, in (F6)we can assume a increasing. Besides, in this sectionwewill also assume
that condition (F3), stated as in Section 3, is fulfilled. In the sequel, for every (t, x) ∈ I ×R

N , we
denote by HF(t, x) the Hessian matrix of F(t, ·) in x.

In this section, we deal with the linear problem (Lu,λ), depending on the function u ∈ X
and on the real parameter λ > 0. We recall that, for every u ∈ X and λ > 0, a solution of (Lu,λ) is
a function v ∈ X such that for every w ∈ X,

∫T

0

[
v̇(t)·ẇ(t) +

(
A(t)v(t)

)·w(t) + λ
(
HF

(
t, u(t)

)
v(t)

)·w(t)
]
dt = 0 (4.2)

(the meaning of such definition being the same as in Section 3). For every λ > 0, we denote by
Rλ the set of all u ∈ X such that (Lu,λ) admits at least a nonzero solution.

We define the functional J over X as in Section 3, and collect its properties in the follow-
ing lemma.

Lemma 4.1. Let (F3), (F5), (F6), and (F7) be satisfied. Then, J ∈ C2(X,R), its first derivative J ′ :
X → X∗ is a compact mapping and its second derivative J ′′ : X → L(X,X∗) is such that J ′′(u) is a
compact linear operator for all u ∈ X. Moreover, J is not quasiconvex and satisfies (3.13) and

lim
‖u‖→+∞

J(u)
‖u‖2 = 0. (4.3)

Proof. Clearly, (F5) and (F6) imply (F1) and (F2), respectively, so as in Lemma 3.1, J ∈ C1(X,R)
with a compact derivative J ′ : X → X∗ (note that, in Lemma 3.1, the homogeneity assumption
(F4) was employed only to deduce F(·, 0) = 0, which here is explicitly assumed in (F5)). Also,
from (F5) and (F6), it is easily deduced that the operator J ′ is continuously differentiable and
its derivative is a mapping J ′′ : X → L(X,X∗) expressed by

J ′′(u)(v)(w) =
∫T

0

(
HF

(
t, u(t)

)
v(t)

)·w(t)dt (4.4)

for all u, v,w ∈ X.
Next we prove that, for all u ∈ X, J ′′(u) is a compact linear operator. Let {vn} be a

sequence in X with ‖vn‖ ≤ M for all n ∈ N (M > 0); we wish to prove that {J ′′(u)(vn)} admits
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a subsequence which converges to some element of X∗. To this end, we fix ε > 0 and observe
that there exists δ > 0 such that

∥
∥J ′(u + v) − J ′(u) − J ′′(u)(v)

∥
∥
∗

‖v‖ <
ε

3M
(4.5)

for all v ∈ X with ‖v‖ < δ. We choose now μ ∈]0, δ/M[ and consider the sequence {u + μvn},
which is bounded; by the compactness of J ′, we can assume that (up to a subsequence) {J ′(u+
μvn)} converges in X∗, hence in particular, it is a Cauchy sequence. So there is ν ∈ N such that

‖J ′(u − μvn) − J ′(u − μvm)‖∗ <
εμ

3
(4.6)

for all n,m > ν. It is easily seen that

∥∥J ′′(u)
(
vn

) − J ′′(u)
(
vm

)∥∥
∗ < ε (4.7)

for all n,m > ν, so since X∗ is a complete metric space, {J ′′(u)(vn)} is convergent.
From (F7), through an application of the mean value theorem, we obtain

lim
|x|→+∞

ess sup
t∈I

F(t, x)
|x|2 = 0. (4.8)

The asymptotic behaviors of J and J ′ are easily deduced from those of F, ∇F, so (3.13) and
(4.3) hold.

Finally, the existence of a nonconvex sublevel set of J is proved as in Lemma 3.1.

For every λ > 0, we define the mapping Φλ : X → X by putting for all u ∈ X,

Φλ(u) = u + λϕ−1(J ′(u)
)
, (4.9)

and show its properties in the next lemma.

Lemma 4.2. Let (F5), (F6), and (F7) be satisfied. Then, for every λ > 0, Φλ ∈ C1(X,X) and the
following condition holds:

lim
‖u‖→+∞

∥∥Φλ(u)
∥∥ = +∞. (4.10)

Proof. Fix λ > 0. Since J ∈ C2(X,R), from what is observed in Section 2, we deduce that Φλ ∈
C1(X,X) and its derivative is a mapping Φ′

λ
: X → L(X,X) defined by

Φ′
λ(u) = IdX + λϕ−1 ◦ (J ′′(u)) (4.11)

for all u ∈ X. In order to achieve (4.10), we proceed as in the proof of Lemma 3.3, using (3.13).

The next theorem describes the structure of the set Rλ for a convenient λ > 0.

Theorem 4.3. Let (F3), (F5), (F6), and (F7) be satisfied. Then, there exists λ∗ > 0 such that Rλ∗

contains at least one accumulation point.
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Proof. The assumptions of Theorem 2.4 are satisfied due to Lemmas 4.1 and 4.2, hence there
exists λ∗ > 0 such that the set ŜΦλ∗ , consisting of the points u ∈ X such that Φ′

λ∗(u) is not
surjective, has an accumulation point u∗ ∈ X.

We note that ŜΦλ∗ is a closed set. To prove this assertion, we observe that the set A of all
surjective bounded linear operators from X into itself is open in L(X,X) (see Dieudonné [10,
Théorème 1]).

Besides, Φ′
λ∗ : X → L(X,X) is a continuous mapping, so the set

X \ ŜΦλ∗ =
{
u ∈ X : Φ′

λ∗(u) ∈ A}
(4.12)

is open. Thus, u∗ ∈ ŜΦλ∗ .
To conclude the proof, it remains to show that for all λ > 0

ŜΦλ
= Rλ. (4.13)

With this aim in mind, we fix u ∈ X and note that the linear operator

Φ′
λ(u) = IdX + λϕ−1 ◦ (J ′′(u)) (4.14)

satisfies the hypotheses of the Fredholm alternative theorem ([9, Theorem 0.1]). Indeed, by
Lemma 4.1, ϕ−1 ◦ (J ′′(u)) ∈ L(X,X) is compact (recall that ϕ−1 is a linear isometry). Thus,
Φ′

λ
(u) ∈ L(X,X) is injective iff it is surjective. Hence, u belongs to ŜΦλ

iff Φ′
λ
(u) is not injective,

that is, iff there exists v ∈ X \{0} satisfyingΦ′
λ
(u)(v) = 0. Resuming, u lies in ŜΦλ

iff there exists
v ∈ X \ {0} such that for all w ∈ X

〈v,w〉 + λJ ′′(u)(v)(w) = 0, (4.15)

that is, v is a solution of (Lu,λ). Thus, (4.13) is proved and we may conclude that the set Rλ∗

contains an accumulation point.

We conclude by presenting the following example.

Example 4.4. Let N > 1, A(·) = [aij(·)] be an N × N matrix as in Section 2, and consider the
following problem, depending on the function u ∈ X and on the real parameter λ > 0:

v̈i =
N∑

j=1

[
aij(t) + 2λe−|u(t)|

2(
2ui(t)uj(t) − δij

)]
vj a.e. in I, i = 1, . . . ,N,

vi(0) − vi(T) = v̇i(0) − v̇i(T) = 0, i = 1, . . . ,N,

(4.16)

(here δij is the Kronecker symbol). We are led to the study of the potential F : R
N → R defined

by

F(x) = e−|x|
2 − 1, (4.17)

which satisfies all the assumptions of Theorem 4.3. Thus, there exists λ∗ > 0 such that the set
Rλ∗ contains at least one accumulation point.
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