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ABSTRACT

We have applied our two-grid genetic-algorithm Rayleigh-
wave full-waveform inversion (FWI) to two actual data sets
acquired in Luni (Italy) and Grenoble (France), respectively.
Because our technique used 2D elastic finite-difference model-
ing for solving the forward problem, the observed data were 3D
to 2D corrected prior to the inversion. To limit the computing
time, both inversions focused on predicting low-resolution,
smooth models by using quite coarse inversion grids. The wave-
lets for FWI were estimated directly from the observed data by
using the Wiener method. In the Luni case, due to the strong
dispersion effects on the data, to strengthen the inversion, enve-
lopes and waveforms were considered in the objective function
and an offset-marching strategy was applied. Though no a priori
information was exploited, the outcomes of the Luni and
Grenoble data inversion were fair. The predicted Luni VS model

indicates a strong velocity increase from approximately 3 to
6 m, and velocity inversions have been detected at approxi-
mately 2 and 9 m depths. Analyzing the dispersion spectra, it
results that the predicted Luni data reasonably reproduced the
waveforms related to the fundamental mode and, likely, a small
part of those related to the first higher mode. Concerning the
Grenoble example, the predicted VS model coincides reasonably
well with the long-wavelength structures presented in the VS

profiles obtained from nearby boreholes. The data recon-
struction is generally satisfactory, and when mismatches occur
between the predicted and observed traces, the phase differences
are always within half-periods. The fair inversion outcomes
suggest that the predicted Luni and Grenoble models would
likely be adequate initial models for local FWI, which could
further increase the resolution and the details of the estimated
VS models.

INTRODUCTION

Multichannel analysis of surface waves (predominantly Rayleigh
waves) is a technology that has brought major advancements in the
reconstruction of S-wave velocities VS of shallow layers (among
others, Park et al., 1999; Xia et al., 1999; Bohlen et al., 2004; Socco
and Strobbia, 2004; Cercato, 2009; Maraschini et al., 2010; Socco
et al., 2010). Most of the used techniques assume a 1D-layered
model and invert the dispersion curve of the fundamental mode,
which has to be identified in the dispersion spectrum of the data.
In recent years, Rayleigh-wave full-waveform inversion (FWI)

has been introduced (Schäfer et al., 2013; Tran et al., 2013; Groos

et al., 2014; Masoni et al., 2014, 2016) with the purpose of taking
into account the whole waveform information present in the re-
corded data and to relax some of the assumptions inherent in the
dispersion curve inversion. For instance, this new approach natu-
rally supports the prediction of 2D or even 3D VS models. However,
to date, there have been only a few applications to actual Rayleigh-
wave data (Schäfer et al., 2013; Tran et al., 2013; Groos et al.,
2017). As a matter of fact, because of the strong nonlinearity of
Rayleigh waves (Forbriger, 2003a, 2003b; Rix, 2004; Brossier et al.,
2009; Schäfer et al., 2013), when a suitable initial model is not
available, local, gradient-based Rayleigh-wave FWI could get
trapped into local minima. A suitable initial model is supposed
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to contain the long-wavelength structure of the investigated near-
surface zone. It should also limit the cycle skipping between the
observed and predicted data, particularly in the portions of data
containing the fundamental mode. In actual cases, such strict re-
quirements may be difficult to satisfy, especially when a priori in-
formation is not available or is too scarce.
To deal with this issue, in the companion paper (Xing and

Mazzotti, 2019), we propose a new Rayleigh-wave inversion method,
which we named two-grid genetic-algorithm Rayleigh-wave FWI.
The proposed method makes use of a 2D elastic finite-difference
modeling (FDM) code (Thorbecke and Draganov, 2011; Xing
and Mazzotti, 2016) as the modeling engine and uses a global opti-
mization technique, a genetic algorithm, as the inversion tool. The
genetic algorithm, instead of being directed by local gradients of the
objective function, stochastically explores a wide model space
(Stoffa and Sen, 1991; Sen and Stoffa, 1992; Mallick, 1995, 1999).
As a consequence, compared with gradient-based optimization
techniques, it is much less vulnerable to local minima. In our in-
version workflow, to further tackle the local minimum problem,
we can choose to use a frequency-marching strategy (Bunks et al.,
1995) and an offset-marching strategy, and the data misfit compu-
tation can include the waveforms, their envelopes, or both. To in-
crease efficiency, we have implemented a two-grid scheme (Sajeva
et al., 2014, 2016; Aleardi and Mazzotti, 2017; Mazzotti et al.,
2017), which turns out to be indispensable for the practical appli-
cation of our Rayleigh-wave inversion method. In fact, an exponen-
tial law links the number of unknowns to the computational time
required by the genetic algorithm (Bellman, 1957); thus, we use a
coarse grid in the inversion, with the number of unknowns propor-
tional to the number of grid nodes, to balance between computa-
tional time and resolution of the predicted VS model. Instead, a
fine grid is used in forward modeling to guarantee the reliable com-
putation of Rayleigh waves (Xing andMazzotti, 2017a, 2018). Each
predicted coarse-grid model is converted into its fine-grid equiva-
lent by means of bilinear interpolation. To illustrate the feasibility of
the proposed method, three synthetic examples with rather complex
reference models have been considered. Through the examples, we
have shown that, even in the case of null a priori information, our
method was able to fairly predict the long-wavelength structures of
the reference models, along with the quite satisfactory reconstruc-
tions of the “observed” data. However, several facilitating factors
were present in the three synthetic examples: perfectly known
wavelet, no (or limited) noise contamination, and the observed data
and the predicted data were computed with the same 2D elastic
FDM code. In the real world, these conditions are never met; thus,
additional considerations need to be taken in the actual application
of the proposed method.
In actual cases, first, to match the seismograms generated by the

2D forward modeling, observed data must be 3D to 2D corrected for
compensating the different spreading factors. To this end, we use
a correction algorithm proposed by Forbriger et al. (2014). Follow-
ing Forbriger et al. (2014) and Schäfer et al. (2014), the traces at
the near offsets, which are defined as the offsets shorter than the
estimated dominant wavelength of the observed Rayleigh waves
(Schäfer et al., 2014), are corrected by means of the single-layer
transformation, whereas the rest of the traces are compensated via
the multilayer transformation. Second, the wavelet needs to be es-
timated for actual FWI and the proper estimation is still an ongoing
topic that draws much interest. In the two inversion cases that will

be presented, a significant effort was devoted to wavelet estimation,
using different methods and performing several inversion tests.
Some details will be given when discussing the first example on
the Luni data.
In the inversion, we use elastic modeling, which is merely an

approximation of the true anelastic wave propagation. Although the
elasticity assumption is common for many Rayleigh-wave inversion
approaches, there have been studies on the impact of neglecting
attenuation on gradient-based Rayleigh-wave FWI (Groos et al.,
2014; Dokter et al., 2017). Xing and Mazzotti (2017b) carry out
an inversion test considering a synthetic model with S-wave quality
factors as low as 3.75 and observe that neglecting such strong
attenuation led indeed to the degradation of the model prediction,
especially for what concerns the prediction of the velocity values,
but the dominant subsurface shapes and velocity inversions were
still predicted by our stochastic inversion method. On the other
hand, adopting viscoelastic forward modeling (as performed by
Bohlen, 2002) in our inversion scheme would cause a significant
increase in computational time, due to the use of more complex
modeling equations, the stricter requirements for guaranteeing the
modeling stability, such as the demand for smaller spatial intervals
in the modeling, and possibly the need of including quality factors
as unknowns. Therefore, with our inversion approach, we know that
the predicted velocities may be imprecise and affected by an error
whose magnitude depends on the severity of attenuation, but the
velocity trends should be still fairly predicted. Thus, other less com-
puter intensive inversion approaches, starting from the predicted
long-wavelength model, may follow and be able to take into ac-
count the quality factors, either as unknown or, more likely, as a
priori information.
In the following sections, we illustrate the inversion of two field

data cases. The first data set was acquired near the archaeological
site of Luni (Italy). The second data set was acquired in Grenoble
(France) in the framework of the InterPACIFIC project documented
in Garofalo et al. (2016a, 2016b).
In each case, first, we will describe the data acquisition and the

few processing steps that we performed and, next, we will show
how we dealt with the wavelet estimation. Then, the inversion spec-
ifications, such as the chosen objective function, genetic-algorithm
controlling parameters, frequency- and/or offset-marching scheme,
modeling and inversion grid sizes, and so forth, will be given.
Finally, we will illustrate and discuss the inversion outcomes. In
both cases, no a priori information was used to guide the inversion;
that is, the models of the starting population were randomly distrib-
uted within search ranges constant with depth and lateral distance.
Coarse inversion grids were used with the aim of deriving long-
wavelength structures of the subsurface.

LUNI DATA INVERSION

Luni data acquisition and processing

The Luni field data were acquired in March 2017 in an area with a
horizontal topographic surface. A total of 36 vertical-component
geophones, 4.5 Hz natural frequency, were laid out inline at 1 m
intervals. The energy source was a seismic gun. Three shot gathers,
of which one was split-spread and two were off-end, were used in
our FWI. The maximum offset of the split-spread and the off-end
shot gathers are 17.5 and 38 m, respectively. The shot gathers are
displayed in Figure 1 (one trace every two has been plotted) and
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show a general good quality, although at early times, they are con-
taminated by a strong air-blast event, which likely interferes with
the Rayleigh waves.
The few processing steps we carried out are geometry assign-

ment; air-blast attenuation; band-pass filtering with corner frequen-
cies of 5, 8, 25, and 30 Hz; top and bottom muting to remove the
pre-first-break noise and to isolate the Rayleigh wavetrain; and 3D
to 2D correction (Forbriger et al., 2014).
The air blast was attenuated by applying an inverse amplitude

scalar to the air-blast energy. The inverse amplitude was estimated
dynamically based on the average amplitude of the signals in the
windows above and below the air-blast event.
The choice of 5–8 Hz as the low corner frequencies of the band-

pass filter was dictated by the results of a frequency analysis that
showed that at less than 5 Hz, no significant Rayleigh-wave energy
is present. The choice of the high corner frequencies (25–30 Hz)
was taken to limit the computing time to acceptable levels, although
Rayleigh wave energy is also present at higher frequencies.
The top and bottom mutes were applied to remove noise, such as

pre-first-break noise and possible seismic gun baseplate oscilla-
tions. It should be noted that the very same mute functions were
also applied to all of the predicted seismograms, before the com-
putation of the data misfit.
The three shot gathers after the processing are presented in

Figure 2. The strong air blast has been well-attenuated. The

Rayleigh-wave events are clearly recognizable and show a high de-
gree of dispersion, aggravating the complexity of the observed
waveforms and thus the difficulty of the inversion (Bunks et al.,
1995; Cercato, 2011), especially if no a priori information is
exploited.

Luni wavelet estimation

Wavelet estimation is essential for FWI due to its direct impact on
the data simulation in the forward modeling and consequently on
the computed data misfits. We tried different ways to estimate the
wavelet from the field data, considering only the first-break body
waves, or taking into account the whole data, and using different
estimation approaches, such as the Wiener method, the Hilbert
transform technique, and the method based on singular-value de-
composition (SVD). The Wiener method and the Hilbert transform
technique estimate the wavelet from the spectrum of the data and
assume a minimum phase (see, e.g., Claerbout, 1985). Instead, the
SVD approach computes the eigenimages for the wavelet estima-
tion (Ulrych et al., 1988). All of the methods that we tried estimate
the wavelet from the seismic data only and do not make use of any,
yet approximate, subsurface model. At present, given that we do not
consider any a priori information about the model, estimating the
wavelet from the seismic data only is a necessity. However, because
models are being predicted along the inversion, at certain steps of
the evolution they could be used in a model-based wavelet estima-
tion approach to improve the wavelet. Or even, the wavelet updates
could be considered as additional unknowns in the inversion. These
possible improvements need to be further investigated for their
inclusion in a stochastic inversion procedure such as the one we
propose.
Finally, the wavelet we chose for the inversion was an average of

the wavelets estimated trace by trace on the full data set by using the
Wiener method. In fact, this wavelet led to reasonable results and
better data matching in the inversion and resulted as very similar to
the wavelet estimated through SVD on the data of a nearby roll-
along data set, although the SVD approach does not require the min-
imum phase assumption.
Figure 3 shows the trace-by-trace estimated wavelets that are

rather similar among each other, especially at early times. The
weighted mean of these wavelets yields the final wavelet used
for the inversion. Higher weights were given to the near-offset
wavelets. The weights are plotted in Figure 4.
Figure 5 also shows the wavelet (in red) estimated using SVD on

the near-offset traces of a roll-along data set acquired by using the

Figure 1. Raw seismic data acquired in Luni, Italy. One of every
two traces is plotted. The dashed cyan lines delimit the left, middle,
and right shot gathers. The seismograms have been trace-by-trace
normalized. A strong air-blast event (pointed out by the magenta
arrow) is present just below the first breaks (indicated by the blue
arrow) due to the use of a seismic gun as the energy source. Most of
the clearly shown events in the seismograms are Rayleigh waves,
e.g., the one pinpointed by the red arrow.

Figure 2. The Luni field data of Figure 1 after processing and the
3D to 2D correction (Forbriger et al., 2014). The maximum fre-
quency is 30 Hz. The dashed cyan lines delimit the left, middle,
and right shot gathers. The seismograms have been trace-by-trace
normalized. Most of the clearly shown events are Rayleigh waves.

Figure 3. Wavelets estimated trace by trace from the Luni field data
by the Wiener method. The dashed cyan lines delimit the wavelets
estimated from the left, middle, and right shot gathers. The wavelets
are very similar among each other, especially at the early times.
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same energy source and receivers at the same site on the same day
as the acquisition of the data input to the inversion shown in
Figure 1.
Though the different estimation methods and the different

amount of data are used for the estimation, the two wavelets in
Figure 5 are quite similar, further corroborating the use of the wave-
let (in black) in Figure 5 as the input wavelet for the Luni data
inversion.

Luni data inversion specifications

We inverted for VS, P-wave velocities VP, and densities rho.
Based on the scientific literature (among others, Xia et al., 1999)
and our experience on synthetic data inversion, VP and rho are to
be considered more as dummy parameters due to their much lower
influence on Rayleigh waves compared to VS.
The genetic-algorithm search ranges for VS, VP, and rho were

constant with depth and laterally and wide enough to include rea-
sonable velocity and density values for shallow sedimentary layers.
Sequentially for VS, VP, and rho, the search range was set as
100–500 m∕s, 600–2000 m∕s, and 1500–1920 kg∕m3. A further
constraint is given by setting the admissible VP∕VS ratios between
1.5 and 10.

Based on the defined velocity search ranges and the maximum
frequency of the input data, the fine modeling grid, which guaran-
teed 20 points per minimum wavelength, was built with 31,913
nodes, i.e., with a grid spacing of 0.125 m. Under the two-grid
scheme, we constructed the coarse inversion grid with 45 nodes,
which resulted in 45 × 3 ¼ 135 unknowns. Because no information
was available to suggest velocity variations, except that the vertical
velocity variations should be greater than the horizontal variations,
a rectangular 10.25–1.5 m inversion grid was used. The coarseness
of the inversion grid indicates that the predicted model will be a
“macro” model with only the long-wavelength structure of the in-
vestigated zone reproduced.
We implemented the possibility of using different objective func-

tions and different strategies of inversion, such as frequency march-
ing, time stripping, and offset marching. In the specific example of
Luni, the objective function (χ) that we used is composed of two
parts: The first takes into consideration the waveform of the data,
and the second considers the envelope of the data:

χ ¼
PNx

nx¼1

PNt
nt¼1 jDw

nt;nx − Pw
nt;nx j

PNx
nx¼1

PNt
nt¼1 jDw

nt;nx j
þ α

×

PNx
nx¼1

PNt
nt¼1 jDe

nt;nx − Pe
nt;nx j

PNx
nx¼1

PNt
nt¼1 jDe

nt;nx j
; (1)

where D and P are the trace-by-trace normalized observed and pre-
dicted data, respectively, superscripts w and e denote the waveform
and the enveloped traces, respectively, nt and nx are the time and
the trace sampling index, respectively, and Nt and Nx indicate the
maximum number of time samples and traces, respectively. The
symbol α is a predefined weight that can be varied with generations.
According to our tests, equiweighting the waveform misfit and the
envelope misfit generally led to reasonable inversion results. Thus,
in the Luni case, α has been kept constant and is equal to one. As is
well-known, the use of enveloped traces (Chi et al., 2014; Wu et al.,
2014) further alleviates the cycle-skipping problem and helps the
inversion converge toward more promising zones of the model
space, especially at the early generations of the genetic-algorithm
evolution. The inversion of the enveloped traces is less dependent
on the estimated input wavelet.
It should be noted that in equation 1, no regularization terms in

the model space are present because it would require the knowledge
of at least some characteristics of the model, a case we are not con-
sidering here. However, regularization in the model space was
implicitly applied in our inversion by the smoothing of the model
through bilinear interpolation from the coarse inversion grid to the
fine modeling grid.
Offset marching was also used in the inversion, starting from

short offset (up to 10.5 m) and then including longer offset traces
every 40 generations until reaching the maximum offset of 38 m.
As shown in Figure 2, the dispersion of the Rayleigh waves at the

near offset is not fully developed yet. Consequently, the near-offset
traces are much less complex than those at the far offset; thus, we
can suppose that including in the inversion the short-offset traces
only, the corresponding error function is less complicated as well.
On the basis of the experience acquired in our tests with synthetic

data, the parameters of the genetic algorithm optimization were set
as follows: maximum generation, 200; number of individuals, 2000;
number of subpopulations, 5; selection rate, 0.8; reinsertion rate,

Figure 4. The weights applied to the wavelets displayed in Figure 3
for estimating the final wavelet used in our Luni data inversion.
Higher weights were given to the near-offset wavelets.

Figure 5. The wavelet computed as the weighted mean of the wave-
lets presented in Figure 3 (the black curve). The wavelet obtained
from a roll-along data set through the SVD approach (the red curve).
Though the two wavelets have been estimated by using different
techniques, they are rather similar to each other.
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0.6; and mutation rate, 0.1. The selection pressure was increased
from 1 to 2 along with generations. The first migration happened
at the 30th generation. Then, it occurred every 20 generations. The
migration rate was 0.2. This setting of parameters was also adopted
for the Grenoble data inversion that will be discussed later.

Luni data inversion results

Figure 6 exhibits the evolution of the minimum and the mean data
misfit. Within each offset-marching phase, the decrease in the data
misfits is evident. The data misfits in equation 1 have been normal-
ized separately within each offset-marching step; thus, the actual
misfit values cannot be compared among different steps. However,
at generations in which the inclusion of new traces in the observed
data occurred, a sudden increase in the data misfit may truly take
place. At the last generations within each offset range, the improve-
ment of the minimum data misfit was very slow and converged to
the mean data misfit, indicating that continuing the inversion would
lead to negligible improvement.
Figure 7 shows the predicted VS macromodel showing smooth

velocity variations, characterized by a significant velocity increase
between approximately 3 and 6 m and by velocity inversions at
approximately 2 and 9 m.
Figure 8 shows the mean of the VS models at the last generation of

the inversion. This model is encouragingly quite similar to the pre-
dicted model in Figure 7. The long-wavelength structure reconstructed
by the inversion (Figures 7 and 8) is predominantly one dimension.
When the lateral velocity variations in the subsurface are not very

significant, the smoothing of the model, the coarseness of the inver-
sion grid, and the fact that genetic-algorithm optimization is driven
by average data misfits computed over all the shots, often render mac-
rosubsurface models with a principally 1D structure.
Figure 9 shows the evolution of the predicted VS model with off-

set marching. In particular, the models at the last generation of the
second, third, and fourth offset-marching phases are shown in
Figure 9a–9c, respectively. The predicted model in Figure 9a is al-
ready very similar to the shallow part of the final model in Figure 7,
down to a depth of approximately 4 m. Figure 9b indicates that

Figure 6. The evolution of the minimum (black) and mean (red)
data misfit in the Luni data inversion, with offset marching. The
annotations in blue bounded by the dashed cyan lines indicate
the absolute-offset ranges of the inverted data in the offset-marching
scheme. In each offset-marching phase, the data misfits decrease
evidently.

Figure 7. The VS model predicted from the Luni data inversion, in
which offset marching has been applied. The model shows a strong
velocity increase from approximately 3 to 6 m. Additionally, veloc-
ity inversions at approximately 2 and 9 m have been detected.

Figure 8. The mean of the VS models at the last generation of the
Luni data inversion, in which offset marching has been applied.
This model is encouragingly quite similar to the model shown in
Figure 7.

Figure 9. The predicted models at the last generation of the second,
third, and fourth offset-marching phase in the Luni data inversion.
The inverted traces were within the absolute offset ranges of (a) 6.5–
15 m, (b) 6.5–21 m, and (c) 6.5–30 m.
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extending the offset range of the data to 21 m, the inversion has
reconstructed deeper parts (down to 6 m) of the model. Further-
more, extending the offset range of the traces considered in the
inversion to 30 m (Figure 9c) further deepened the reconstructed
model to 7.5 m. That is, the offset marching approach from near
offset to far offset progressively reconstructs deeper parts of the model.
The predicted seismograms (the red traces), overlaid on the ob-

served data (the black traces), are displayed in Figure 10. The blue
lines in the figure roughly separate the bottom part, which has been
quite fairly predicted, from the top part in which the data predic-
tion was not satisfactory. In fact, the top part of the predicted data
shows extremely small amplitudes compared with the observed data

amplitudes. To search for a possible explanation of this mismatch,
we carried out an analysis of the dispersion spectra of the whole
seismograms and of the two parts separately. The dispersion spectra
were computed using the linear Radon transform followed by the
temporal Fourier transform.
Sequentially from Figures 11a, 12, and 13b, the dispersion spec-

tra are shown for the whole observed data, the whole predicted data,
the bottom part of the observed data, the bottom part of the pre-
dicted data, the top part of the observed data, and the top part of the
predicted data. The decibel scale is used to represent the amplitudes.
The dashed black curves superimposed on these figures correspond
to the dispersion curves of the fundamental and the first higher
mode computed on the pseudo-1D VS model obtained as the mean
of the predicted VS model of Figure 7.
Figure 11a suggests that the main energy in the whole observed

data corresponds to the fundamental mode. The energy related to
the first higher mode is also present but with lower amplitudes.
Figure 11b shows that our inversion mainly predicted the funda-
mental-mode waveforms, whereas the predicted amplitudes of
the first higher mode were so low as to be invisible in this plot.
Using Figure 11a as the reference, Figure 12a and 12b confirms
that almost all of the energy in the bottom part of the observed data
coincides with the fundamental mode, and that has been fairly re-
produced by the bottom part of the predicted data. Coming to the
analysis of the top parts, Figure 13a reveals that most of the energy
of the observed data is associated with the first higher mode,
although some energy of the fundamental mode is present but it
is less dominant. On the contrary, as unveiled in Figure 13b, only
part of the energy connected with the first higher mode is predicted
and some energy predicted by the inversion still lies around the
fundamental mode.
In summary, the analysis of the dispersion spectra tells us two

facts about the results of the Luni data inversion. First, we have

Figure 10. The predicted (red) and observed (black) Luni data in
the inversion, in which offset marching has been applied. The
dashed cyan lines delimit the left, middle, and right shot gathers.
The seismograms have been trace-by-trace normalized. According
to the dispersion spectra that will be presented from Figure 11 to
Figure 13, waveforms mainly associated with the fundamental
mode, which is primarily visible below the blue lines, have been
fairly predicted. The prediction of the events above the blue lines
has not been as satisfactory, particularly for the too-low amplitudes.

Figure 11. The dispersion spectra of (a) the observed and (b) the
predicted Luni data presented in Figure 8. The dashed black curves
represent the dispersion curves of the fundamental and the first
higher mode computed on the 1D model obtained as the mean
of the predicted 2D Luni model shown in Figure 7. As shown in
the figure, most of the energy in the observed and predicted data
is related to the fundamental mode.

Figure 12. The dispersion spectra of (a) the observed and (b) the
predicted data below the blue lines of Figure 10. As in Figure 11,
the dashed black curves represent the fundamental and the first
higher mode. As shown in the figure, the portions of the observed
and predicted seismograms mainly correspond to the fundamental
mode, which has been fairly predicted.
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fairly predicted the seismogram portions that approximately corre-
spond to the fundamental mode in the observed data. Second, the
mismatched waveforms in the top parts of Figure 10 are mostly re-
lated to the higher modes. These mismatches are mainly amplitude
mismatches caused by the too-low amplitudes of the predicted
waveforms, although phase mismatches are also present.
The same Luni data have been used to perform other inversion

tests, changing the inversion strategy but keeping constant the in-
version grid and all the other controlling parameters of the genetic
algorithm. For instance, in one test, we applied offset and frequency
marching (for instance, as is done with synthetic data, by Masoni
et al., 2016). The predicted model and data are presented in
Figures 14 and 15, respectively. They are very similar to the already
presented inversion results in Figures 7 and 10. In another test, we
split the observed data along the blue lines in Figure 10 into a top
part, containing the higher velocity events, and a bottom part, in-
cluding the lower velocity events, and the two parts were separately
included in the objective function of equation 1 and differently
weighed. Again, we obtained very similar results. At last, it was

never possible to satisfactorily match both parts, and the bottom
part, mostly dominated by the fundamental mode, was always better
matched than the top part, resulting in very similar model and data
predictions.
One possible explanation for the much lower quality of the pre-

diction of the higher modes energy is the too-coarse grid used in the
inversion, which only allows for the reconstruction of a smooth
model. In fact, as shown by many authors (among others, Yilmaz,
2015), sharp velocity contrasts lead to strong dispersion and high-
energy higher modes, which cannot be predicted by using a coarse
inversion grid.
However, the smooth model of Figure 7 fairly explains large parts

of the observed waveforms, particularly those associated with the
fundamental mode. A further gradient-based Rayleigh-wave FWI
starting from the model in Figure 7 might render more details of
the Luni area. In fact, based on synthetic tests we carried out making
use of IFOS2D, an FWI code made available by the toolbox for
applied seismic tomography project (Bohlen, 2002; Köhn et al.,
2012; Groos et al., 2014), even in the case in which the genetic
algorithm FWI has already attained a very good matching between
the observed and predicted data, gradient-based FWI, because of the
use of a much finer inversion grid, to the inclusion of higher
frequencies in the observed data and to its much more rapid con-
vergence, is able to increase the details and to sharpen the contrasts.

GRENOBLE DATA INVERSION

Grenoble data acquisition and processing

The Grenoble seismic data set was acquired in September 2013 in
the framework of the InterPACIFIC project (Garofalo et al., 2016a,
2016b). Borehole data were also acquired, which now are a refer-
ence to check our inversion results. The data acquisition was carried
out on a flat topographic surface using 48 vertical-component geo-
phones with 4.5 Hz natural frequency, laid out inline at 1 m inter-
vals. The energy source was an 8 kg sledgehammer. Analogously to
the previous example, we used three shot gathers in the inversion:
One was split-spread, and two were off-end. The maximum offset
of the split-spread and the off-end shot gathers are 23.5 and 51 m,
respectively. The three shot gathers are shown in Figure 16. Differ-
ent from the Luni data, no visible air-blast event is present; thus,
no specific processing for its removal is needed. Therefore, theFigure 13. The dispersion spectra of (a) the observed and (b) the

predicted data above the blue lines of Figure 10. The dashed black
curves are the same as those shown in Figures 11 and 12. As shown
in the figure, most of the energy in the observed data corresponds to
the first higher mode, which has been only partially reproduced by
the predicted data.

Figure 14. The model predicted from the Luni data inversion, in
which the frequency and the offset marching have been applied.
This result is similar to that displayed in Figure 7.

Figure 15. The data predicted (the red traces) from the Luni data
inversion, in which the frequency and the offset marching have been
applied. The black traces are the observed data. The dashed cyan
lines delimit the left, middle, and right shot gathers. The blue lines
have been drawn manually to separate the bottom part that has been
well-predicted from the top part that has not been predicted as sat-
isfactorily. The seismograms have been normalized trace by trace.
This result is similar to that displayed in Figure 10.
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processing that we carried out included: geometry assignment;
band-pass filtering with corner frequencies 5, 8, 20, and 30 Hz;
top and bottom muting to remove the pre-firstbreak noise and to
isolate the Rayleigh wavetrain; and 3D to 2D correction. The rea-
sons that lead to this choice of the band-pass filter were the same as
in the Luni case; that is, no coherent Rayleigh waves were evident
below 5 Hz and we kept the highest frequency to 30 Hz to limit the
forward-modeling computing time.
The processed data are displayed in Figure 17. Compared with

the processed Luni data (Figure 2), the dispersion effects are much
less pronounced and the Rayleigh wavetrain is more compact.

Grenoble wavelet estimation

The wavelet estimation process was the same as that in the Luni
case. We first estimated a wavelet from each trace of the seismic
data via the Wiener method. Then, the final wavelet to be used
in the inversion was obtained as the weighted mean of the wavelets
estimated trace by trace. Same as the Luni case, the weights honored
more the near-offset traces. The final wavelet is displayed in Fig-
ure 18, and the same comments made for the Luni data wavelet
estimation do apply to this case as well.

Grenoble data inversion specifications

Like the Luni case, no a priori information was exploited in the
inversion for the VS, VP, and Rho values at the nodes of the coarse
grid. The search range for each unknown was set constant with
depth and with lateral distance and was wide enough to include
what we thought were reasonable values. Sequentially for VS,

VP, and rho, the search range was 200–500 m∕s, 600–2000 m∕s,
and 1500–1920 kg∕m3.
Based on the minimum velocity defined in the search range and

on the maximum frequency to be modeled, we constructed a fine
modeling grid of 26,015 nodes, corresponding to a grid spacing
of 0.25 m, which guaranteed to include 20 points per minimum
wavelength in the finite difference (FD) computation. Under the
two-grid scheme, we built a coarse inversion grid containing 65
nodes, resulting in 65 × 3 ¼ 195 unknowns. Because no a priori
information was used to suggest the velocity variation, a rectangular
13.375–2.5 m inversion grid was constructed. The large spacing of
the coarse grid again implies that the sought VS models would only
reproduce the smooth, long-wavelength structure of the investi-
gated zone.
Given the relatively “simple” waveforms in the observed Greno-

ble data, compared to those of the Luni example, in the inversion,
we neither considered envelope traces nor applied offset marching.
Thus, the data misfits were calculated just using the L1 norm of the
observed and the predicted waveforms; that is, we used only the
first term of equation 1. Frequency marching was adopted with the
following scheme: We started the inversion from 5 to 15 Hz band-
pass filtered data and then every 40 generations, a band of 5 Hz was
added to the inverted data until the frequency band expanded from 5
to 30 Hz. A final additional run of 40 generations was carried out
with the full-band 5–30 Hz data.
The settings of the genetic-algorithm control parameters were

exactly the same as those given in the Luni case. In particular, the
maximum number of generations was 200, and the number of indi-
viduals per generation was 2000.

Grenoble data inversion results

Figure 19 shows the evolution of the minimum and mean data
misfit. Similar to the Luni case, comparing the data misfits calcu-
lated in different frequency-marching phases has no use, due to the
change of the normalization term in the objective function after the
addition of new frequencies.
Inside each frequency-marching phase, the decreases in the data

misfits are evident. In the last generation, the minimum and the cor-
responding mean data misfits are very close, and the decreases in
the data misfits are quite slow. It is mainly due to the loss of the gene

Figure 16. Raw seismic data acquired in Grenoble, France. One of
every three traces is plotted. The dashed cyan lines delimit the left,
middle, and right shot gathers. The seismograms have been trace-
by-trace normalized.

Figure 18. The wavelet estimated from the Grenoble field data
using the Wiener method.

Figure 17. The Grenoble field data of Figure 16 after processing
and the 3D to 2D correction. The maximum frequency is
30 Hz. The dashed cyan lines delimit the left, middle, and right shot
gathers. The seismograms have been trace-by-trace normalized.
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variety and any further evolution allowing more generations would
not be efficient.
The predicted VS model is displayed in Figure 20b. It shows a

profile mostly characterized by vertical velocity variations and

some velocity inversions. Extracting the VS profile nearest to the
boreholes gives the blue curve presented in Figure 20a. In the same
figure, the dashed cyan lines indicate the VS search range in our
inversion. The other curves exhibit the VS values derived from
the borehole log measurements (refer to the caption of Figure 20a).
As is clearly shown in the figure, the VS curve from our final model
fairly matches the long-wavelength profiles of the VS logs, espe-
cially the P-S suspension logging curves. A layer at approximately
16 m, which the logs indicate as being characterized by a decrease
in the velocity, was not detected by our inversion because of the
limited resolution due to the adopted coarse inversion grid.
Figure 21 exhibits the predicted data (red traces) overlaid on the

observed seismograms (black traces). There is an overall fair match
between the predicted and observed waveforms. When mismatches
occur, the phase differences are always within half-periods. This
indicates that the VS model predicted by our two-grid genetic-
algorithm FWI should be an adequate initial model for gradient-
based Rayleigh-wave FWI for further refinement.

CONCLUSION

The two-grid genetic-algorithm FWI of Rayleigh waves that we
developed in this and in the companion paper is aimed at retrieving
a reliable macromodel of the subsurface VS in absence of any a
priori information. The model to be inverted for is parameterized
by a coarse grid, and the resolution of the estimated model mainly
depends on the spacing of its nodes, which also determines the num-
ber of unknowns to be inverted for: The shorter the spacing and the
higher the resolution, the higher the computing time that is needed
to achieve convergence. In general, using conventional computer
resources, to maintain acceptable computing time, we have de-
signed grids with quite large spacings resulting in numbers of
unknowns up to approximately 200; thus, the retrieved models nec-
essarily contain the long-wavelength structures only of the velocity
field. More powerful computing resources and, we may add, an
optimized coding of the computer program, should allow for the
inversion of a greater number of unknowns and thus for the achieve-
ment of a higher resolution of the estimated velocity model.
The approach we propose can consider laterally varying veloc-

ities, nonflat topography, and it does not require any prior knowl-
edge of the subsurface. In the inversion of the two actual data cases
that we have presented, the boundaries of genetic-algorithm search
ranges were constant with depth and with the horizontal direction,
a situation that corresponds to no available a priori information on
the specific survey area.
In both cases, we obtained fair model and data predictions using a

quite coarse inversion grid and limiting the frequencies to 30 Hz.
The first test with the Luni data has been the one in which we

spent the largest efforts because we tried to reach a good data match-
ing not only of the waveforms pertaining to the fundamental mode
but also of the higher velocity wavetrain likely related to the higher
modes. Thus, many tests were carried out using different inversion
schemes and different wavelets, of which some have been discussed
here. In all of these trials, we have never been able to simultane-
ously and satisfactorily match the whole observed seismograms:
The lower velocity sectors of the seismograms were generally better
matched than the high-velocity parts, in which the predicted wave-
forms showed distinctly lower amplitudes than the observed wave-
forms. According to our analyses of the dispersion spectra, the
better matched waveforms correspond to the fundamental mode and

Figure 19. The evolution of the minimum (black) and mean (red)
data misfit in the Grenoble data inversion. The annotations in blue
bounded by the dashed cyan lines indicate the frequency bands of
the inverted data in the frequency-marching scheme. In this case, the
data misfits also decrease in each frequency-marching step.

Figure 20. (a) The predicted VS profile (the blue curve) whose po-
sition is the nearest to the boreholes (the dashed white line in [b]). VS
search ranges in the two-grid genetic-algorithm FWI (the dashed cyan
lines). The other curves were taken from Garofalo et al. (2016b) and
show VS values derived from borehole log measurements. The black
curve represents downhole recordings. The green curve represents
crosshole recordings. The red curve represents P-S suspension log-
ging through the analysis of the direct traveltime between the source
and the first geophone. The dashed magenta curve represents P-S sus-
pension logging through the analysis of the differential traveltime be-
tween the first and the second geophone. (b) The 2D VS model
predicted from the two-grid genetic-algorithm FWI.

Figure 21. The observed (black) and predicted (red) Grenoble data.
The dashed cyan lines delimit the left, middle, and right shot gath-
ers. The seismograms have been trace-by-trace normalized. We ob-
tained a general fair match, and where mismatches occur, the
differences are within half-periods.
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to a small portion of, likely, the first higher mode. However, the
predicted velocity models were always very similar, indicating
nearly the same velocity layering. The stability of the retrieved
velocity models induced us to attribute to the coarseness of the in-
version grid, and the consequent inability to retrieve rapid velocity
contrasts, the likely cause of the partial mismatch of the higher
mode components of the seismograms. It would be then left to a
local FWI algorithm, which launches the inversion from our pre-
dicted model and uses a much finer parameterization of the model
space, the task to improve the match of the whole seismogram.
A task that, based on other experiences with synthetic data, seems
quite feasible for gradient-based inversion.
The second example with the Grenoble data benefited from the

availability of borehole logs, which measured the VS profile and
allowed for a comparison with the model predicted by our inversion.
In this case, the degree of dispersion of the recorded Rayleigh waves
was less prominent than in the previous example; thus, it was easier
to find a fair data matching by our two-grid genetic-algorithm FWI.
The predicted model shows mainly vertical velocity variations. The
frequency-marching scheme produced results that, frequency step
after frequency step, progressively looked more similar to the bore-
hole VS stratigraphy, particularly that revealed by the P-S suspen-
sion log. A layer characterized by a velocity decrease was not
detected by our inversion again due to the inherent low resolution
associated with the coarse inversion grid. However, the VS profile,
extracted from the predicted 2D model, nearest to the boreholes
well agreed with the main features of the velocity trend evidenced
by the logs. In addition, the inversion achieved an acceptable match
between predicted and observed traces and when mismatches oc-
curred; they were always within half-periods. As also mentioned
in our companion paper, several further developments and improve-
ments of our method may be tried, from the estimation of uncer-
tainties of the solution, to the increase of the efficiency of the
inversion code, to the testing on other synthetic and actual data
cases. Specifically, concerning the application to actual data, the
estimation of the wavelet to give as input to the inversion or whether
the search for improved updates of an initial wavelet could be em-
bedded in the inversion are issues worthy of further study.
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