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Abstract

We present a certified reduced basis (RB) framework for the efficient solution of PDE-constrained parametric optimiza-
tion problems. We consider optimization problems (such as optimal control and optimal design) governed by elliptic PDEs
and involving possibly non-convex cost functionals, assuming that the control functions are described in terms of a parameter
vector. At each optimization step, the high-fidelity approximation of state and adjoint problems is replaced by a certified RB
approximation, thus yielding a very efficient solution through an “optimize-then-reduce” approach. We develop a posteriori
error estimates for the solutions of state and adjoint problems, the cost functional, its gradient and the optimal solution.
We confirm our theoretical results in the case of optimal control/design problems dealing with potential and thermal flows.
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1. Introduction

PDE-constrained optimization problems are widespread in applied sciences and engineering because of
the ubiquitous need to control a system in order to reach some target. Optimal control, optimal design and
(deterministic) inverse problems, can be cast within a PDE-constrained optimization framework in order
to exploit a well-established theoretical setting and powerful approximation techniques [1,2]. Often, when
dealing with the numerical approximation of PDE-constrained optimization problems, control variables,
shapes, or unknown features to be recovered are expressed in terms of a set of parameters, featuring
a much smaller dimension than the one of the discrete space used to approximate the state variable,
thus recasting optimization in a more affordable low-dimensional space. Even under this assumption,
numerical optimization relies on iterative procedures which usually requires a large amount of PDE
solutions, evaluations of the cost functional, and possibly of its gradient with respect to control/design
variables, such as in the case of descent methods or more general nonlinear programming techniques
[1,2]. Obtaining a significant computational speedup within this context has been one of the leading
motivations behind the development of efficient reduced order modeling techniques for PDEs in the last
decade. Reduced basis (RB) methods exploiting either greedy algorithms [3–9] or proper orthogonal
decomposition (POD) [10–17] have been widely applied to the solution of optimal control and shape
optimization problems. More recently, conversely to the parametric optimization problems considered in
this paper, the case of parametrized optimal control problems has also been addressed. In this latter
case, parameters affect either differential operators or data, but not the control/design variables, thus
characterizing multiple scenarios where an optimal control has to be determined [18–22].

In this paper we consider PDE-constrained parametric optimization problems (µ-OPs) where con-
trol/design variables are expressed in terms of a vector of parameters µ ∈ P ⊆ Rd, thus yielding finite-
dimensional control variables. Parameters may affect boundary data, source terms, physical coefficients,
or the geometrical configuration of the domain. Indeed, our framework is able to account for – apparently
different – problems such as optimal control, parameter estimation, optimal design, which can be cast
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under the form:

(µ-OP) min
µ∈Pad

J(µ) s.t. a(u(µ), v;µ) = f(v;µ) ∀v ∈ X.

Here u(µ) ∈ X is the state solution, X is a suitable Sobolev space defined over a spatial domain Ω ⊂ Rm,
m = 1, 2, 3, and the state constraint is given by a linear, steady, elliptic PDE (here written under weak
form). Moreover, Pad ⊆ P ⊆ Rd, Pad 6= ∅, denotes a closed, convex, bounded set of admissible parameters.
Furthermore, J(µ) = J̃(u(µ),µ) is a suitable cost functional, where J̃ : X×P → R is a quadratic function
of the state u. Since the map µ 7→ u(µ) is usually nonlinear, J is not a quadratic functional of µ; in
general, J might not even be convex. Note that the (reduced) cost functional J(µ) is minimized with
respect to µ; this latter plays here the role of optimization variable.

In several works, RB methods have been applied to parametric optimization problems just for the sake
of state reduction, yielding a reduce-then-optimize approach; in this case, the state system is solved in a
reduced state space and numerical optimization is performed according to black-box (or derivative-free)
methods. In this work we rely instead on an adjoint-based approach, exploiting a RB method for the
approximation of both state and adjoint problems, in order to evaluate the gradient of J in an inexpensive
way during the optimization process. This can be seen as an optimize-then-reduce approach, that is, we
first express optimality conditions as a system of (coupled) PDEs, then we construct a RB method for
any µ-dependent PDE to be solved. Relying on this approach is also mandatory for deriving effective a
posteriori error estimators on J , its gradient and the optimal solution.

Extending some results shown in [7,8], in this work:

1. we rely on an adjoint-based approach, rather than on a sensitivity-based approach to find the solution
of the optimization problem, and compare the two options;

2. we implement a certified RB method for µ-OPs and show that the adjoint-based approach yields a
stronger speedup than the sensitivity-based one;

3. we extend previous results of [7] to the case of functionals which directly depend on µ, and not only
through the state solution. Moreover, compared to [7], we treat the case of quadratic functionals (with
respect to the state) and set up an adjoint-based approach. Quadratic functionals were treated in
the case of steady state problems in [8], however without providing a detailed error analysis, by only
relying on a sensitivity-based approach. Here, we provide a detailed characterization of error estimates
for the cost functional, its gradient and the optimal solution, by evaluating all the quantities appearing
in their expressions in a computationally efficient way;

4. we take advantage of these error estimates to better design the optimization algorithms, in which stop-
ping criteria are motivated by the reliability of the RB approximation, showing that both optimization
and reduction stages might require a simultaneous (and careful) tuning;

5. we show that the assumption of affine parametric dependence required in the RB context is also crucial
for the theoretical analysis of µ-OPs;

6. last, but not least, we also consider the dependence on geometrical parameters, in view of the efficient
solution of optimal design problems.

Several problems which can be cast in this framework have been already tackled with reduced order
modeling techniques, such as optimal control [18,23], optimal design [24–26], parameter estimation [27],
model identification [28], uncertainty quantification problems [29–31]. Often this has been done neither by
relying on adjoint-based approaches, nor by developing a rigorous error analysis for the optimal solution.
Besides providing these two things, we assess the effect of replacing a high-fidelity approximation by
a reduced-order model on the optimization process, in terms of both descent directions and optimal
solutions. Hence, the numerical test cases we present deal with simple state problems, although the
proposed framework can be extended to more complex applications, including also simultaneous control
and design, or optimization under uncertainty [32].

The paper is organized as follows. In Sect. 2 we provide a general formulation of the class of problems
we are interested in, whereas in Sect. 3 we show some well-posedness results and derive optimality
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conditions (of both first and second order). We set a RB method for the solution of µ-OPs in Sect. 4,
by considering either the evaluation of parametric sensitivities, or the solution of an adjoint problem. In
Sect. 5 we derive a posteriori error estimates for the quantities of interest in setting the optimization
procedure. Finally, we confirm our theoretical results by showing some numerical results dealing with
thermal and potential flows in Sect. 6.

2. Problem setting

We deal with steady scalar problems defined over a regular and bounded domain Ω ⊂ Rm, m = 1, 2, 3.
Let us denote by X a Sobolev space such that H1

0 (Ω) ⊆ X ⊆ H1(Ω), taking into account boundary
conditions over Γ = ∂Ω; X∗ denotes the dual of X. The parametrized bilinear form a(·, ·;µ) : X×X → R
corresponds to the weak form of an elliptic, second-order parametrized differential operator; we require
that, for any µ ∈ P ⊂ Rd, a is continuous and coercive, i.e. there exist α(µ) > 0 and Ma(µ) < +∞ such
that

(1) α(µ) = inf
v∈X

a(v, v;µ)

‖v‖2X
, Ma(µ) = sup

u∈X
sup
v∈X

a(u, v;µ)

‖u‖X‖v‖X
∀µ ∈ P,

and that f(·;µ) ∈ X∗ is continuous for any µ ∈ P, i.e., there exist Mf (µ) < +∞ such that

(2) Mf (µ) = sup
v∈X

f(v;µ)

‖v‖X
∀µ ∈ P.

In our case, parameters µ play the role of optimization variables, that is, of control/design parameters.
Regarding the parameter dependence in the state equation, parameters might thus affect: (i) the right-
hand side f(·;µ) if they enter into the definition of distributed and/or boundary control functions; (ii) the
left-hand side a(·, ·;µ), when they are related with the physical coefficients of the PDE operator; (iii) both
a and f when they are used to parametrize the shape of the domain. When dealing with optimal design,
we rely on a fixed domain approach, that is, the state problem originally posed on a parametrized domain
Ω̃ = Ω̃(µ) is mapped back onto a reference configuration Ω, by introducing a suitable, µ-dependent
geometric map (or collection of maps) from Ω to Ω̃. This is a standard procedure when dealing with RB
methods [33], which also enables a strong speedup of optimal design problems by avoiding remeshing
when the domain undergoes shape deformations.
Moreover, we assume that J : P → R is given by

(3) J(µ) = J̃(u(µ),µ) =
1

2
‖Cu(µ)− zd‖2Z +

β

2
‖µ− µd‖2Rd

being C : X → Z a linear, continuous observation operator, that is, ‖Cv‖Z ≤ γ‖v‖X ∀v ∈ X, with
Z a suitable (Hilbert) space of observations defined over Ω. Here zd ∈ Z is the desired target, whereas
β ≥ 0 and µd ∈ P is a prescribed parameter value. Here J̃ is a quadratic functional of the state u(µ),
whereas in the more standard optimal control problems, the quadratic penalization term shall enforce
the cost functional to be convex. We remark that the optimization problem above can also be meant as a
parameter identification problem, aimed at finding those parameter values yielding the reference solution
zd. For the case at hand, due to the nonconvex mapping µ → u(µ), the reduced cost is nonconvex,
independent of the choice for β ≥ 0. In particular, we consider the case β = 0 for the sake of the analysis,
assuming that the solution is a strict local minimizer only for the sake of error estimation for the optimal
parameters in Sect. 5.4.

Furthermore, we require the following affine decomposition (or parametric separability) for the forms
appearing in (µ-OP), by expressing for any µ ∈ P

(4) a(u, v;µ) =

Qa∑
q=1

Θa
q(µ) aq(u, v), f(v;µ) =

Qf∑
q=1

Θf
q (µ) fq(v),

125

Unauthentifiziert   | Heruntergeladen  09.02.20 02:22   UTC



A. Manzoni, S. Pagani

for Qa, Qf (real) functions Θa
q ,Θ

f
q : P → R, and (continuous) bilinear (resp. linear) forms aq(·, ·) :

X ×X → R, q = 1, . . . , Qa (resp. fq(·) : X → R, q = 1, . . . , Qf ). We denote by M q
a , q = 1, . . . , Qa (resp.

M q
f , q = 1, . . . , Qf ) the continuity factor of the µ-independent bilinear (resp. linear) forms.

Moreover, we express the cost functional (3) as

(5) J(µ) = g(u(µ), u(µ);µ) =

Qg∑
q=1

Θg
q(µ)

(
1

2
sq(u(µ), u(µ)) + lq(u(µ)) + Cq

)
,

for Qg functions Θg
q(µ) : P → R, q = 1, . . . , Qg, bilinear (resp. linear) forms sq(·, ·) : X ×X → R (resp.

lq(·) : X → R), and scalars Cq ∈ R, q = 1, . . . , Qg. Here we assume that

(Cu(µ), Cu(µ))Z =

Qg∑
q=1

Θg
q(µ)sq(u(µ), u(µ))

(Cu(µ), zd)Z =

Qg∑
q=1

Θg
q(µ)lq(u(µ)), −(zd, zd)Z =

Qg∑
q=1

Θg
q(µ)Cq

because of the µ-dependence induced by the fact that the scalar product (·, ·)Z involves integrals over
Ω(µ). In the remainder, we consider two classes of functionals which can be cast under the form (3),
by choosing either Z = H1(Ωobs) or L2(Ωobs), C as the restriction operator over Ωobs ⊂ Ω, a prescribed
observation region, and zd a prescribed target function.
Thus, we end up with the following formulation of problem (µ-OP):

(6)

min
µ∈Pad

Qg∑
q=1

Θg
q(µ)

(
1

2
sq(u(µ), u(µ)) + lq(u(µ))+Cq

)

s.t.

Qa∑
q=1

Θa
q(µ) aq(u(µ), v) =

Qf∑
q=1

Θf
q (µ) fq(v) ∀v ∈ X.

3. Well-posedness analysis and optimality conditions

Problem (µ-OP) is a special case of PDE-constrained optimization problem, where the control variable
is set in a closed, bounded subset of Rd rather than to an infinite dimensional (Banach or Hilbert) space.
Although the existence of a minimizer easily follows from Weierstrass theorem, its uniqueness is not
ensured. A natural requirement for uniqueness would be the strict convexity of the cost functional with
respect to the control variable µ; however, this is in general hard to satisfy, because of the nonlinear
µ-dependency of the state solution, already in the simplest case of a quadratic functional of the state
variable and a linear state problem. After analyzing the well-posedness of (6) and the differentiability of
the state solution with respect to µ, we derive a set of first and second order optimality conditions.

3.1. Existence of a minimizer and differentiability of the cost functional

A further assumption concerning the map µ 7→ u(µ), which also affects the cost functional, is required
to show the existence of a minimizer to problem (µ-OP), as stated in the following (see the Appendix
for the proof)

Proposition 3.1. Under the following assumptions:

1. Pad ⊂ Rd, Pad 6= ∅ is a closed, convex, and bounded set;
2. Θa

q , q = 1, . . . , Qa and Θf
q , q = 1, . . . , Qf are Lipschitz continuous functions, with constants Λaq ,

Λfq > 0, respectively;
3. J is sequentially lower continuous (with respect to µ),

problem (µ-OP) admits (at least) a minimization point (û, µ̂) = (u(µ̂), µ̂).
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Let us now investigate the differentiability of the cost functional, for which we require that the
functions Θa

q , q = 1, . . . , Qa and Θf
q , q = 1, . . . , Qf are of class C1(P). Numerical optimization procedures

such as descent methods require the evaluation of the derivatives of the cost functional J(µ) = J̃(u(µ),µ)
with respect to the parameters, given by

(7) ∇µJ(µ) · ei = ∂µiJ(µ) = ∂uJ̃ ∂µiu(µ) + ∂µi J̃(µ).

where ∂uJ̃ denotes the Fréchet derivative of J̃ with respect to u. To ensure that J is differentiable,
we must require that the map µ 7→ u(µ) is differentiable, too. This property results from the implicit
function theorema (see e.g. [34]), according to the following

Proposition 3.2. Let A ⊂ X × P be an open subspace and Φ : A → X∗ is Fréchet differentiable, such
that Φ(µ̄, u(µ̄)) = 0 and Φu(µ̄) is an isomorphism from X to X∗. Then, µ 7→ u(µ) is a differentiable
map in a neighborhood U of µ̄, and Φ(µ, u(µ)) = 0 for any µ ∈ U .

See the Appendix for the proof. By deriving (42) w.r.t. µ we can obtain the expressions of the first-
order parametric sensitivities of the state solution. In fact, the directional derivative ∇µu(µ) · k, for any
k ∈ Rd, is given by the solution of

(8) a(∇µu(µ) · k, v;µ) =

Qf∑
q=1

(∇µΘf
q (µ) · k) fq(v)−

Qa∑
q=1

(∇µΘa
q(µ) · k) aq(u(µ), v) ∀v ∈ X.

By choosing k = ei, the i-th unit vector of the canonical basis of Rd, (8) yields d equations for the
first-order parametric sensitivities ∂µiu(µ), i = 1, . . . , d, required to express the first order optimality
conditions. The derivation of these latter expressions is the goal of the following section.

3.2. First order optimality condition

Provided that Pad ⊂ Rd is a convex bounded and closed set and J is differentiable, a minimizer µ̂ of
(5) fulfills the following variational inequality,

(9) ∇µJ(µ̂) · (η − µ̂) ≥ 0 ∀η ∈ Pad,

yielding a first-order necessary optimality condition. Therefore, we can apply the chain rule in order to
evaluate

(10) ∇µJ(µ) · k = ∂uJ̃(u(µ),µ)∇µu(µ) · k +∇µJ̃(u(µ),µ) · k ∀k ∈ P,

where
∂uJ̃(u(µ),µ)∇µu(µ) · k = dg(u(µ),∇µu(µ) · k;µ)

and

(11) ∇µJ̃(u(µ),µ) · k =

Qg∑
q=1

∇µΘg
q(µ) · k

(
1

2
sq(u(µ), u(µ)) + lq(u(µ)+Cq)

)
.

Here, we have denoted by

(12) dg(u, ψ;µ) =

Qg∑
q=1

Θg
q(µ) (sq(u, ψ) + lq(ψ))

the Fréchet derivative (with respect to u) of g(u, u;µ). In order to exploit formula (10), we need to
evaluate ∇µu(µ) · k for any k ∈ P; however, sensitivities entail in principle the solution of d further
parametrized PDEs (8), thus implying an extensive computational effort, although the left-hand side is
still equal to the state operator.

aWe follow this approach also in view of possible extensions to nonlinear state problems.
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A more feasible approach is based on the solution of an adjoint problem. The adjoint approach is
rather standard in PDE- constrained optimization, and requires to solve the state problem and then an
auxiliary problem, depending on the derivative of the cost functional with respect to the state variable,
in order to evaluate the expression of the gradient of the cost functional; see, e.g., [2] for a general
introduction to this technique.

In fact, by adding (8) to (10) and choosing v = p(µ) in this latter equation, we can make the evaluation
of ∇µJ independent of ∇µu(µ) · k. This goal is achieved by choosing p = p(µ) ∈ X as the solution of
the adjoint problem

(13)

Qa∑
q=1

Θa
q(µ)a∗q(p(µ), ψ) =

Qg∑
q=1

Θg
q(µ) {sq(u(µ), ψ) + lq(ψ)} ∀ψ ∈ X

where, for any q = 1, . . . , Qa,
a∗q(p, ψ) = aq(ψ, p) ∀p, ψ ∈ X

denote q µ-independent adjoint bilinear forms. In this way, for any k ∈ P,

(14)

∇µJ(µ) · k = ∇µJ̃(µ) · k

−
Qa∑
q=1

∇µΘa
q(µ) · k aq(u(µ), p(µ)) +

Qf∑
q=1

∇µΘf
q (µ) · k fq(p(µ)).

When relying on the adjoint problem, evaluating ∇µJ(µ) for any k ∈ Rd requires the solution
of two PDEs, in contrast to d + 1 PDEs which would be required when considering the solution of p
sensitivity equations. This is the main reason why we consider an adjoint-based approach, instead of the
sensitivity-based approach proposed e.g. in [7].

Proposition 3.3. Let µ̂ ∈ Pad be a minimizer of (µ-OP). If Pad ⊂ Rd is convex, bounded and closed set,
there exists an adjoint state p = p(µ̂) such that (u(µ̂), p(µ̂), µ̂) satisfy the system of first-order optimality
conditions:

(15)



Qa∑
q=1

Θa
q(µ̂) aq(u(µ̂), v) =

Qf∑
q=1

Θf
q (µ̂) fq(v) ∀v ∈ X,

Qa∑
q=1

Θa
q(µ̂)a∗q(p(µ̂), ψ) =

Qg∑
q=1

Θg
q(µ̂) {sq(u(µ), ψ) + lq(ψ)} ∀ψ ∈ X,

∇µJ(µ̂) · (k − µ̂) ≥ 0 ∀k ∈ Pad.

3.3. Second-order optimality condition

Provided that the functions Θλ
q (·), λ = a, f, g, are of class C2(P), a similar adjoint-based approach

can be exploited to evaluate the Hessian of the cost functional HJ(µ) : H → Rd×d. Indeed, this latter
quantity is required to implement a Newton method for numerical optimization, as well as to characterize
an error estimate for the optimal parameter, see Sect. 5.4. Furthermore, a sufficient second-order condition
ensuring the strict local convexity of J is the positive-definiteness of the Hessian matrix. We thus aim at
evaluating the Hessian matrix (HJ(µ))ij = ∂2

µjµiJ(µ), 1 ≤ i, j ≤ d of J without relying on the second-

order parametric sensitivities of the state solution, given by (Hu(µ))ij = ∂2
µjµiu(µ), 1 ≤ i, j ≤ d – that

is, by solving less then d2 + d + 1 PDE problems; note that each component of Hu is an element of X.
For the sake of simplicity, instead of the directional derivatives ∇µu(µ) ·k, ∇µJ(µ) ·k, here we directly
consider the partial derivatives with respect to parameter components. By taking k = ei in (11) and
deriving with respect to µj , we get

(HJ(µ))ij = ∂µj

(
∂uJ̃(u(µ),µ) · ∂µiu(µ)

)
+ ∂µj

(
∂µi J̃(u(µ),µ)

)
,

128

Unauthentifiziert   | Heruntergeladen  09.02.20 02:22   UTC



A certified RB method for PDE-constrained optimization

where

(16)

∂µj

(
∂uJ̃(u(µ),µ) · ∂µiu(µ)

)
=

Qg∑
q=1

∂µjΘ
g
q(µ) {sq(u(µ), ∂µiu(µ)) + lq(∂µiu(µ))}

+

Qg∑
q=1

Θg
q(µ)

{
sq(u(µ), ∂2

µjµiu(µ)) + lq(∂
2
µjµiu(µ))

}
+

Qg∑
q=1

Θg
q(µ)sq

(
∂µju(µ), ∂µiu(µ)

)
and

∂µj

(
∂µi J̃(u(µ),µ)

)
=

Qg∑
q=1

∂2
∂µj∂µi

Θg
q(µ)

{
1

2
sq(u(µ), u(µ)) + lq(u(µ)+Cq)

}

+

Qg∑
q=1

∂µiΘ
g
q(µ)

{
sq(∂µju(µ), u(µ)) + lq(∂µju(µ))

}
.

The second term appearing at the right-hand side of (16), namely

(17) P (µ) =

Qg∑
q=1

Θg
q(µ)

{
sq(u(µ), ∂2

µjµiu(µ)) + lq(∂
2
µjµiu(µ))

}
= dg((u(µ), (Hu(µ))ij ;µ),

is nothing but the right-hand side of the adjoint problem (13) where ψ = (Hu(µ))ij , so that

P (µ) =

Qa∑
q=1

Θa
q(µ)a∗q(p(µ), (Hu(µ))ij) =

Qa∑
q=1

Θa
q(µ)aq((Hu(µ))ij , p(µ)).

To avoid the evaluation of Hu(µ), we can derive the state equation with respect to parameter components
(similarly to what done in (8)) obtaining

(18)

Qa∑
q=1

Θa
q(µ)aq((Hu(µ))ij , v) =

Qf∑
q=1

∂2
µjµiΘ

f
q (µ)fq(v)−

Qa∑
q=1

∂2
µjµiΘ

a
q(µ) aq(u(µ), v)

−∂µia
(
∂µju(µ), v;µ

)
− ∂µja (∂µiu(µ), v;µ)

for any v ∈ X, where

(19) ∂µia (u, v;µ) =

Qa∑
q=1

∂µiΘ
a
q(µ)aq(u, v), i = 1, . . . , d.

We can thus evaluate (17) as P (µ) = P̃ (u(µ), ∂µ1u(µ), . . . , ∂µdu(µ)) by taking v = p(µ) in (18). Hence,
computing the Hessian matrix HJ(µ) requires to evaluate only the state u(µ), the adjoint state p(µ) and
the sensitivities ∂µiu(µ), that is, to solve d+ 2 instead of d2 + d+ 1 PDE problems.

4. A reduced basis method for PDE-constrained optimization

In this section we illustrate a RB method for the efficient solution of PDE-constrained parametric
optimization problems under the form (µ-OP). We exploit a descent method for numerical optimization
(such as the the projected gradient, Newton or quasi-Newton methods; see, e.g., [2,35]). Alternative
approaches, relying, e.g., on trust region methods, have also been deeply investigated in conjunction with
reduced order modeling techniques, see, e.g., [36–38]. To speedup the evaluation of the cost functional
(and its gradient), which requires the solution of the state and the adjoint problems, we rely on a very
cheap RB approximation of both these problems rather than on a much more expensive high-fidelity
approximation.

129

Unauthentifiziert   | Heruntergeladen  09.02.20 02:22   UTC



A. Manzoni, S. Pagani

4.1. High-fidelity FE approximation

Our RB method relies uponb a high-fidelity Finite Element (FE) approximation of the state and
the adjoint problems. We introduce a FE subspace Xh ⊂ X of dimension Nh < +∞, and denote by
uh(µ) ∈ Xh, ph(µ) ∈ Xh the FE approximation for the state and the adjoint solution, respectively, which
are obtained by solving

(20)
a(uh(µ), vh;µ) = f(vh;µ) ∀vh ∈ Xh

a∗(ph(µ), ψh;µ) = dg(uh(µ), ψh;µ)Z ∀ψh ∈ Xh;

here we use a more compact notation, without expliciting the affine parametric dependence. The high-
fidelity approximation of problem (µ-OP) reads thus

(µ-OPh) µ̂h = arg minµ∈Pad Jh(µ) = J̃(uh(µ),µ)
s.t. a(uh(µ), vh;µ) = f(vh;µ) ∀vh ∈ Xh.

A descent method based on the high-fidelity approximation (20) yields a convergent sequence {µ(k)
h }k≥0 ∈

Pad such that
µ

(k+1)
h = ΠPad(µ

(k)
h + σkd

(k)
h ), k = 0, 1, . . .

where ΠPad : Rd → Pad denotes the projection operator onto Pad and d
(k)
h is a descent direction, such

that (∇µJ(µ
(k)
h ),d

(k)
h ) < 0. Here we denote by ∇µJh(µ) = ∇µJ̃(uh(µ),µ) and by d

(k)
h the descent

direction, obtained e.g. as

(21) d
(k)
h =


−∇µJh(µ

(k)
h ) gradient method

−H(k)
dfp∇µJh(µ

(k)
h ) quasi-Newton method

−(HJ,h(µ
(k)
h ))−1∇µJh(µ

(k)
h ) Newton method,

where the step size σk > 0 such that J(µ
(k+1)
h ) < J(µ

(k)
h ) can be selected through an inexact line search

or the so-called Armijo rule [35]. H(k)
dfp is the approximation of the inverse H−1

J,h(µ) of the high-fidelity
Hessian, obtained according to the iterative Davidon-Fletcher-Powell (DFP) formula:

(22) H(k+1)
dfp = H(k)

dfp +
(δµkδµ

T
k )

yTk δµk
−

(H(k)
dfpyky

T
kH

(k)
dfp)

yTkH
(k)
dfpyk

,

where δµk = −σkH
(k)
dfp∇µJh(µ(k)) and yk = ∇µJh(µ(k+1)) − ∇µJh(µ(k)). Note that H(k)

dfp does not
require to solve problem (18) to evaluate second-order parametric sensitivities; these latter are instead
required in the case of a Newton method. To ensure that the quasi-Newton update produces positive
definite quasi-Newton matrices, one needs, e.g., either a Powell-Wolfe line search, or a safeguard in the
update formula, by skipping the matrix update if yTk δµk ≤ 0. See, e.g., [39] fur further details.

Finally, given a prescribed tolerance εtolopt > 0, we iterate until, e.g., ‖∇µJh(µ̂h)‖Rd < εtolopt or ‖dh‖Rd <
εtolopt.

Remark 4.1. Due to the constrained nature of the problem, proper stopping criteria must be used
to terminate the iterative methods above. For the problems we consider, the parameter space Pad is
determined by a set of inequality constraints under the form µmini ≤ µi ≤ µmaxi , i = 1, . . . , d, that is,
we deal with box constraints on the parameters. We also remark that, since the target zd is generated
in our setting as the state solution for a selected parameter value µtarget, we expect that the minima of
the cost functional are internal to the parameter space, that is, all the box constraints are inactive at the
minimum.

bThe reduction stage does not replace the discretization stage of the usual optimize-then-discretize approach, rather it is
built upon.
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More rigorously, when dealing with the projected gradient method, we could use the stopping criterion
based on the difference of two successive iterates, for which

(23) ‖µ(k)
h −ΠPad(µ

(k)
h − σk∇µJh(µ

(k)
h ))‖Rd < εtolopt,

which indeed reduces to ‖∇µJh(µ̂h)‖Rd < εtolopt when the problem is unconstrained. An inexact line-search
(e.g., Armijio) rule, in the case of box constraints, at each step would select the smallest m ∈ N such
that, with η = βm,

J(ΠPad(µ
(k)
h + ηd

(k)
h ))− J(µ

(k)
h ) ≤ −α

η
‖µ(k)

h −ΠPad(µ
(k)
h + ηd

(k)
h )‖2Rd

where typically β ∈ [2, 10]. A complete description of descent methods for constrained optimization
problems can be found, e.g., in [39, Chapter 5].

4.2. RB approximation

The RB approximation of a parametrized PDE is obtained by solving a reduced problem, resulting
from the (Galerkin) projection of the original problem onto a low dimensional subspace, spanned by
(possibly few) snapshots of the high-fidelity problem obtained for properly selected parameter values
[33]. For the case at hand, the RB approximation of the state un(µ) ∈ Xu

n ⊂ Xh and the adjoint
pn(µ) ∈ Xp

n ⊂ Xh variables solve

(24)
a(un(µ), vn;µ) = f(vn;µ) ∀vn ∈ Xu

n

a∗(pn(µ), ψn;µ) = dg(un(µ), ψn;µ) ∀ψn ∈ Xp
n.

The RB approximation of problem (µ-OPh) thus reads

(µ-OPn)
µ̂n = arg minµ∈Pad Jn(µ) = J̃(un(µ),µ)

s.t. a(un(µ), vn;µ) = f(vn;µ) ∀vn ∈ Xu
n .

Hence, a descent method which exploits at each step the RB approximation (µ-OPn) yields a convergent

sequence {µ(k)
n }k≥0 ∈ Pad such that

µ(k+1)
n = ΠPad(µ

(k)
n + σkd

(k)
n ), k = 0, 1, . . .

where d
(k)
n is a reduced descent direction defined as in (21)–(22) by replacing Jh with Jn; here ∇µJn(µ) =

∇µJ̃(un(µ),µ). Finally, given a a prescribed tolerance εtolopt > 0, we iterate until, e.g., ‖∇µJn(µ̂h)‖Rd <
εtolopt or ‖dn‖Rd < εtolopt. Similar considerations to the one made in Remark 4.1 also apply to the RB
approximation of the optimization problem, regarding the treatment of bound constraints.

The proposed framework can also be extended to more advanced constrained optimization algorithms;
our choice to adopt more straightforward descent algorithm aims at better highlighting the computational
performances of the RB method when compared to the high-fidelity FE approximation.

4.3. RB space construction

We now address the construction of the RB spaces Xu
n , Xp

n. We exploit a greedy algorithm relying on
a posteriori error estimates, comparing different strategies for the construction of state space and adjoint
(or, alternatively, sensitivity) spaces.

First, we propose a simultaneous strategy for the state-adjoint formulation: since these two problems
are not disjoint – the right-hand side of the adjoint problem depends on the state solution u(µ) – we
can take advantage of the state basis when constructing the adjoint space in order to speedup the whole
procedure. This yieldsc the simultaneous state/adjoint greedy algorithm 4.1. A second option consists in
selecting the same parameter value for both state and adjoint problems at each iteration, see algorithm

cIndeed, in this case the adjoint solution ph(µnp ) to be computed at each step depends on the state through the derivative of
the cost functional with respect to the state variable; this latter problem must then be solved, additionally to the parameters
µnu, for each of the parameters µnp .
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4.2. Parameter sampling in this case is mainly driven by one of the two problems, with a consequent loss
of information in the two RB spaces Xu

n , Xp
n.

The greedy algorithm can also be performed when relying on a state-sensitivity approach, instead of
a state-adjoint approach. In this case, considering for instance a different sampling for each problem, we
obtain algorithm 4.3. A comparison among these three algorithms is presented in Sect. 6. We denote by
Gram− Schmidt(Xn, u) the result of the orthonormalization of u with respect to the n elements of Xn,
whereas ∆u

n(µ), ∆p
n(µ) are two error bounds for state and adjoint solutions, such that (see Sect. 5.1)

‖uh(µ)− un(µ)‖X ≤ ∆u
n(µ), ‖ph(µ)− pn(µ)‖X ≤ ∆p

n(µ) ∀µ ∈ P;

∆i
n(µ), i = 1, . . . , d denote instead the error bounds for the d solutions of the sensitivity equations such

that, for i = 1, . . . , d,

‖∂µiuh(µ)− ∂µiun(µ)‖X ≤ ∆i
n(µ) ∀µ ∈ P.

Algorithm 4.1 Offline stage / state/adjoint, two samplings

1: procedure State-adjoint Greedy algorithm, two samplings
Input: nmax, εtolRB , Ξtrain ⊂ P, µ1

u,µ
1
p ∈ P

Output: RB state and adjoint spaces Xu
n , Xp

n

2: Sun = ∅, Xu
n = ∅, Spn = ∅, Xp

n = ∅
3: n = 0, δ0 = εtolRB + 1
4: while n < nmax and δn > εtolRB do
5: n← n+ 1
6: compute uh(µnu)
7: ζun = Gram− Schmidt(Xu

n , uh(µnu))
8: Xu

n ← Xu
n ∪ ζun , Sun ← Sun ∪ {µnu}

9: [δun,µ
n
u] = arg maxµ∈Ξtrain

∆u
n(µ)

10: compute ph(µnp )
11: ζpn = Gram− Schmidt(Xp

n, ph(µnp ))
12: Xp

n ← Xp
n ∪ ζpn, Spn ← Spn ∪ {µnp}

13: [δpn,µ
n
p ] = arg maxµ∈Ξtrain

∆p
n(µ)

14: δn = max(δun, δ
p
n)

Algorithm 4.2 Offline stage / state/adjoint, one sampling

1: procedure State-adjoint Greedy algorithm, one sampling
Input: nmax, εtolRB , Ξtrain ⊂ P, µ1 ∈ P
Output: RB state and adjoint spaces Xu

n , Xp
n

2: Sn = ∅, Xu
n = ∅,

3: n = 0, δ0 = εtolRB + 1
4: while n < nmax and δn > εtolRB do
5: n← n+ 1
6: compute uh(µn), ph(µn)
7: ζun = Gram− Schmidt(Xu

n , uh(µn)), Xu
n ← Xu

n ∪ ζun
8: ζpn = Gram− Schmidt(Xp

n, ph(µn)), Xp
n ← Xp

n ∪ ζpn
9: Sn ← Sn ∪ {µn}

10: [δn,µ
n] = arg maxµ∈Ξtrain(∆u

n(µ),∆p
n(µ))

4.4. Reduced optimization

We now summarize the reduced computational procedure for the solution of a generic optimization
problem through the RB method. This procedure is based on a suitable offline-online splitting, ensured
by the affine parameter dependence assumption (4). RB spaces are thus built during a first expensive
stage, performed offline, whereas the online stage consists in the optimization procedure, which requires a
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Algorithm 4.3 Offline stage / sensitivities

1: procedure State-sensitivities Greedy algorithm
Input: nmax, εtolRB , Ξtrain ⊂ P, µ1

u,µ
1
1, . . . ,µ

1
d ∈ P

Output: RB state and sensitivity spaces Xu
n , Xi

n, i = 1, . . . , d
2: Sun = ∅, Xu

n = ∅, Sin = ∅, Xi
n = ∅, i = 1, . . . , d

3: n = 0, δ0 = εtolRB + 1
4: while n < nmax and δn > εtolRB do
5: n← n+ 1
6: compute uh(µnu)
7: ζun = Gram− Schmidt(Xu

n , uh(µnu))
8: Xu

n ← Xu
n ∪ ζun , Sun ← Sun ∪ {µnu}

9: [δun,µ
n
u] = arg maxµ∈Ξtrain

∆u
n(µ)

10: for i = 1 : d do
11: compute ∂µk

uh(µni )
12: ζin = Gram− Schmidt(Xi

n, ∂µi
uh(µni ))

13: Xi
n ← Xi

n ∪ ζin, Sin ← Sin ∪ {µni }
14: [δin,µ

n
i ] = arg maxµ∈Ξtrain

∆i
n(µ)

15: δn = max(δun, δ
1
n, . . . , δ

d
n)

large number of evaluations of the reduced cost functional J̃(un(µ),µ) and the reduced descent direction
dn(µ). Each evaluation entails the solution of the two problems in (24), see algorithm 4.4.

The construction of the RB algebraic structures required to assemble the reduced state and adjoint
problems (24) can be performed very efficiently, relying on µ-independent high-fidelity structures. The
chance to assemble the high-fidelity structures by decoupling µ-dependent functions and µ-independent
structures hinges upon the affine parameter dependence, and is a standard procedure in the RB context
[33,40]. By relying on a RB approximation for both the state and the adjoint problems, we are able
to perform efficient evaluations of the cost functional and its gradient, thus enabling to implement a
reduced-order gradient or quasi-Newton method. Instead, if willing at implementing a reduced order
Newton method, the RB approximation of sensitivity equations is required in order to evaluate the
Hessian of the cost functional efficiently, thus implying additional costs in the offline procedure.

Algorithm 4.4 Online procedure
1: procedure Reduced descent method

Input: nmax, εtolopt, µ
(0) ∈ P, d

(0)
n ∈ P

Output: RB optimal solution µ̂n
2: n = 0
3: while n < nmax and ‖∇µJn(µn)‖ > εtolopt do
4: n← n+ 1
5: compute un(µ(k)), pn(µ(k)); evaluate Jn(µ(k)), ∇µJn(µ(k))
6: if Gradient method then
7: evaluate σk (Armijio rule / line-search)

8: d
(k)
n = −σk∇µJn(µ(k))

9: if quasi-Newton method then

10: update H
(k)
dfp (DFP formula)

11: d
(k)
n = −H(k)

dfp(µ(k))∇µJn(µ(k))

12: if Newton method then
13: compute ∂µiun(µ(k)), i = 1, . . . , d and evaluate RB Hessian HJ,n(µ(k))

14: d
(k)
n = −(HJ,n(µ(k)))−1∇µJn(µ(k))

15: µ(k+1) = ΠPad
(µ(k) + d

(k)
n )

16: k ← k + 1

17: µ̂n = µ(k+1)
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5. A posteriori error estimation

A key ingredient of the proposed framework is the capability to provide sharp error estimates for any
quantity involved in the optimization process. We thus manage to keep the error between high-fidelity and
reduced-order quantities under control at each optimization step, preventing the reduced optimization
framework to provide inaccurate results. We highlight that evaluating efficiently a tight lower-bound
αLBh (µ) > 0 of the high-fidelity stability factor

αh(µ) = inf
v∈X

a(v, v;µ)

‖v‖2X
that is, such that αh(µ) ≥ αLBh (µ) for any µ ∈ P, plays a key role in the a posteriori error bounds; to do
this, we can rely on a heuristic strategy proposed in [41] which exploits radial basis function interpolation.
This latter provides an estimate α̃h(µ), rather than a lower bound αLBh (µ), of the stability factor – we
forgo the rigor to enhance computational efficiency. Indeed, rigorous lower bounds to the stability factor
would entail a computational complexity depending inherently on QaN

α
h , where the dependence on Nh

is due to eigenvalues calculation (with α ∈ [1, 3]). Nevertheless, α̃h(µ) provides a reliable approximation
to αLBh (µ), as shown in [41]. Numerical results of Sect. 6 also show that the calculated error estimates
are sufficiently tight.

5.1. State, adjoint and sensitivities approximation

For the sake of completeness, we first report some results related with the error bound on the state
and adjoint solutions, see, e.g. [33]. Let us denote by

(25)
ru(v;µ) = f(v;µ)− a(un(µ), v;µ) ∀v ∈ Xh

rp(ψ;µ) = dg(uh(µ), ψ;µ)− a(ψ, pn(µ);µ) ∀ψ ∈ Xh,

the high-fidelity residuals for the state and the adjoint problem, evaluated over the RB solution.

Proposition 5.1. For any µ ∈ P, the error between the high-fidelity and the RB approximation of the
state (resp. adjoint) solution is bounded by

(26) ‖uh(µ)− un(µ)‖X ≤ ∆u
n(µ) :=

‖ru(·;µ)‖X′
αLBh (µ)

,

(27) ‖ph(µ)− pn(µ)‖X ≤
‖rp(·;µ)‖X′
αLBh (µ)

.

Note that the lower bound αLBh (µ) is the same in both estimates, and that the adjoint residual still
depends on the high-fidelity approximation of the state variable. To overcome this issue, we can write

rp(v;µ) = dg(uh(µ), ψ;µ)− a(ψ, pn(µ);µ) = rnp (ψ;µ) + dg(uh(µ)− un(µ), ψ;µ)

where

(28) rnp (ψ;µ) = dg(un(µ), ψ;µ)− a(ψ, pn(µ);µ).

The second term at the right-hand side can be easily bounded by using (26), so that a slightly alternative
(but more easily computable) expression for the error bound for the adjoint solution becomes

(29) ‖ph(µ)− pn(µ)‖X ≤ ∆p
n(µ) :=

‖rnp (·;µ)‖X′
αLBh (µ)

+
Cdg‖ru(·;µ)‖X′

(αLBh (µ))2
.

Here,

Cdg = sup
u∈X

sup
v∈X

dg(u, v;µ)

‖u‖X‖v‖X
< +∞ ∀µ ∈ P
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denotes the continuity constant of dg(u, ψ;µ), see equation (12).
It is indeed straightforward to obtain an error estimate for the (first-order) sensitivity equations.

Subtracting the correspondent high-fidelity and reduced sensitivities (8), we obtain, for any i = 1, . . . , d:

a (∂µiuh(µ)− ∂µiun(µ), vh;µ) = ∂µia (uh(µ)− un(µ), vh;µ) ∀vh ∈ Xh.

Then, by using (26), the continuity and the coercivity property of a(·, ·;µ) stated in (1), we obtain

‖∂µiuh(µ)− ∂µiun(µ)‖X ≤ ∆i
n(µ) :=

Ma,µi(µ)

αLBh (µ)
∆u
n(µ),

where Ma,µi(µ) is the continuity constant of ∂µia (·, ·;µ), see equation (19).

5.2. Cost functional

We now derive an error estimate for a generic quadratic functional of u(µ) – such as the one in (3)
– based on a “primal-dual” approach, inspired by the goal-oriented analysis of [42,43]. Being able to
estimate such error is indeed crucial to ensure that the RB approximation of the cost functional – which
plays the role of output of interest – is accurate enough.

Proposition 5.2. Let J(µ) = g(u(µ), u(µ);µ) be the cost functional defined in (5), and denote by
Jh(µ) = g(uh(µ), uh(µ);µ) and Jn(µ) = g(un(µ), un(µ);µ), respectively. Then, for any µ ∈ P,

(30) |Jh(µ)− Jn(µ)| ≤ ∆J
n(µ) :=

‖ru(·;µ)‖X′‖rnp (·;µ)‖X′
αLBh (µ)

+ Cdg
‖ru(·;µ)‖2X′
(αLBh (µ))2

.

Proof. We rely on the introduction of a Lagrangian functional

L(u, p;µ) = J(µ) + f(p;µ)− a(u, p;µ)

in order to rewrite the difference |Jh(µ)− Jn(µ)| by combining in an appropriate manner the state and
the adjoint problems, as well as their residuals. Note that all the derivation is carried out at a fixed value
of µ. Denoting by

L(uh, ph;µ) = Jh(µ)− a(uh, ph;µ) + f(ph;µ),
L(un, pn;µ) = Jn(µ)− a(un, pn;µ) + f(pn;µ)

we obtain that Jh(µ) − Jn(µ) = L(uh, ph;µ) − L(un, pn;µ). For the sake of notation, we denote by
xh = (uh, ph), xn = (un, pn) and eh = (uh − un, ph − pn); µ-dependence is understood. Note that, by
definition of L(·, ·;µ), for all yh = (vh, qh) ∈ Xh

(31)
L′(xh; yh;µ) := L′u((uh, ph); vh;µ) + L′p((uh, ph); qh;µ)

= [dg(uh(µ), vh;µ)− a(vh, ph(µ);µ)] + [f(qh;µ)− a(uh(µ), qh;µ)] = 0.

Hence, we have

Jh(µ)− Jn(µ) = L(xh;µ)− L(xn;µ) =

∫ 1

0
L′(xn + seh; eh;µ)ds

+
1

2
L′(xn; eh;µ)− 1

2
L′(xn; eh;µ)− 1

2
L′(xh; eh;µ);

note that L′(xh; eh;µ) = 0 thanks to (31). The last two terms on the right hand side are just the
approximation of the second one by the trapezoidal rule. Therefore,

Jh(µ)− Jn(µ) =
1

2
L′(xn; eh;µ) +R

where the remainder term of the trapezoidal rule is

R =
1

2

∫ 1

0
L′′′(xn + seh; eh, eh, eh;µ)ds
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and it vanishes because of the linearity of a(·, ·;µ) and of f(·;µ). Since

L′(xn; eh;µ) = rnp (uh(µ)− un(µ);µ) + ru(ph(µ)− pn(µ);µ)

according to (25) and to (28), we find that

|Jh(µ)− Jn(µ)| ≤ 1

2
‖ru‖X′‖ph(µ)− pn(µ)‖X +

1

2
‖rnp ‖X′‖uh(µ)− un(µ)‖X ,

thanks to Cauchy-Schwarz inequality; estimate (30) finally follows by (26) and (29).

5.3. Gradient of the cost functional

Being able to estimate the error on the gradient of the cost functional ensures that the descent

directions d
(k)
n of the reduced minimization algorithm are indeed very close to the directions d

(k)
h we would

have built by considering the high-fidelity approximation. Estimating the error ‖∇µJh(µ)−∇µJn(µ)‖Rd
is usually quite involved and results in not so tight error bounds.

In this work we take advantage of the primal-dual approach in order to improve this estimate. For
any i = 1, . . . , d, let us denote by

(32) ∂µif (v;µ) =

Qf∑
q=1

∂µiΘ
f
q (µ)fq(v),

(33) ∂µis (u, v;µ) =

Qg∑
q=1

∂µiΘ
g
q(µ)sq(u, v), ∂µi l (v;µ) =

Qg∑
q=1

∂µiΘ
g
q(µ)lq(v),

and by Mf,µi(µ), Ms,µi(µ), Ml,µi(µ) the continuity constants of the forms defined in (32)–(33).

Proposition 5.3. Under the assumptions of Proposition 5.2, for any µ ∈ P

(34) ‖∇µJh(µ)−∇µJn(µ)‖Rd ≤ ∆∇Jn (µ) :=

(
d∑
i=1

(Cui (µ)∆u
n(µ)+Cpi (µ)∆p

n(µ))2

)1/2

where

Cui (µ) = Ma(µ)‖pn(µ)‖X
Ma,µi(µ)

αLBh (µ)
+ (2Ms,µi

Mf (µ)

αLBh (µ)
+Ml,µi(µ)),

Cpi (µ) = Mf,µi(µ) +Ma,µi(µ)
Mf (µ)

αLBh (µ)
.

Proof. For each component µi, i = 1, . . . , d, using the chain rule (7) and the adjoint problem (13) we
obtain

|DµiJh −DµiJn| ≤ |∂uhJh∂µiuh(µ)− ∂unJn∂µiun(µ)|+ |∂µiJh − ∂µiJn|
= |a∗ (ph(µ), ∂µiuh(µ);µ)− a∗ (pn(µ), ∂µiun(µ);µ)|+ |∂µiJh − ∂µiJn| = I + II

We proceed separately for the two terms. For the former, we add and subtract a (pn(µ), ∂uh(µ)/∂µi;µ)
and apply Cauchy-Schwarz inequality, obtaining

I ≤ |a∗ (ph(µ)− pn(µ), ∂µiuh(µ);µ)|+ |a∗ (pn(µ), ∂µiuh(µ)− ∂µiun(µ);µ)| = Ia + Ib.

We estimate Ib using the continuity of a∗(·, ·;µ), that is,

Ib ≤Ma(µ)‖pn(µ)‖X |∂µiuh(µ)− ∂µiun(µ)|X ≤Ma(µ)‖pn(µ)‖X
Ma,µi(µ)

αLBh (µ)
∆u
n(µ);
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while, using the problem for the (first-order) sensitivity, we obtain

Ia = |a (∂µiuh(µ), ph(µ)− pn(µ);µ)| = |∂µif(ph(µ)− pn(µ))− ∂µia (uh(µ), ph(µ)− pn(µ);µ)|

≤Mf,µi(µ)‖ph(µ)− pn(µ)‖X +Ma,µi(µ)
Mf (µ)

αLBh (µ)
‖ph(µ)− pn(µ)‖X

≤
(
Mf,µi(µ) +Ma,µi(µ)

Mf (µ)

αLBh (µ)

)
∆p
n(µ).

For the latter, using the continuity of the forms defined in (33), we obtain

II = |∂µis(uh(µ), uh(µ);µ) + ∂µi l(uh(µ))− ∂µis(un(µ), un(µ))− ∂µi l(un(µ))|
≤Ms,µi(‖uh(µ)‖X + ‖un(µ)‖X)‖uh(µ)− un(µ)‖X +Ml,µi‖uh(µ)− un(µ)‖

≤
(

2Ms,µi(µ)
Mf (µ)

αLBh (µ)
+Ml,µi(µ)

)
∆u
n(µ).

By combining the previous inequalities, (34) follows.

5.4. Optimal solution

The minimizer of Jn(µ) is a suboptimal solution of the optimization problem; it is then crucial to be
able to estimate the error ‖µ̂h − µ̂n‖Rd between the true minimum – that is, the one we would obtain
by minimizing Jh(µ) – and µ̂n, the solution of the reduced optimization problem, in order to assess the
reliability of this latter. In the case both µ̂h and µ̂n are strict local minimad of problem (µ-OPh) and
(µ-OPn), respectively, it is possible to provide an estimate for the error ‖µ̂h − µ̂n‖Rd , by combining the
previous results. This ensures that the reduced optimization method converges to an optimal solution µ̂n
which is close to the high-fidelity solution µ̂h up to a prescribed threshold.

Let us then assume that µh ∈ P is such that ∇µJh(µ̂h) = 0, and denote by HJ,h(µ) the high-fidelity
Hessian of the cost functional (see Sect. 3.3). Moreover, let µ̂n ∈ P be the approximate solution to
problem (µ-OPn) fulfilling, for some εJ > 0,

‖∇µJn(µ̂n)‖Rd ≤ εJ ;

as already pointed out in Remark 4.1, a more appropriate stopping criterion is provided by (23). However,
here we assume that the solution of the optimization problem is a strict local minimizer – this is also
justified by the particular choice of the target zd we made. We also denote by B̄r(µ) a closed ball with
center µ ∈ P and radius r > 0. Then, the following error estimate holds for optimal parameters.

Theorem 5.1. Denote by

λ = ‖HJ,h(µ̂n)−1‖Rd×d , ε = ‖∇µJh(µ̂n)−∇µJn(µ̂n)‖Rd + εJ .

and by L(r) = supµ∈B̄r(µ̂n) ‖HJ,h(µ̂n)−HJ,h(µ))‖Rd×d. Provided that

(35) 2λ · L(2λε) ≤ 1

there exists a unique solution µ̂h ∈ B̄2λε(µ̂n) of the optimization problem (µ-OPh), such that

(36) ‖µ̂h − µ̂n‖ ≤ 2λε.

dThis result essentially allows to build an approximation to the nonlinear equation ∇µJh(µ̂h) = 0, that is, requires the
minimizer µ̂h (as well as µ̂n) to be a strict local minimum for an unconstrained optimization problem. The optimization
problem at hand is necessarily defined on a bounded and convex set (since Pad ⊆ P, where P ⊂ Rd is the parameter space in
which the training of the RB approximation is conducted). Only for the sake of error estimation on the optimal parameter, a
possible way to make the problem at hand unconstrained is to set J(µ) = K for µ /∈ P with K � 1. Note that for the cases
at hand, one can expect that minimizers are interior points to Pad, since the target zd corresponds to a given parameter
instance.
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Proof. We do not report the full proof for the sake of space; the interested reader can refer, e.g.,
to [44,45]. It is straightforward to see that the solution µ̂h to problem (µ-OPh) is a fixed point of the
map Φ : Rd → Rd defined by Φ(µ) = µ − HJ,h(µ̂n)−1∇µJh(µ), since ∇µJh(µ̂h) = 0. The general
Brezzi-Rappaz-Raviart theory (see, e.g. [45, Section 2] provides existence and uniqueness of the fixed
point, as well as the error bound (36).

Similarly to previous bounds, the error bound (36) combines two terms: λ, which plays the role of
a stability factor, and ε, which can be considered as the dual norm of the residual of the minimization
problem ∇µJh(µ) = 0. Evaluating the (inverse norm of the) high-fidelity Hessian HJ,h(·) entails the
solution of the high-fidelity state (and adjoint) problem for µ = µ̂n; however, this computation has to be
performed only when reaching the stopping criterion on the reduced optimization, if we want to certify
the optimal solution through a bound of the error ‖µ̂h − µ̂n‖Rd . A possible alternative when multiple
evaluations of the error bound (36) are required would be to rely on interpolation procedures (in the
parameter space), similarly to what done for the approximation of stability factors [41].

Remark 5.1. By combining error estimates (30), (34) and (36), we can also provide an indication on
the error between the values of the cost functionals evaluated at the minimization points. Indeed, since

Jh(µ̂h)− Jn(µ̂n) = (Jh(µ̂h)− Jn(µ̂h)) + (Jn(µ̂h)− Jn(µ̂n))

by considering the Taylor expansion of Jn(µ̂h)− Jn(µ̂n) ≈ ∇µJn(µ̂n) · (µ̂h − µ̂n) at µ̂n, and neglecting
terms of order higher than one provided µ̂h − µ̂n is sufficiently small, we obtain

|Jh(µ̂h)− Jn(µ̂n)| . ∆J
n(µ̂h) + εJ · 2λε.

While the latter term appearing at the right-hand side is computable, the former is not; however, by
assuming that ∆J

n(µ̂h) ≈ ∆J
n(µ̂n) provided that µ̂h − µ̂n is sufficiently small, we can estimate the error

on the cost functionals evaluated at the minimization points as |Jh(µ̂h)− Jn(µ̂n)| . ∆J
n(µ̂n) + εJ · 2λε.

In the following section we show the effectivity of the proposed error estimates, and we assess the
computational performances of our reduced optimization framework.

6. Numerical results

In this section we present some numerical results dealing with quadratic cost functional and elliptic
scalar stationary PDE, characterized by physical and/or geometric parameters playing the role of control
variablese. Simple physical problems have been chosen to better highlight properties and performances
of the proposed computational strategies. After performing the offline stage, the inexpensive RB online
evaluation takes place at each iteration of the optimization scheme. Although in our results the target zd
is fixed, we highlight that the proposed framework can also be used to solve optimization problems for
different target functions zd (possibly depending on µ ∈ P) without requiring a new offline stage.

6.1. Graetz conduction-convection problem

The Graetz problem concerns the forced convection of a heat flow in a pipeline with walls at variable
temperature. We deal with a parametrized version of this problem, where d = 4 parameters are:

• µ1 ∈ [1, 5] the length of the pipe section;
• µ2 ∈ [1, 7], being µ2

2 the Péclet number;
• µ3 ∈ [0, π4 ] the angle of incidence of the advection field;
• µ4 ∈ [0, π2 ] the amplitude of the inlet Dirichlet boundary condition.

eComputations have been run on a laptop with a 2,2 GHz Intel Core i7 processor and 8 GB of RAM.
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We consider the domain Ω̃(µ) = (0, 3 + µ1) × (0, 1); in the first subregion (0, 1 + µ1) × (0, 1) the
flow comes in contact with the hot wall Γin = Γ1

in ∪ Γ2
in, whereas in the second (observation) region

(1 + µ1, 3 + µ1) × (0, 1) the fluid flows through cold walls. The state problem (for the temperature
variable) reads as follows: find u(µ) such that

(37)



− 1

µ2
2

∆u(µ) + b(µ3) · ∇u(µ) = 0 in Ω̃(µ1)

u(µ) = 0 on Γ̃D

u(µ) = cos(µ4)(1− x1)(x1 − 1− µ1) on Γ̃1
in(µ1)

u(µ) = sin(µ4)(1− x1)(x1 − 1− µ1) on Γ̃2
in(µ1)

∂u(µ)

∂n
= 0 on Γ̃out,

where b(µ3) = [cos(µ3)10x2(1 − x2),− sin(µ3)]. Given a target zd, the goal is to approximate, through
the reduced framework, the solution

(38) µ̂h = arg min
µ∈P

Jh(µ), Jh(µ) =
1

2
‖uh(µ)− zd‖2L2(Ω̃obs(µ))

,

the minimum of Jh being reached for µ̂ = µtarget, i.e. Jh(µ̂) = 0. For the sake of numerical test, we set
µtarget = [3, 4, π10 , 1] and the corresponding high-fidelity solution uh(µtarget) as target zd.

Figure 1. Schematic representation of the domain Ω(µ) relative to the Graetz problem (37).

6.1.1. Offline stage

After mapping the problem (37)-(38) onto a fixed reference domain Ω, we construct a high-fidelity
approximation through the Galerkin FE method, using piecewise linear elements; the dimension of the
corresponding space is Nh = 4033. The affine parametric dependence (4) is recovered through Qa = 7
and Qf = 15 terms, respectively. Then, we turn to the construction of a RB approximation for both the
state and the adjoint problem.

For the sake of comparison, we consider the three greedy algorithms introduced in Sect. 4.3. Numerical
results presented in Fig. 2 outline two main evidences: the adjoint-based approach enables to obtain
a RB space of lower dimension keeping the same accuracy level with respect to the sensitivity-based
approach (see Fig. 2, left). Moreover (see Fig. 2, right), the adjoint-based approach performs better when
the snapshots for the state and the adjoint problems are computed with respect to parameter values
independently sampled (Algorithm 4.1, two samplings) – that is, the retained parameter sets Sun and
Spn are different (see Fig. 3). For this reason, we consider only Algorithms 4.1 and 4.3 for the sake of
comparison.
The three proposed strategies show different offline computational costs: indeed, the need of constructng
a RB space for each of the d > 1 sensitivity equations has a considerable impact, which becomes larger
and larger as the RB space dimension N increases; see Table 6.1.1.
The adjoint-based strategy relying on two independent sampling for the construction of state and adjoint
subspaces (Algorithm 4.1) is the best approach in terms of both efficiency and accuracy.
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Figure 2. Convergence of the three greedy algorithms presented in Section 4.3.

Figure 3. Sampled parameters during the greedy algorithm for state (left) and adjoint (right) problems.

Table 1. CPU time (minutes) for the offline stage, for different greedy algorithms.

N = 30 N = 50 N = 70 N = 90 N = 110
state+adjoint (Alg. 4.1) 6 m 9.5 m 13.5 m 17.5 m 22 m

state+sensitivities (Alg. 4.3) 8 m 13 m 19 m 25 m 32 m

6.1.2. Online stage

We now compare the (reduced) descent methods introduced in Sect. 4.2 – namely, projected gradient,
quasi-Newton and Newton methods – prescribing a stopping criterium based on the gradient of the cost
functional ‖∇µJn‖Rd . In a first test case we start from µ(0) = (1, 1, 0.01, π2 ) and we apply the gradient
algorithm by considering either the Armijio rule or the line-search method for choosing the step size. The
method converges to the optimal value µtarget, although it requires a large number of iterations (and
subiterations for the step size criterium); state and adjoint solutions are reported in Fig. 4.

Provided that the cost functional is non-convex with respect to µ, the reduced quasi-Newton method
converges only if the starting value µ(0) is sufficiently close to the optimal value. As a consequence, we
exploit the gradient algorithm (globally convergent) to generate a suitable starting point for the quasi-
Newton method. In this case, we run the gradient method until it satisfies the stopping criterium with
tolerance tol = 10−2, then we turn to the quasi-Newton method. This combination allows us to achieve
very high accuracy with a limited number of iterations (e.g. 18 iterations of gradient method with line-
search rule plus 7 of Newton method in order to reach a tolerance of 10−9 in the stopping criterium).
A stagnation effect on the cost functional, yielding a convergence of the reduced descent method to an
optimal value µ̂n 9 µtarget, is observed in the case of a poor RB approximation, see Fig. 5, for both

140

Unauthentifiziert   | Heruntergeladen  09.02.20 02:22   UTC



A certified RB method for PDE-constrained optimization

Figure 4. RB state and adjoint solutions for µ = µ(0) (top), µ = µ(3) = (3.1, 3, 0.18, 0.91) (middle), µ = µ̂n (bottom).

Newton and quasi-Newton methods; a similar conclusion is found for the gradient method.
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Figure 5. Cost functional values at each iteration of Newton (left) and quasi-Newton (right) methods for different RB
dimensions N and comparison with the high-fidelity FE approximation.

Hence, already for RB subspaces of relatively small dimension (N = 75, 100), a remarkable accuracy is
reached. Concerning the CPU time required to perform optimization, we pursue a computational speedup
ranging from 17 in the Newton case to 93 in the gradient case. The smallest number of iterations required
to reach convergence is obtained in the Newton case (see Table 2).

Table 2. Number of iterations and computational times of the Gradient method with
Armijio rule and inexact line-search in (10−2, 50) with 500 samples, of quasi-Newton
and Newton methods (N = 100 RB functions). CPUtime/itRB and CPUtime/itFE
denote the CPU time required to perform online a single step of the optimiza-
tion procedure when relying on the RB or the FE approximation, respectively.

#itRB CPUtime/itRB CPUtime/itFE
Gradient (Armijio) 2502 0.0104 s 0.9327 s

Gradient (line search) 173 1.926 s 59.027 s
Gradient (line search) + quasi-Newton 18 + 17 0.0088 s 0.1249 s

Gradient (line search) + Newton 18 + 7 0.0235 s 0.4047 s

The best option concerning computational efficiency is the quasi-Newton method. For the case at
hand, using the gradient method to generate a suitable starting point µ̃0, the quasi-Newton (DFP)
method converges in 17 iterations to the sub-optimal value µ̂n = (2.99996, 4.00002, 0.31416, 0.99996),
with cost functional Jn(µ̂n) = 2.51 10−10. In particular, we initialize the surrogate of the Hessian matrix
HJ(µ) with a diagonal matrix of elements equal to the step size identified by the inexact line search (as in
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a step of the gradient method). Starting form the same initial guess µ̃0, the Newton method converges in
7 iterations to µ̂n = (2.99996, 4.00003, 0.314164, 0.99996), with cost functional Jn(µ̂n) = 2.51 10−10. We
remark that the accuracy of the reduced-order model (in terms of the number n of basis functions) has a
relevant role in achieving the minimum value of the cost functional: the larger n, the smaller Jn(µ̂n), see
Fig. 5 – recall that µ̂ = µtarget. In addition to its better efficiency with respect to the sensitivity-based
approach, the adjoint-based method yields inexpensive a posteriori error estimates for the cost functional
and its gradient. In this case, the effectivities

ηJ(µ) =
∆J
n(µ)

|Jh(µ)− Jn(µ)|
, η∇J(µ) =

∆∇Jn (µ)

‖∇µJh(µ)−∇µJn(µ)‖Rd

for J and ∇J , respectively, are indeed very close to 1 – that is, the proposed error estimate show to be
very tight for the case at hand, see Fig. 6. This is in our opinion a remarkable result, since error estimates
usually show large effectivities in the case of optimal control problems, see e.g. [4,5].

ηJ η∇J
N = 30 2.0716 4.3478

N = 65 1.2286 4.5187

N = 90 1.1121 4.1614

Figure 6. A posteriori error estimates for the cost functional and its gradient: effectivities (left) and behavior with respect
to the RB dimension N , average on a sample Ξtest ⊂ P of dimension 100 (right).

Finally, to assess the accuracy of the proposed framework, we evaluate the error ‖µ̂j − µ̂n‖ between
the high-fidelity and the reduced-order solution of the optimization problems. We also verify from a
computational standpoint the result of Theorem 5.1, focusing on the dependence of the error estimate
(36) on the RB dimension n and the tolerance εtolopt of the stopping criterium. These results confirm
that achieving a very good approximation of the optimality conditions in a neighborhood of the optimal
solution is essential to guarantee a good approximation of the optimal parameters. In fact, the estimate
is only certified for a number of basis functions greater than 90, which decreases noticeably the error
‖∇µJn(µ)−∇µJh(µ)‖Rd (and so ε). On the other hand for tolerances smaller than 10−5 and 100 basis
the estimate is always verified.

6.2. NACA airfoil shape design

We now turn to the optimal design of NACA airfoils. Parametrizing the airfoil shape enables to cast
the problem into the PDE-constrained parametric optimization framework presented in this paper. In
our case we deal with d = 3 parameters, namely

• µ1 ∈ [0.04, 0.24] the maximum thickness of the airfoil;
• µ2 ∈ [0, 0.012] the curvature of the wing profile;
• µ3 ∈ [−0.45π, 0.45π] the angle of incidence of the flow w.r.t. the chord of the airfoil.

We consider a set of affine maps (naturally induced by the selected parameters) defined over a domain
decompositionf in order to fulfill the affine parametric dependence property (4), as shown e.g. in [40].

f In this respect, the domain is partitioned into several (standard, elliptical or curvy) triangles. A piecewise affine mapping
based on this domain decomposition is then built. For the sake of length, here we do not report the procedure followed to
construct these maps; detailed steps, tailored to the case of two-dimensional NACA airfoil profiles, can be found in [46].
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Figure 7. A posteriori error estimates for the optimal parameters (Newton method started with line search gradient
iterations) varying the number of basis functionsN at fixed tolerance εJ = 10−6 of the stopping criterium for the optimization
(left) and varying εJ at fixed N = 100 (right).

This yields Qa = 184 and Qf = 188 terms in expression (4), respectively. Other options to deal with
more general nonaffineg maps and parametrization – such as (discrete) empirical interpolation – can also
be used, see e.g. [24,26,47]. We describe the flow around the airfoil through a potential model, leading to
the following state problem for the velocity potential: find φ ∈ X such that

(39)



−∆φ = 0 in Ω̃(µ1, µ2)

φ = φref (µ3) on Γ̃out
∂φ

∂n
= uin(µ3) · n on Γ̃in

∂φ

∂n
= 0 on Γ̃wing(µ1, µ2).

The velocity-pressure formulation follows by the identity u = −∇φ and the Bernoulli equation. Following
[48, Chapter 2], we aim at reconstructing the airfoil shape corresponding to a given target velocity field
in the rear Ω̃obs ⊂ Ω of the airfoil, that is, to approximate

(40) µ̂h = arg min
µ∈P

Jh(µ), Jh(µ) =
1

2

∫
Ω̃obs

|∇(φh(µ)− zd)|2dΩ.

Here the target is zd = φh(µtarget) with µtarget = (0.15, 0.006, π6 ).

Remark 6.1. This test case has been chosen to show how the proposed framework can also deal with
more involved geometrical parametrizations. Some relevant physical elements are missing, such as the
Kutta condition applied at the trailing edge of the profile; see, e.g., [49] for a detailed description of
how to construct a reduced order model in this case. With slight modifications, a thermal flow shape
optimization problem around the airfoil, similar to the one addressed in [25,50], can also be obtained.

6.2.1. Offline stage

The approximation of the problem (39)–(40), mapped onto the fixed reference domain Ω, is firstly
obtained through the Galerkin FE method with linear finite elements, resulting in a high-fidelity approxi-
mation of dimension Nh = 10886. Then, we exploit the greedy Algorithms 4.1 and 4.3 for constructing the

gIndeed, affine parameter dependence is mandatory to ensure the offline-online splitting. In the case of nonaffine problems,
hyper-reduction techniques such as the empirical interpolation method (EIM) or the discrete empirical interpolation method
(DEIM) are employed before assembling the arrays of the RB problem. Once this pre-processing step has been performed,
the construction of the RB approximation follows the same procedure described in the paper. Here we have decided to focus
on affine problems to better highlight computational difficulties entailed by optimization; however, the proposed techniques
can be applied in a straightforward way to nonaffine problems, too.
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RB spaces for state and adjoint (resp., sensitivity) problems. Also in this case, the adjoint-based method
seems to be more effective in terms of accuracy and efficiency, see Fig. 8 and Table 3; the retained
snapshots are reported in Fig. 9.

0 5 10 15 20 25 30

10−4

10−2

100

102

N

Trends of the Greedy algorithm

state

adjoint

1st sens

2nd sens

3rd sens

Figure 8. Schematic representation of the domain Ω (left) and convergence of greedy Algorithm 1 (resp. 3) for state and
adjoint (resp. sensitivity) problems (right).

Table 3. CPU time for the offline stage, for different greedy al-
gorithms.

Basis computation N = 10 N = 20 N = 30
state+adjoint (Alg. 4.1) 10 m 20 m 31 m

state+sensitivities (Alg. 4.3) 24 m 47 m 72 m

As expected, the offline computational cost are higher with respect to the previous case, because of
the larger dimension Nh of the FE space and the larger number Qa, Qf of terms in the affine expansion.
Indeed, this yields a higher complexity in the µ-dependence of the PDE solutions and additional costs
in the assembling of µ-independent arrays.

6.2.2. Online stage

Starting from the initial guess µ(0) = (0.08, 0.012,−π
4 ), we compare the results obtained with the

reduced and the high-fidelity optimization framework (see Algorithm 4.4), testing different options
concerning the descent directions. For the case at hand, the Newton method converges considering

µ
(0)
n = (0.08, 0.012,−π

4 ) as initial guess. The iterations generated by the high-fidelity and the reduced
Newton method (varying the number of basis functions) are displayed in Fig. 10, top and Fig. 11, left.

Clearly, the results obtained with the reduced optimization algorithm get closer and closer to the
high-fidelity solution as the number of RB functions increases. The RB approximation of both state and
adjoint problems are reported in Fig. 12 for different parameter values (initial guess, second iteration
of the Newton method and optimal parameter value); the corresponding velocity and pressure fields are
reported in Fig. 13.

On the other hand, the quasi-Newton method (with H(0) equal to the identity matrix) requires about
the three times the number of iterations to converge with respec to the Newton method, yet entailing
a remarkably lower computational effort (both during the offline and online phase). The iterations
generated by the high-fidelity and the reduced quasi-Newton method are displayed in Fig. 10, bottom
and Fig. 11, right.

In order to control the reduction error at each step of the minimization procedure, we can rely on the
proposed error estimates. In particular, we compute the effectivities of the error estimator for the cost
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Figure 9. Sampled parameters during the greedy algorithm for state (left) and adjoint (right) problems.
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Figure 10. Iterations of Newton method (top) and quasi-Newton method (bottom) in the parameter space.

functional and its gradient (see Fig. 14). As in the previous example, the goal-oriented analysis provides
a tight error estimate for the cost functional J , and a reliable (but less tight) error estimate in the case of
the gradient ∇J . Moreover, we can assess the influence of reduction errors on the optimal solution thanks
to the result of Theorem 5.1. We report in Fig. 15 the error estimate (36) for different RB dimensions n
and tolerances εtolopt of the stopping criterium.

By considering a RB dimension greater than 9 and a tolerance εtolopt < 5 · 10−3, the hypothesis of
Theorem 5.1 are verified. Hence, (36) provides a reliable estimate of the error ‖µ̂h − µ̂n‖Rp on the
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Figure 11. Trend of the cost functional for Newton (left) and quasi-Newton method (right).

Figure 12. Solutions of the state and adjoint problems for µ
(0)
n = (0.08, 0.012,−π4 ) (left), µ

(2)
n = (0.2029, 0, 0.5759) (center)

and µ̂n = (0.1501, 0.006, 0.5236) (right).

Figure 13. Velocity and pressure fields for µ
(0)
n = (0.08, 0.012,−π4 ) (left), µ

(2)
n = (0.2029, 0, 0.5759) (center) and µ̂n =

(0.1501, 0.006, 0.5236) (right).

optimal parameter values.
Finally, we report some details concerning the computational costs, by considering as starting point

µ
(0)
n = (0.22, 0.01, 0.4π) with a tolerance εtolopt = 10−10 for the reduced optimization procedure. As ex-

pected, the gradient method requires several iterations to satisfy the stopping criterium – this is due to
the elongated shape of the level sets of the cost functional, see Fig. 10. The smallest number of iterations
required to reach convergence is obtained in the Newton case (see Table 4).
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Table 4. Number of iterations and CPU times of the gradient method with Armi-
jio rule and inexact line-search in (10−2, 50) with 500 samples, of quasi-Newton
and Newton methods (N = 30 RB functions). CPUtime/itRB and CPUtime/itFE
denote the CPU time required to perform online a single step of the optimiza-
tion procedure when relying on the RB or the FE approximation, respectively.

#itRB CPUtime/itRB CPUtime/itFE
Gradient (Armijio) 1699 0.0788 s 1.5001 s

Gradient (l-s) 626 10.58 s 191.5 s
Gradient (l-s) + quasi-Newton 12 + 37 0.0385 s 0.7951 s

Gradient (l-s) +Newton 12 + 8 0.0917 s 1.4944 s

For the sake of comparison, we report in Table 5 the total computational cost entailed by the reduced
optimization, including also the offline construction of the RB spaces, see Table 3 for the CPU times
concerning this latter operation. We consider N = 30 RB functions and (i) the greedy Algorithm 1 for
the gradient and the quasi-Newton methods, (ii) the greedy Algorithm 3 including the reduction of the
sensitivity equations for the Newton method, respectively.

Performing the reduced optimization during the online stage provides a speedup of about 20 for any
chosen method. We get a computational speedup also including both offline and online costs, except for

ηJ η∇J
N = 10 28.4091 1000

N = 20 2.2999 454.5455

N = 30 1.9201 416.6667

Figure 14. A posteriori error estimates for the cost functional and its gradient: effectivities (left) and behavior with respect
to the RB dimension N , average on a sample Ξtest ⊂ P of dimension 100 (right).
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num. of basis functions

Optimal value error estimate

10−11 10−9 10−7 10−5 10−3
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100
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Optimal value error estimate

2γL

2γε

err

Figure 15. A posteriori error estimates for the optimal parameters (Newton method started with line search gradient
iterations) varying the number of basis functions (left) and the tolerance of the stopping criterium (right).
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Table 5. Overall computational times for the RB (offline+online) and the
high-fidelity FE optimization. Offline and online time refer to the construc-
tion of the RB approximation and to the (reduced) optimization procedure,
respectively.

RB offline RB online FE
Gradient (Armijio) 31 m 2.21 m 42.47 m

Gradient (l-s) 31 m 110.38 m 1998 m
Gradient (l-s) + quasi-Newton 31 m 2.14 m 38.69 m

Gradient (l-s) +Newton 72 m 2.13 m 38.39 m

the Newton method, which requires however the construction of d+1 > 2 RB spaces (state + d sensitivity
equations). In the case of a single solution of the optimization problem, we save about 20%, 90% and
15% of the CPU time in the case of the gradient method with the Armijio rule, with line search and of
the quasi-Newton method, respectively. The gain is even larger if more than one optimization problem
has to be solved online, for instance by varying the target function zd: in this case the offline stage must
not be run again, and the optimization just requires a very fast online stage (order of 2 minutes). Last
but not least, a possible restarting of the optimization algorithm, whenever required, can be performed
inexpensively.

7. Conclusions

In this work we have proposed a certified reduced basis method for the efficient solution of PDE-
constrained parametric optimization problems. We have compared (i) a sensitivity-based and (ii) an
adjoint-based approach, relying in both cases on the reduced basis method to speedup the PDE solution
at each step of a descent optimization algorithm. We have also provided a posteriori error estimates for
the cost functional, its gradient and the optimal solution in order to control the accuracy of both descent
directions evaluated through the RB framework and optimal solutions resulting from the application of
the proposed reduced framework. Numerical test cases assess the validity of the theoretical results and the
efficiency of the proposed reduced-order methodology. Two cases have been considered, dealing with (i)
the optimal control of thermal flows and (ii) the optimal design of airfoil profiles in a simplified potential
flow. In both cases, the adjoint-based approach, together with a quasi-Newton method for numerical
optimization, provide the best tradeoff in terms of accuracy and computational efficiency.
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Appendix

7.1. Proof of Proposition 3.1

Thanks to (1)-(2), the Lax-Milgram lemma, and assumption 2., the map µ→ u(µ) defines a bounded
injective operator; moreover,

(41) ‖u(µ)− u(µ̄)‖X ≤
1

α(µ)

 Qf∑
q=1

M q
fΛfq +

Mf (µ̄)

α(µ̄)

Qa∑
q=1

M q
aΛaq

 ‖µ− µ̄‖Rd .
Assumption 3. is verified since J is given by the composition of a continuous function and a semi-
continuous one. The existence of a minimizer then follows thanks to the Weierstrass theorem. �
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7.2. Proof of Proposition 3.2

In order to apply the implicit function theorem, we rewrite the state problem appearing in (6) by
isolating a µ-independent injectiveb operator Π, as: find u ∈ X such that

Πu+

Qa∑
q=2

Θ̃a
q(µ)Aqu−

Qf∑
q=1

Θ̃f
q (µ)Fq = 0 in X∗.

Then, we define the operator

Φ : X × P → X∗ : (u,µ)→
Qf∑
q=1

Θ̃f
q (µ)Fq −

Qa∑
q=2

Θ̃a
q(µ)Aqu.

Thanks to the continuity of the forms aq(·, ·) and fq(·) and since the functions Θa
q , q = 1, . . . , Qa and Θf

q ,
q = 1, . . . , Qf are of class C1(P), Φ is Fréchet differentiable. For any µ, let us denote by Π−1 : X∗ → X
the inverse of the injective operator yielding the unique solution of Πy = v in X∗. We can formulate the
state problem as

(42) F (u,µ) = u−Π−1(Φ(u,µ)) = 0;

Π−1 is continuously differentiable (since it is linear) and, for a reference value µ̄ (yielding ū = u(µ̄)), we
obtain, by applying the chain rule to F ,

Fu(ū, µ̄)v = v −Π−1(Φu(ū, µ̄)v) ∀v ∈ X.

Here Fu(ū, µ̄) is an isomorphism in X, since the problem

(43) v −Π−1(

Qa∑
q=1

Θa
q(µ)Aqv) = w

has a unique solution ∀w ∈ X. Thanks to the implicit function theorem, (42) defines a map µ 7→ u(µ),
with u ∈ C1(P) in a neighborhood of µ̄. �
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