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Abstract: The Master Equation approach to model anomalous diffusion is considered. In
particular, the formulation is extended to the time-stretching generalization on the basis of the
superposition mechanism of processes with different diffusion coefficients distributed according
to a spectrum function. When this superposition is applied to the time-fractional diffusion
process, the resulting Master Equation emerges to be the governing equation of the Erdélyi–
Kober fractional diffusion that is the Master Equation of the generalized grey Brownian motion
(ggBm). The generalized grey Brownian motion is a parametric class of stochastic processes
that provides models for both fast and slow anomalous diffusion. This class is made up of self-
similar processes with stationary increments and depends on two real parameters: 0 < α ≤ 2
and 0 < β ≤ 1. It includes the fractional Brownian motion when 0 < α ≤ 2 and β = 1, the
time-fractional diffusion stochastic processes when 0 < α = β < 1, and the standard Brownian
motion when α = β = 1. In the ggBm framework, the M-Wright function (known also as
Mainardi function) emerges as a natural generalization of the Gaussian distribution recovering
the same key role of the Gaussian density for the standard and the fractional Brownian motion.

Keywords: Anomalous diffusion, fractional derivatives, self-similar stochastic processes,
Brownian motion, Wright function, Mainardi function.

1. INTRODUCTION

Statistical description of diffusive processes can be per-
formed both at the microscopic and at the macroscopic
level. The microscopic-level description concerns the sim-
ulation of the particle trajectories by opportune stochastic
models. The macroscopic-level description indeed concerns
the derivation of the evolution equation of the probability
density function of the particle displacement, which is
connected to the microscopic trajectories, such equation
is named Master Equation. The problem of microscopic
and macroscopic description of physical systems and their
connection is addressed and discussed in a number of cases
by Balescu (1997).

The most common examples of this microscopic-to-
macroscopic formalism are the Brownian motion coupled
with the diffusion equation and the Ornstein–Uhlenbeck
coupled with the Fokker–Planck equation, see e.g. (Risken,
1989; Gardiner, 1990), but the same coupling occurs for
several applications of the random walk method at the mi-
croscopic level and the resulting macroscopic Master Equa-
tion for the probability density function (Weiss, 1994).

In some cases the classical local flux-gradient relationship
does not hold and it is necessary to determine a non-
local relationship so that an anomalous diffusion arises.
Anomalous diffusion is referred to as fast diffusion, when
the variance of the particle spreading grows with a power
law with exponent greater than 1, and it is referred to
as slow diffusion, when that exponent is lower than 1.
It is well-known that a useful mathematical tool for the
macroscopic investigation and description of anomalous
diffusion is Fractional Calculus.

A fractional differential approach has been successfully
used for modelling in several different disciplines as for
example statistical physics (Metzler and Klafter, 2004),
neuroscience (Lundstrom et al., 2008), economy (Scalas,
2006), control theory (Vinagre et al., 2000) and combus-
tion science (Pagnini, 2011a,b). Further applications of the
fractional approach are recently introduced and discussed
by Tenreiro Machado (2011).

Moreover, under the physical point of view, when there is
no separation of time-scale between the microscopic and
the macroscopic level of the process the randomness of the
microscopic level is transmitted to the macroscopic level



and the correct description of the macroscopic dynamics
has to be in terms of the Fractional Calculus for space
variable (Grigolini et al, 1999). Moreover, fractional inte-
gro/differential equations in the time variable are related
to phenomena with fractal properties (Rocco and West,
1999).

Here the correspondence microscopic-to-macroscopic for
anomalous diffusion is considered in the framework of
Fractional Calculus.

W.R. Schneider introduced the class of self-similar stochas-
tic processes based on the grey noise theory and named
grey Brownian motion (Schneider, 1990, 1992). This class
provides stochastic models for the slow anomalous dif-
fusion and the corresponding Master Equation is the
time-fractional diffusion equation. This class of self-similar
processes has been extended to include stochastic mod-
els for both slow and fast anomalous diffusion and it is
named generalized grey Brownian motion (Mura, 2008;
Mura and Mainardi, 2009; Mura and Pagnini, 2008). This
is a large class of self-similar stochastic processes whose
Master Equation is a fractional differential equation in the
Erdélyi–Kober sense, so the resulting diffusion process is
named Erdélyi–Kober fractional diffusion (Pagnini, 2012).

The rest of the paper is organized as follows. In Section 2,
the Master Equation approach is briefly described with the
aim to introduce the time-stretched generalization of the
non-Markovian formulation. In Section 3, the relationship
between a ME in terms of the Erdélyi–Kober fractional
derivative operator and the generalized grey Brownian
motion is highlighted. Finally, in Section 4 Conclusions
are given.

2. THE MASTER EQUATION APPROACH

2.1 The Master Equation and its generalization

The equation governing the evolution in time of the
probability density function (pdf) of particle displacement
P (x; t), where x ∈ R is the location and t ∈ R+

0 the
observation instant, is named Master Equation (ME). Here
the time t has to be interpreted as a parameter such that

the normalization condition
∫

P (x; t) dx = 1 holds for any

t. In this respect, the ME approach describes the system
under consideration at the macroscopic level because it is
refereed to en ensemble of trajectories rather than a single
trajectory.

The most simple and more famous ME is the parabolic
diffusion equation which describes Normal diffusion. Nor-
mal diffusion, or Gaussian diffusion, is a stochastic process
whose pdf is given by the equation

∂P

∂t
= D ∂2P

∂x2
, (1)

with initial condition P (x; 0) = P0(x), where D is the
diffusion coefficient. The fundamental solution of (1),
which is named also Green function, and corresponding
to the initial condition P (x; 0) = P0(x) = δ(x), is the
Gaussian density

f(x; t) =
1√

4πDt
exp

{
− x2

4Dt

}
. (2)

The variance of dispersion of the Gaussian diffusion (1)

grows linearly in time, i.e., 〈x2〉 =

+∞∫
−∞

x2f(x; t) dx = 2D t.

The density function P (x; t) with general initial condition
P (x; 0) = P0(x) is related to the fundamental solution
f(x; t) by the following convolution integral

P (x; t) =

+∞∫
−∞

f(ξ; t)P0(x− ξ) dξ . (3)

Actually, diffusion equation (1) is a special case of the
Fokker−Planck equation Risken (1989)

∂P

∂t
=

[
− ∂

∂x
D1(x) +

∂2

∂x2
D2(x)

]
P (x; t) , (4)

where coefficients D1(x) and D2(x) > 0 are called the drift
and the diffusion coefficient, respectively.

Processes described by (1) and (4) are both Markovian,
because density P (x; t) is completely determined by the
pdf at the initial instant t = 0. A more general case for
Markovian processes is the ME obtained by the differential
form of the Chapman–Kolmogorov equation (Gardiner,
1990), which includes both the pure jump processes and
the Fokker–Planck equation.

The non-Markovian generalization of the ME follows by
introducing memory effects, which means, under the math-
ematical formulation view point, that the evolution oper-
ator on the right-hand side depends also on time, i.e.,

∂P

∂t
=

t∫
0

[
∂

∂x
D1(x, t− τ) +

∂2

∂x2
D2(x, t− τ)

]
P (x; τ) dτ.(5)

A straightforward non-Markovian generalization is ob-
tained by describing a phase-space (v, x) process, as for
example the Kramers equation for the motion of particles
with mass m in an external force field F (x), i.e.,

∂P

∂t
=

[
− ∂

∂x
v +

∂

∂v

(
v − F (x)

m

)
+

∂2

∂v2

]
P (v, x; t) . (6)

In fact, due to the temporal correlation of particle veloc-
ity, eliminating the velocity variable in (6) gives a non-
Markovian generalized ME of the following form (Risken,
1989)

∂P

∂t
=

t∫
0

K(x, t− τ)
∂2

∂x2
P (x; τ) dτ , (7)

where the memory kernel K(x, t) may be an integral
operator or contain differential operators with respect to
x, or some other linear operator.

If the memory kernel K(x, t) correspond to the Gel’fand–
Shilov function

K(t) =
t−µ−1
+

Γ(−µ)
, 0 < µ < 1 , (8)

where the suffix + is just denoting that the function is
vanishing for t < 0, then ME (7) results to be



∂P

∂t
=

t+∫
0−

(t− τ)−µ−1

Γ(−µ)
∂2

∂x2
P (x; τ) dτ = Dµ

t

∂2P

∂x2
, (9)

that is the time-fractional diffusion equation, originally
analyzed by Mainardi (1996), where Dµ

t is the Riemann–
Liouville fractional differential operator of order µ in its
formal definition according to (Gorenflo and Mainardi,
1997, Eq. (1.34)), obatined by using the representation
of the generalized derivative of order n of the Dirac delta

distribution: δ(n)(t) =
t−n−1
+

Γ(−n)
, with proper interpretation

of the quotient as a limit if t = 0. Here we reminded that,
for a sufficiently well-behaved function ϕ(t), the regular-
ized Riemann–Liouville fractional derivative of non-integer
order µ ∈ (n− 1, n) is

Dµ
t ϕ(t) =

dn

dtn

 1
Γ(n− µ)

t∫
0

ϕ(τ) dτ

(t− τ)µ+1−n

 . (10)

For any µ = n non-negative integer we recover the
standard derivative

Dµ
t ϕ(t) =

dn

dtn
ϕ(t) .

For more details, we refer the reader to (Gorenflo and
Mainardi, 1997).

2.2 A physical mechanism for time-stretching generalization

It is well-known that the stretched exponential exp(−tα)
with 0 < α < 1, being a completely monotone function,
can emerge as a linear superposition of elementary ex-
ponential functions with different time scales T . In fact
from the well-known formula of the Laplace transform
of the unilateral extremal stable density L−α

α (ξ), see e.g.
(Mainardi et al., 2001)

∞∫
0

e−sξL−α
α (ξ) dξ = e−sα

, s > 0 , 0 < α < 1 , (11)

we first obtain

L−α
α (ξ) =

1
π

∞∑
n=1

(−1)n−1

n!
Γ(nα) sin(nπα) ξ−αn−1 . (12)

Then, after the changes of variable s = t and ξ = 1/T , it
follows that

∞∫
0

e−t/T L−α
α

(
1
T

)
dT

T 2
= e−tα

, (13)

where T−2L−α
α

(
1
T

)
is the spectrum of time-scales T .

What concerns diffusion processes, the same superposition
mechanism can be considered for the particle pdf . In fact,
anomalous diffusion emerging in complex media can be
interpreted as the resulting global effect following on from
particles that along their trajectory have experienced the
different values assumed by one or more characteristic
properties of the crossed medium, e.g, different values

of the diffusion coefficient. Then, particles diffuse in a
medium that is disorderly layered.

This mechanism can explain, for example, the origin of a
time-dependent diffusion coefficient, as it is considered in
the fractional Brownian motion, from the classical Gaus-
sian diffusion when different constant diffusion coefficients
are experienced by the particles. In fact, let ρ(D, x, t)
be the spectrum of the values of D and highliting the
dependence of the Gaussian density (2) on the diffusion
coefficient by adopting the notation f(x; t) ≡ f(x; t,D),
then, in analogy with (13),

f∗(x; tα) =
∫

f(x; t,D)ρ(D, x, t) dD

=
1√

4πtα
exp

{
− x2

4tα

}
, (14)

where

ρ(D, x, t)= t−(α−1)/2D−1/2 x2−2/α

41−1/αD
L−α

α

(
x2−2/α

41−1/αD

)
.(15)

See in Appendix the details for computation of ρ(D, x, t).

From (14) it follows that it holds
∂f∗
∂tα

=
1
D

∂f

∂t
, (16)

hence the ME for f∗(x; t) is

∂f∗
∂tα

=
∂2f∗
∂x2

. (17)

Since
∂f∗
∂tα

=
1

α tα−1

∂f∗
∂t

, this is the ME of the fractional
Brownian motion, i.e.,

∂f∗
∂t

= α tα−1 ∂2f∗
∂x2

, (18)

that in integral form reads

f∗(x; t) = f∗0(x) +

t∫
0

α τα−1 ∂2f∗
∂x2

dτ . (19)

In general, let the ME of a pdf P (x; t,D) be written in the
non-Markovian form

∂P

∂t
= D

t∫
0

K(x, t− τ)
∂2P

∂x2
dτ , (20)

where the Gaussian diffusion is recovered when the mem-
ory kernel is k(x, t) = δ(t). Assuming, in analogy with
(14), that it exists a general spectrum ρG(D, x, t) of values
of D such that it holds

P∗(x; tγ) =
∫

P (x; t,D)ρG(D, x, t) dD , (21)

then the analogous of (16) reads
∂P∗
∂tγ

=
1
D

∂P

∂t
, (22)

from which it follows that the time-stretched ME corre-
sponding to (20) is



∂P∗
∂t

= γ tγ−1

tγ∫
0

K(x, tγ − τγ)
∂2P∗
∂x2

dτγ

= γ tγ−1

t∫
0

K(x, tγ − τγ)
∂2P∗
∂x2

γτγ−1 dτ . (23)

Finally, the previous formalism can be furthermore gener-
alized assuming that the time-stretching is described by a
smooth and increasing function g(t), with g(0) = 0. Since
∂P∗
∂g(t)

=
1

∂g/∂t

∂P∗
∂t

, equations (23) turn out to be

∂P∗
∂t

=
dg

dt

t∫
0

K[x, g(t)− g(τ)]
∂2P∗
∂x2

dg

dτ
dτ . (24)

Choosing memory kernel (8), which guaranties that P be
a probability density and that the process be self similar
(Mura et al., 2008), and the time-stretching function

g(t) = tα/β , 0 < α ≤ 2 , 0 < β ≤ 1 , (25)

equation (24) turns out to be

∂P∗
∂t

=
α

β
tα/β−1

t+∫
0−

(tα/β − τα/β)−µ−1

Γ(−µ)
∂2P∗
∂x2

α

β
τα/β−1 dτ

=
α

β
tα/β−1 Dµ

tα/β

∂2P∗
∂x2

, (26)

that, setting µ = 1 − β, is the stretched time-fractional
diffusion equation (see Mainardi et al., 2010, Eq. (5.19)).

In terms of the regularized Riemann–Liouville fractional
differential operator (10), equation (26) is the ME corre-
sponding to the following integral evolution equation

P∗(x, t) = P∗0(x)+

1
Γ(β)

α

β

t∫
0

τα/β−1 (tα/β − τα/β)β−1 ∂2P (x, τ)
∂x2

dτ ,
(27)

that was originally introduced by Mura (2008) in his PhD
Thesis, and later discussed in a number of papers by
Mainardi et al. (2010); Mura and Mainardi (2009); Mura
and Pagnini (2008); Mura et al. (2008).

3. THE GENERALIZED FRACTIONAL MASTER
EQUATION FOR SELF–SIMILAR PROCESSES

3.1 The Erdélyi–Kober fractional diffusion: the generalized
grey Brownian motion

It is well-known that it exists a relationship between
the solutions of a certain class of integral equations that
are used to model anomalous diffusion and stochastic
processes. In this respect, the density function P∗(x; t)
which solves (27) is the marginal particle pdf , i.e., the
one-point one-time density function of particle dispersion,
of the generalized grey Brownian motion (ggBm) (Mura,
2008; Mura and Mainardi, 2009; Mura and Pagnini, 2008).

The ggBm is a special class of H-sssi processes of or-
der H = α, or Hurst exponent H = α/2, where, ac-
cording to a common terminology, H-sssi means H-self-
similar-stationary-increments. The ggBm provides non-
Markovian stochastic models for anomalous diffusion, of
both slow type 0 < α < 1 and fast type 1 < α < 2.
The ggBm includes some well-known processes, so that
it defines an interesting general theoretical framework. In
fact, the fractional Brownian motion appears for β = 1,
the grey Brownian motion, in the sense of Schneider (1990,
1992), corresponds to the choice 0 < α = β < 1, and finally
the standard Brownian motion is recovered by setting
α = β = 1. It is worth noting to remark that only in
the particular case of the Brownian motion the stochastic
process is Markovian.

Following Pagnini (2012), the integral in the non-Markovian
kinetic equation (27) can be expressed in terms of an
Erdélyi–Kober fractional integral operator Iγ,µ

η that, for
a sufficiently well-behaved function ϕ(t), is defined as, see
(Kiryakova, 1994, Eq. (1.1.17)),

Iγ,µ
η ϕ(t)=

η

Γ(µ)
t−η(µ+γ)

t∫
0

τη(γ+1)−1(tη − τη)µ−1ϕ(τ) dτ,(28)

where µ > 0, η > 0 and γ ∈ R. Hence equation (27) can
be re-written as (Pagnini, 2011b, 2012)

P∗(x; t) = P∗0(x) + tα
[
I0,β
α/β

∂2P∗
∂x2

]
. (29)

Since the ggBm serves as a stochastic model for the
anomalous diffusion, this leads to define the family of
diffusive processes governed by the ggBm as Erdélyi–Kober
fractional diffusion (Pagnini, 2012).

The ME corresponding to (27) is (26). But, since in (26)
it is used the Riemann–Liouville fractional differential
operator with a stretched time variable, an abuse of
notation occurs. Due to the correspondence between (26)
and (29), the correct expression for the ME of (27)
is obtained by introducing the Erdélyi-Kober fractional
differential operator Dγ,µ

η that is defined, for n−1 < µ ≤ n,
as (Kiryakova, 1994, Eq. (1.5.19))

Dγ,µ
η ϕ(t) =

n∏
j=1

(
γ + j +

1
η
t
d

dt

)
(Iγ+µ,n−µ

η ϕ(t)) . (30)

From definition (10) it follows that the Erdélyi–Kober and
the Riemann–Liouville fractional derivatives are related
through the formula

D−µ,µ
1 ϕ(t) = tµDµ

t ϕ(t) . (31)

A further important property of the Erdélyi–Kober frac-
tional derivative is the reduction to the identity operator
when µ = 0, i.e.,

Dγ,0
η ϕ(t) = ϕ(t) . (32)

Recently, the notions of Erdélyi–Kober fractional integrals
and derivatives have been further extended by Luchko
(2004) and by Luchko and Trujillo (2007). Finally, the
ME of the ggBm, or Erdélyi–Kober fractional diffusion,
is (Pagnini, 2012)



∂P∗
∂t

=
α

β
tα−1 Dβ−1,1−β

α/β

∂2P∗
∂x2

. (33)

3.2 The Green function of the generalized fractional
master equation as marginl pdf of the ggBm

The Green function corresponding to (29, 33) is (Mura,
2008; Mura and Mainardi, 2009; Mura and Pagnini, 2008;
Mura et al., 2008)

G(x; t) =
1
2

1
tα/2

Mβ/2

(
|x|
tα/2

)
, (34)

where Mβ/2(z) is the M -Wright function of order β/2,
also referred to as Mainardi function (Mainardi, 2010;
Podlubny, 1999). For a generic order ν ∈ (0, 1) it was
formerly introduced by Mainardi (1996) by the series
representation

Mν(z) =
∞∑

n=0

(−z)n

n! Γ[−νn + (1− ν)]
,

=
1
π

∞∑
n=1

(−z)n−1

(n− 1)!
Γ(νn) sin(πνn) . (35)

For reviews see (Gorenflo et al., 1999, 2000; Mainardi et al.,
2010).

The marginal pdf of the ggBm process emerges and
describes both slow and fast anomalous diffusion. In
fact, the variance of Green function (34) is 〈x2〉 =
+∞∫
−∞

x2G(x; t) dx = (2/Γ(β + 1)) tα, then the resulting

process turns out to be self-similar with Hurst exponent
H = α/2 and the variance law is consistent with slow
diffusion for 0 < α < 1 and fast diffusion for 1 < α ≤ 2.
However, it is worth noting to be remarked also that a
linear variance growing is possible, but with non-Gaussian
pdf , when β 6= α = 1 (purely random, the increments are
uncorrelated), and a Gaussian pdf with non-linear variance
growing when β = 1 and α 6= 1 (fractional Brownian
motion, fBm).

In Figure 1 we present a diagram that allows to identify
the elements of the ggBm class, referred to as Bα,β(t).
The top region 1 < α < 2 corresponds to the domain of
fast diffusion. with long-range dependence. In this domain
the increments of the process are positively correlated, so
that the trajectories tend to be more regular (persistent).
It should be noted that long-range dependence is asso-
ciated to a non-Markovian process which exhibits long-
memory properties. The horizontal line α = 1 corresponds
to processes with uncorrelated increments, which model
various phenomena of normal diffusion. For α = β = 1
we recover the Gaussian process of the standard Brownian
motion. The Gaussian process of the fractional Brownian
motion is identified by the vertical line β = 1. The bottom
region 0 < α < 1 corresponds to the domain of slow dif-
fusion. The increments of the corresponding process turn
out to be negatively correlated and this implies that the
trajectories are strongly irregular (anti-persistent motion);
the increments form a stationary process which does not
exhibit long-range dependence. Finally, the lower diagonal

line (α = β) represents the Schneider grey Brownian
motion (gBm) whereas the upper diagonal line indicates
the “conjugated” process of gBm.

0 0.5 1
0

0.5

1

1.5

2

β

α H

0.5

0

1

Purely random

Persistent

Anti−Persistent

Long range dependence

Brownian Motion

fBm

gBm

 Bα,β(t)

Bβ,β(t)

Bα,1
(t)

B
2−β,β(t)

Fig. 1. Parametric class of generalized grey Brownian
motion.

In general, even if the Green functions are interpreted as
one-point pdf evolving in time, they cannot in general de-
termine a unique (self-similar) stochastic process because
this requires the determination of any multi-point pdf .
But, as far as the ggBm is concerned, since its increments
are stationary, it emerges to be uniquely determined by its
covariance structure (Mura and Mainardi, 2009; Mura and
Pagnini, 2008). Then, even if the ggBm is not Gaussian in
general, it is a valuable example of a process defined only
through its first and second moments, which indeed is a
remarkable property of the Gaussian processes. Then the
ggBm is a direct generalization of the Gaussian processes
and, in the same way, the Mainardi function Mν is a
generalization of the Gaussian function, and it emerges to
be the marginal pdf of non-Markovian diffusion processes
that describe both slow and fast anomalous diffusion.

Special cases of ME (27) are straightforwardly obtained
(Pagnini, 2012). In particular, it reduces to the time-
fractional diffusion if α = β < 1, to the stretched Gaussian
diffusion if α 6= 1 and β = 1, and finally to the standard
Gaussian diffusion if α = β = 1.

4. CONCLUSIONS

We have highlighted the relationship between the Erdélyi–
Kober fractional operators and the valuable family of
stochastic processes generated by the ggBm, whose some
remarkable properties are reported above.In fact, the par-
ticle pdf of associated to the ggBm is the solution of
a fractional integral equation (29), or analogously of a
fractional diffusion equation (33), in the Erdélyi–Kober
sense and this solution is provided by a transcendental
function of the Wright type, also referred to as Mainardi
function. Since the governing equation of these processes
is a fractional equation in the Erdélyi–Kober sense it is
natural to call this family of diffusive processes as Erdélyi–
Kober fractional diffusion.

APPENDIX

The spectrum ρ(D, x, t) of values of D can be computed as
it follows. Consider formula (11), then applying the change
of variables

s =
(

x2

4 tα

)1/α

, ξ =
x2−2/α

41−1/αD
, (A.1)



it turns out to be
∞∫
0

exp
{
− x2

4Dt

}
x2−2/α

41−1/αD2
L−α

α

(
x2−2/α

41−1/αD

)
dD

= exp
{
− x2

4 tα

}
.

(A.2)

Finally, dividing both sides by
√

4 πtα
√
D t, it results

∞∫
0

1√
4 πD t

exp
{
− x2

4D t

}
t−(α−1)/2D−1/2 x2−2/α

41−1/αD
L−α

α

(
x2−2/α

41−1/αD

)
dD

=
1√

4 π tα
exp

{
− x2

4 tα

}
,

(A.3)

from which spectrum (15) follows.
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