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Abstract: Renewable energy from thermal valorization plays a key part in today’s energy from
natural cellulosic textiles that are resourceful biomass and safe from toxicity at high temperature
treatments. The situation is opposite, when technical textiles are treated with synthetic chemical
finishes adding functionality as anti-bacterial, water repellent or flame retardant, etc. Incineration of
flame retardant textile results in possible unfavorable gases, toxic fumes and contaminated ash. Other
thermal valorization techniques like gasification would assist in avoiding the formation of additional
toxic hazards. Herein, gasification of flame retardant textile is carried out the likelihood to get quality
gas composition. For comparative analysis, flame retardant textiles, after their flame retardant ability
being revoked, are also gasified. The output gas components suggested that gasification can be
a useful thermal valorization approach for flame retardant textiles and relevantly improved gas
composition was seen in textiles with their flame retardant substrate/species being removed.
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1. Introduction

Renewable energy from thermal valorization plays a key part in today’s energy outlook and
there is not a biomass replaceable to cotton. Thousands of tons of biomass residues produced from
cotton industry with a thermal energy potential from combustion were estimated around 4000 TJ
annually [1]. With immense attention to cotton crops waste utilization, cotton products with synthetic
functionalities like technical textiles are ignored in perspective of the thermal valorization panorama.
In 2017, €181 billion turnover and €4.9 billion of investment were seen in the European textile and
clothing industry and exports of technical textiles outside EU had increased 39%, while imports reached
to 32.6% more [2,3]. Flame retardant textiles are among technical textiles, used to withstand indoor
safety regulations, consumption of which is also increased recently in the textile industry [4–6].

Flame retardants incorporated to textiles can be organic or inorganic in nature [7,8], eventually
make their way to landfills and incinerators. In the waste hierarchy, landfill being least preferable [9] and
due to leachate of flame retardant chemicals [10], incineration is used commonly. Incineration constitutes
a vast repository for toxic chemicals along with manmade or natural fibers, posing environmental
emissions [11,12]. Even in developed countries, combustion of domestic waste in barrels, open pile,
household heating stoves, primitive incinerators or fireplaces is carried on, significantly [13]. A part
from the environmental concerns raised related to flame retardants from last three decades, originated
from the potential release of toxin polybrominated dioxins, during the incineration of polybrominated
diphenyls and diphenyl ethers [14,15], sustainable waste treatment of flame retardants is yet a challenge.
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Concerns over emissions of dioxin and similar persistent organic contaminants from the incineration
of municipal solid waste (MSW) have been shown in various studies [16,17]. On the other hand,
MSW combustion from other thermal valorization technologies, especially flame retardants is rather
limited to date [12,18]. Thermal valorization technology like gasification is considered a more favorable
method compared to incineration, as it converts material (biomass/organic mostly) to multipurpose
fuel gas, known as the syngas [10,19]. The produced syngas is taken as synthesis reactant or a mere
fuel for industrial use [19,20].

Considering thermal valorization techniques for flame retardant cotton textiles, lower energy
yield in incineration is obvious, due to incomplete combustion from chemical substrate applied
on textile [6,21]. Moreover, from the combustion of flame retardant materials, the main thrust in
incineration is given to the generation of carbon dioxide and monoxides, and other components. In
previous study, an increase in heat release rate was realized by the degradation of flame retardant
chemical on textiles using advanced oxidation process [6,22]. As in gasification, the quality of syngas
is highly dependent on the content and properties of the material gasified, design and operative
conditions and the gasifier itself [19]. Optimal gasification conditions and design have been studied
previously for flame retardant textiles [10], it will be however interesting to see the content and
properties of the syngas produced from such textiles.

For flame retardant textile waste treatment, incineration is practiced as the state of art technology.
It is rare to find in literature on gasification acted as alternate disposal treatment of flame retardant
textiles. Spouted bed reactors have demonstrated advantages in terms of medium gas consumption,
pressure drop and the possibility to operate with coarse particles, compare to an equivalent bubbling
bed unit [10,19]. They have been used in bench scale units for the pyrolysis of different solid wastes [23],
besides their gasification process applications originally started from coal feed, to variant biomass
and waste plastics as well [24,25]. They have been found successful with coarse particles and also
with mixtures of coarse and fine particles [26]. They also expand the uniformity of feed particles, as
irregular can plug or starve the feed and leads to lower gas yields [27]. Characterized by their flexible
design, spouted bed reactors are capable to handle an irregular texture and particle size of the material
fed which avoids the elutriation of the bed material compared to fluidized beds. Also, with short gas
residence time, which limit tar conversion [28].

In this study, the quality and contents of syngas produced from the gasification of flame retardant
cotton textiles is evaluated. Flame retardant textiles have undergone an advanced oxidation process
(AOP) in order to degrade and removal of functional chemical substrate. A spouted bed unit is a
particular type of fluidized reactor in which the gas for the fluidification is introduced from a single
orifice placed at the bottom of the unit and, when the minimum spouting velocity is reached, it
forms a fountain with high mixing properties. This kind of fluidification conveniently, specifically
for coarse, sticky or agglomerating solids [29]. Generally, the performance of gasification depends on
the operational conditions and reactor design [30]. Therefore, a pilot scaled spouted bed gasifier as
a suitable technique is used for a potential thermochemical conversion of flame retardant cotton in
present work. In the authors’ knowledge, syngas analytics from the gasification of flame-retardant
cotton textile and after its flame retardant substrate removed with an advanced oxidation process
are not being carried out. This study portraits the promising applications of thermal valorization
technology and experimental data analysis on gasification of non-conventional textile materials.

Thermal Valorization Methodologies

Incineration or combustion, pyrolysis and gasification are generic thermal valorization
technologies, with their benefits and certain limitations. Incineration renders the material into
ashes, whereas in pyrolysis and gasification set of reactions occur to carbonaceous materials as a
thermal process to produce various by-products namely char and/or syngas. One method may favor
to the other, in terms of operative conditions like temperature, pressure and amount of oxygen,
nevertheless in reactor common reactions take place for all the methodologies [19]. Oxygen extensive
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and high-temperature exothermic reaction, combustion oxidize carbonaceous materials which yield
water and carbon dioxide, are most commonly used for heat and steam production only. Whereas,
gasification is an endothermic reaction, which generates hydrogen, methane and additional CO
mixture at high temperatures, produced by an external exothermic reaction. Temperatures lower
than gasification, pyrolysis takes place without oxygen and generates beneficial tars and a solid
carbonaceous phase (char) [10,19].

Considering the toxin and ash filtration, incineration of flame retardant textiles is rather complicated
and less beneficial as of incomplete combustion with lower energetic yield [6,31]. In addition,
incineration of flame retardants not only produces higher carbon dioxide contents, but also major
environmental hotspot for toxins near the reactors.

2. Materials and Methods

2.1. Textile Palletization for Gasification

Two cotton pellet samples for gasification were prepared [10]. The first cotton fabric with 170 g/m2

is treated with durable organophosphorus flame retardant, namely Pyrovatex CP new by Huntsman,
Wooldlands, the USA, having n-methylol dimethyl phosphonopropionamide (MDPA) as an active
flame retardant component. The second sample comprise of cotton fabric with same properties as the
first sample, but flame retardant substrate being degraded/removed from the surface of the fabric with
an advanced oxidation process [6,10].

The degradation of flame retardant substrate from cotton fabric was carried out using Fenton’s
reaction using concentrations; ferrous source (FeSO4.7H2O) 500 mL/L and 2 g/L of hydrogen peroxide
catalyst (H2O2, 98%) per liter water at pH 4. The reaction being highly oxidative, the fabric was
kept for an hour, later fabric was neutralized by dipping it in a solution of 40 g/L sodium hydroxide
(NaOH). Pellets of both samples were cut into 1 cm long, to be fed into the gasifier with a feeding rate
of 150 g/min. The prepared pellet undergoes to the chemical reaction, while the inert sand (silica sand
1.4–1.8 mm) is used to improve the fluidification and for thermal reasons.

In order to achieve continuous feeding and reach gasification temperature (>700 ◦C), there is a
need to analyze syngas components. For this research, the experiments were performed with a pilot
plant designed and built in Biella (Italy) which is capable of having material feeding of 200 g/min
to with thermal energy provide about 20 kWth [32], 3D illustration of the experimental setup can
be seen in Figure 1. The square-based unit which is the main component of the plant, has a side
dimension of 0.2 m and 1.3 m in total, with its base inclined at 60◦ angle. The chosen square-based unit
is cost effective with lower heat dissipation compared with traditional circular one (multiple square
based spouted bed for pyrolysis and gasification is under development). The prepared pellets are
continuously fed in a conical shape hopper of the reactor. From hopper, the pellets go through a rotary
valve with a specific feeding rate to the gasifier [32].
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Figure 1. Schematic illustration of utilized spouted bed gasification plant and prepared pellets.

2.2. Gasifiers Rig Temperature

Transitory thermal in gasification requires primary temperature and time duration, consider
significant parameters for the generated gas composition and its quality. To analyze the temperature
distribution inside the reactor of gasifier, the flow rate of prepared textile pellets to reach a temperature
above 800 ◦C was analyzed with thermocouples, shown in Figure 2.

The start-up of the gasification occurs in three steps: first, air and liquefied petroleum gas (LPG)
is supplied (11 kW) with sand to reach a temperature about 350 ◦C while the burner is on. Second,
combustion in the presence of air (excess of O2), wood pellets and sand (350 ◦C) to reach a temperature
up to 800 ◦C while the burner is off. At the last step, air (under stoichiometry condition) and the cotton
pellet are introduced to have the process of pyrolysis (char) and gasification (syngas). The power of the
burner was set at 11 kW with a surplus of air (λ = 1.2), without adding into the combustion chamber.
The reactor was kept empty during the preliminary test, in order to remove excessive water/moisture.
The initial increase in temperature is among TC-1 and the thermocouples, it is related to the inactive
concrete to reach the equilibrium temperature. Whereas TC-3 is located on top of the gas inlet and
TC-1 works as a downstream to the static mixer [19].
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The spouted bed gasification plant is designed to operate 200 g/min biomass with capacity of
generating 20 kW/h thermal energy. The pyramidal spouted bed reactor, is basically on past cold unit
fluid dynamics [10,19,32]. The char particles and ashes are separated from a cyclone with a continuous
streaming of material to the reactor through a scrubber. A char free gaseous stream is gathered into
an analyzing system. The production of char and its evaluation were not considered in this study.
However, operation activities under the regime permits mass balance conclusion over 95% [19,32]. The
spouted bed is composed of inert solids to improve energy and mass transfer rates and contains up
of 2 kg of silica sand inside the reactor. Air as gasifier agent is blown into the reactor at 40 Nm3/h to
fluidize the solid materials inside the reactor. The combustion chamber positioned between the reactor
and air blower, pre-heats the reactor throughout the first stage of start-up with a supply of gas [19,32].

2.3. Proximate Characterization

For accurate evaluation and enhance plant’s efficiency, proximate and ultimate analysis and
heating values of the biomass is essential. The basic chemical composition of the flame retardant
cotton and thermos-physical properties after removal of flame retardant substrate from cotton were
measured through proximate and calorimetric analysis. The moisture and ash content were determined
based on standards; ISO 18134 [33] and CEN 14775 [34]. Calorimetric and elemental analyses were
determined based on standards; CEN 14918 [35] and ISO 16948 [36], using ELEMENTAR Vario Macro
Cube and IKA mod. C200. For elemental analysis, 1mm sized samples were burnt in an oxygen/carrier
gas (helium) mixture, to convert into gaseous products of combustion and ash, using instrumental
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gas analysis. The calorific value was obtained using bomb calorimeter at the reference temperature
25 ◦C calibrated by the combustion of benzoic acid, the higher heating value (HHV) was calculated.
The percentage content of the volatile matter contained in the sample pellets was determined using
thermogravimetric analysis in a STA 449 F3 Jupiter Netzsch, from 25 ◦C to 900 ◦C with a heating rate
of 2 ◦C/min in an inert atmosphere [32].

2.4. Thermal Transitory and Syngas Characterization

The produced gas during continuous thermal gasification varies in composition, due to a number
of factors such as, the reactor temperature, the quality of the waste and the inlet gas composition.
These factors are mainly responsible for the change in syngas components. It is essential to analyze
gas directly rather to stock in sacks and analyze later, since substantial hydrocarbons may adsorb or
condensate amid the carriage, conceding the last outcomes [19]. A continuous syngas analyzer based
on a tunable filter spectroscopy (TFS), which is used to analyze the continuously produced syngas was
chosen, the schematic illustration of the TFS spectroscopy is shown in Figure 3.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 17 
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Principles of Syngas Analyzer (Tunable Filter Spectroscope)

TFS analyzer is based on suspended light absorption, equipped for percent to ppm level
fixation checking of numerous gas mixes. It comprises of a light spectrometer, a solitary component
photo-detector, a flow-through specimen cell and the supporting gadgets. The spectrometer supplies
wavelength examination with high optical throughput. The magnitude of absorption can indicate
the quality of an element of gas atoms, by a known wavelength, temperature and weight. Later this
magnitude of spectra absorption is used to compute volumetric concentrations. TFS permits constant
examination to get gas compositions every 5 seconds [19].

3. Results

3.1. Proximate Analytics

Table 1 shows the main properties of flame retardant pellets before and after the removal of
flame retardant substrate, taking pure cotton as reference (in dry basis). The moisture content of
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flame retardant cotton was found to be 2.43% and 2.63% before and after the removal of flame
retardant substrate.

Table 1. Proximate analysis and calorific values of prepared pellets for gasification.

Analytics [g/g (wt.%)] Pure Cotton Cotton with Flame
Retardant

Cotton after Flame
Retardant Removal

Moisture content 8.43 2.42 2.63

Ash 1.84 2.79 0.46

C 44.45 42.41 43.88

H 6.34 6.28 6.29

O 47.12 47.01 48.35

N 0.10 1.12 0.88

S 0.19 0.36 0.12

Higher heat value (HHV,
MJ/kg) 15.88 16.26 15.70

3.2. Thermal Transitory and Gasification Temperature

Preliminary experimentation using wood pellets was carried out with different LPG/air ratios
to create a feasibility reaction, under controlled operations (combustion, pyrolysis or gasification).
Generally, the initial stage involves the pre-heating of spouted bed, which occurs around 350 ◦C. The
furnace thermal power was set at 11 kW/h with a minimal extra-stoichiometric air and suitable LPG
flow rate [10]. Achieving this temperature assures the ignition point of prepared flame retardant
cotton pellets.

In order to attain the gasification phase, it is important to maintain high temperature. The
temperature increment should expand progressively in the gasification plant, in order to expel the
excess water/moisture present in the solid matrix. Sometimes, this operation takes up to a few hours
and ought to revise for various cycles. The pre-heating temperature inside the reactor for gasification
was reached to about 350 ◦C at 11 kW in 60 min, with a continuous but imitated addition of amounts
of wood pellets (to avoid wastage of prepared pellets). High oxidizing atmosphere (λ ≈ 1.20, the
stoichiometry ratio between gaseous fuel and oxygen) for total combustion of fed material, provides an
additional energetic boost and enthalpy of the reaction inside the rig triggering immediate temperature
increase [19]. Attaining the high temperatures, prepared flame retardant cotton pellets were fed.

As shown in Figure 4, gasification of both the fed materials, flame retardant cotton pellets
(before and after degradation) are in a regime of low-temperature gasification. The high-temperature
gasification occurs at ~>1200 ◦C, while ~<1000 ◦C is considered as low-temperature gasification. In
low-temperature gasification, air is utilized as gasifying medium, at times leads to undesired nitrogen
into the generated gas [37].
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3.3. Gas Evolution from Gasified Textile Pellets

3.3.1. Flame Retardant Cotton

The compositions of gas generated from the gasification of the flame retardant cotton fabric
(before and after the removal of flame retardant substrate) were found in-line with the sample from the
off-gas piping line. The transport between incessant sampling and gas analysis took 60 s. Later, gas
composition converted from the mass flow rate through total gas flow rate and measured component
calculations. The gas composition was analyzed for major components like CO, CO2, H2 and CH4.

During gasification, evolution of other components, the heavier hydrocarbons for instance, along
with carbon monoxide (CO) and hydrogen (H2) was utmost considered [37]. Heavier hydrocarbons
are broken further into additional components and used for various other applications. In Figure 5
volatile components CH4, ethane, acetylene, ethylene, CO, CO2, H2 and CH4 are shown from the gas
compositions evolved from the gasification of flame retardant cotton pellets.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 17 
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3.3.2. Cotton after Flame Retardant Removal

Numerous components present in the developed gas from the gasification process are linked to
different factors, which can influence the results of evolved gas. During the elevation of gasification
temperatures for instance, components such as H2O, CO2, CH4 and other low-molecular-weight gasses
continue to increase.

The combustion of flame retardant cotton with phosphorus and nitrogen elements perhaps start
with a catalyze reaction of dewatering, decarboxylation, and charring [38]. The flame retardant
substrate on cotton textile resist complete combustion. Similarly, gasifying flame retardant on cotton
hinders gas evolution and fragmented products. To obtain a quality gas composition with minimum
impurities and maximum energetic conversion efficiency, the optimized parameters and conditions for
gasification of textiles are vital.

The optimal flow rate of particular shape and sized flame retardant cotton textile was found
at 150 g/min for gasification. The flow rate was made starved occasionally to avoid overfeeding
and plugging of pellets, which resulted in an irregular gas yield at variant places. Figure 6 shows
non-constant gas yield due to rutted feeding of low-density fibrous cellulosic material into the designed
small-scale gasification pilot unit. In given context, the gas yield with averaged composition values
was calculated that will be discussed in the following section.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 17 
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Figure 7 shows the gas yield composition as a function of gasification temperature at the theoretical
equivalence ratio of two samples. Carbon dioxide (CO2) yield higher in both samples, but gets slightly
lower in the sample with removed flame retardant substrates as the temperature increased Figure 7B.
Carbon monoxide (CO) and methane (CH4) yield was higher in flame retardant cotton at initial
temperatures compared to ones with removed flame retardant, probably as of irregular feeding system.
Whereas other components of evolved gas were in lower contents on both samples, the average gas
yield components are discussed below. The concentration of acetylene (C2H2) and ethylene (C2H4)
was in slightly low quantity in both samples from low to high temperatures. Oxygen (O2) was higher
in the sample with flame retardant substrate removed.
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4. General Discussion

The moisture content in pure cotton is the highest, and the lowest in flame retardant cotton. While
after the removal of the flame retardant substrate, the moisture content increased compared to the
flame retardant cotton. The water/moisture content is important in terms of thermal valorization and
conversion efficiency of burnt material, high water content lowers the calorific value [39]. The high
moisture content and relatively high carbon value, and an increase of other volatile matter compared to
the total composition, make the samples a good candidate for oxidation and gasification processes and
have a positive impact on biomass reactivity, ultimately [40]. For proximate analysis, residue of each
sample burnt was determined as the ash, and carbon content was estimated [41]. The residue content or
ash also affects the calorific values while combustion. The higher the ash content, the lower the calorific
value and volatile matters will be. After the removal of the flame retardant substrate, decreased ash
content of the material can be seen in Table 1. In addition, the content of the volatile materials is
increased after the removal of the flame retardant from cotton, as it determines the combustion ability
of the material. A material with the high volatile matter content would enhance the calorific values,
due to the vapor combustion [39]. Moreover, a decrease in the amount of ash content, is useful to avoid
fouling, corrosion and slag formation while gasification [42].

Recently, the thermal valorization from non-conventional resources gained attention to reduce
domestic and industrial waste and save fossil fuels. Besides, waste management is getting fussier
with the increase in the amount of waste and routes of waste [43]. For instance, with a huge
increase in plastic production and consumption, only 10% of the plastic waste generated is recycled
world-wide [44]. Moreover, 20% of the world-wide plastic wastes (4 to 12 million metric tons) entered
water environment, river and marine [45]. This enhances the importance of sustainable waste treatment
techniques. Gasification is a valuable method to convert biomass and organic waste into the multiuse
gas (syngas). A customized spouted bed with an unusual geometry developed for an easier scale-up,
provides better understanding of the gasification process. Due to functional design and availability for
low gas flow rate and pressure can drop lower than bubbling fluidization, the spouted bed has better
hydrodynamic controls. Moreover, reaching a stationary thermal state is one of the major parameters
of gasification plants. The temperature inside the reactor was increased gradually in order to remove
excess water and humidity, and avoid thermal shocks and fractures in the concrete matrix.

Two stage start-up was carried out for the thermal state, initially propane was burned in a burner
(11 kW) with minimal extra-stoichiometric air, which reached at 350 ◦C in about 45 min. The wood
pellet at 50 g/min were introduced and burned to reach the actual gasification temperature (around
900–950 ◦C), ultimately in 90–110 min [32]. The prepared pellets were then fed. Figure 8 shows the
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start-up thermal profile and pre-heating stages with increases in temperature with the introduction
of pellets.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17 
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Figure 8. Thermal profile inside the gasification plant during the start-up (TC-3 (bed), TC-4 (fountain),
TC-5 (middle 1), TC-6 (middle 2), and TC-3 (middle 3)).

Cellulose textiles go through two thermal processes when being burned, namely combustion and
pyrolysis. Combustion deals the oxidation process and consumes solids, liquids and flammable gases
from the brunt material. The produced residues in the pyrolysis, which is the second thermal process,
result in heat surplus. Dewatering and charring of cellulose take place in pyrolysis, and produce water,
carbon dioxide and other solid residues. Non-volatile l-glucose (liquid) is produced from cellulosic
materials, by de-polymerization, and in the presence of oxygen decomposed l-glucose is further
oxidized (fire) to generate heat energy [46]. In opposite, the mere purpose of flame retardant is to resist
the oxidization process of the material it applied to, suppressing rapid combustion and slow down the
flame spreading. In addition, flame retardants defer incomplete combustion of material fed into gasifier,
withal results in increased auxiliary stimulants concentration [47]. In addition, pyrolysis of flame
retardant is found to produce abundant toxic organic matters, with the complex compositions which
are difficult to purify and utilize [48]. Cellulose generates flammable fragments while undergoing
thermal decomposition, ketones, aldehydes, furans, furfural, and mucleoglucosan are produced, a
flame retardants for cellulosic materials, however, acts as gas a scavenging agent, giving off fewer
gaseous products [46,49].

The starting air inflow showed stable spouting conditions at 30 m3/h in a bed of sand at 25 cm
(room temperature). Attaining air inflow 17 m3/h, which is necessary to satisfy the fluid dynamic
requirements of the reactor. Here two types of material (biomass) were considered, flame retardant
cotton and cotton after flame retardant substrate removal were tested as a function of gasification
temperature at a theoretical equivalence ratio (ER). ER being an important design parameter for a
gasifier is defined as the ratio between actual air (O2) entering to the system and the required air (O2)
to complete the stoichiometric combustion, and can be calculated by the following given function
(Equation (1)) [37].

ER =
Actual air

Stoichiometric air
= EA (1)

ER is excess air coefficient and should be >0.1, whereas the proximation of ER for thermal
valorization of a material lies in, (ER ~ 0) for pyrolysis, (0 < ER < 1) for gasification, and (ER ≥ 1)
combustion in the continuum region [50]. The stoichiometric quantity of air, which can be based on
the proximate analysis of the material fed (see Table 1). At low ER values, char is not converted into
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gases completely and give off higher tar contents. For instance, at an ER < 0.25, produced gases burn
which increase the temperature, while ER > 1.0 shows the material is combusted rather than is gasified.
Thus ER values defines the gas quality [26]. However, the preparatory system with low biomass flow
could not reach an ER lower than 0.46 ± 0.02 (Figure 7). Despite the fact, with future upgrades to the
solid feeding system, it could reach an even lower ER. Char not being the main product of spouted
bed gasification, was not considered as it could not be obtained in pure gasification conditions ER >

0.46 ± 0.02 and a feed rate at 150 g/m. Nonetheless, the preparatory study of flame retardant cotton
after flame retardant substrate removal as biomass feed, gasified at lower ER value compared to flame
retardant cotton (0.48 ± 0.05). The contribution of ER at certain temperature reduces the mass fraction
of CO, at the stake of increased CO2 [51], which can be seen clearly in Figure 7. At lower ER values,
the material produces more CO to the system at the expense of CO2, whereas high ER values convert
CO into CO2 [52]. Gas yield of other contents, H2, CH4 and O2 was high in one and low in the other
sample, this fluctuation of curves is possibly due to air flow taken as a variable and its average was
taken compute ER or shape variation in prepared textile pellet and wood chips. Such phenomenon has
also been found to affect the experimental results [51].

Table 2 shows a moderate variation in gas components evolved from gasification of flame retardant
cotton and after the removal of flame retardant substrates with Fenton’s reaction. With a manual
fluidification of flame retardant cotton textile pellets, initiated by feeding wood pellets to attain the
gasification temperature this perhaps led to irregular gas composition. Beds of the spouted bed gasifiers
are made up of fine particles, where produced gas instead ascend through predefined spout in the
center, goes through whole bed in a big bubble form [26]. Which is known as slugging and generally
cause instability in spouted beds but can be refined with fountain alterations [53]. The irregular gas
evolution outcomes with mass flow rate are obvious in Figure 6. However, thermal valorization by
gasification of flame retardant textile products is achievable under standard and controlled conditions.

Table 2. Averaged gas composition values evolved from the gasification.

Cotton Pellets
Flow Rate

(g/min)
Temperature (◦C) Gas Composition % (v/v)

Annulus Fountain CH4 CO CO2 H2

Flame retardant 150 750 983 1.8 12.2 15.8 1.8
After flame retardant

substrate removal 150 781 1064 0.8 12.1 15.33 1.85

The values were calculated under the conditions of: silica sand (2 L), fluidization with air at 17 Nm3/h and bed
inert material.

Nevertheless, the average reactor temperature (annulus) for flame retardant cotton after removal
of flame retardant substrate is higher, posing improved combustion/gasification. The cotton textile
treated with organophosphorus flame retardant has lower decomposition temperatures because of the
catalyzed dehydrations by phosphorus acid on cellulose [54]. This occurrence leads to the incomplete
combustion of cellulosic materials with organophosphorus substrates. Low gasification temperature,
which is due to organophosphorus substrate of flame retardant has phosphorus and nitrogen active
elements, affects pyrolysis reactions of cellulose while burning. After the removal of flame-retardant
substrate from cotton, the gasification temperature increased.

The flame retardant substrate decomposes and generates phosphoric acid, later it polymerizes
to polyphosphoric acids at lower temperatures. The acids catalyze the hydroxyl groups of cellulose
to dehydrate and carbonize, limiting the pyrolysis reactions [46]. So the production of water, carbon
dioxide and other residues increases. At the same time, the production of combustible fragments
particularly ketone, aldehyde, ether and ester is reduced. It also affects the mass to energy conversion,
as flame retardant has the tendency to lower the decomposition temperature of substrate, favoring
carbonization instead de-polymerization of the macromolecules, ultimately results in greater char
yield. It is required fewer volatile materials for gas phase combustion [23]. The removal or degradation
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of flame retardant substrate from cellulose alters the pyrolytic properties, reverting to its original
cellulosic properties.

The conversion of material or biomass by fractional oxidation into a gas composition, consisting
of CH4, H2, CO and CO in gasification also requires oxidants, which can be either stream, air, O2,
and CO2 or their mixtures sometimes. The oxidant type is considered as a main parameter in gas
composition. Air is the mostly used as a gasifying agent for its zero cost. Steam is also preferred for its
advantages as H2 content in produced syngas and increased heating value [55].

5. Conclusions

Evidently, utilization of flame retardants in the textile industry to suppress rapid combustion is
increasing each year. Their waste treatments are hindered by leachate if landfilled and less energetic
yields due to incomplete combustion when incinerated. Considering the thermal valorization and
resource depletion, technical textiles potentially can be used instead untreated cellulosic biomass in
gasification. In the case of flame retardant cotton pellets, the gasification temperature stabilized at
750 ◦C annulus and 983 ◦C fountain in the reactor. After the removal of flame retardant, the gasification
temperature increased to 781 ◦C and 1064 ◦C annulus and fountain respectively. The increase in the
calorific values and syngas gas components was seen as well. Proximate analysis showed relatively
high volatile contents and increased moisture, and lowered carbon concentrations compared to flame
retardant cotton samples. The calorimetric analysis of samples, retaining the HHV values after
degradation of flame retardant substrate illustrate its usability instead of pure cotton. Furthermore,
prior to valorization, degradation and removal of flame-retardant substrate from cellulosic textiles
were found to enhance gasification parameters. Having said that, detailed analytical studies on tar
and vaporization of flame retardant substrates during thermal valorization are needed, which seems
missing in literature.
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