
Journal of Digital Forensics, Security and Law, Vol. 6(3)

31

Exploring the iPhone Backup Made by iTunes

Mario Piccinelli
PhD candidate in Computer Sciences

Department of Information Engineering
University of Brescia, Italy
mario.piccinelli@ing.unibs.it

Paolo Gubian
Associate Professor

Department of Information Engineering
University of Brescia, Italy
paolo.gubian@ing.unibs.it

ABSTRACT
 Apple’s™ iPhone™ is one of the widest selling mobile on the market, thanks to
its simple and user-friendly interface and ever growing pool of available high
quality applications for both personal and business use. The increasing use of the
iPhone leads forensics practitioners towards the need for tools to access and
analyze the information stored in the device. This research aims at describing the
process to forensically analyze a logical backup of an iPhone made by the Apple
iTunes™ utility, understanding the backup’s structure, and creating a simple tool
to automate the process of decoding and analyzing the data. In our research of the
iPhone backup we identified data of forensic value such as e-mail messages, text
and multimedia messages, calendar events, browsing history, GPRS locations,
contacts, call history and voicemail recordings can be retrieved using this method
of iPhone acquisition.
Keywords: iPhone, iTunes, iOS, Logical Backup, Mobile Phone Forensics,
iPBA, iPhone Backup Analyzer.

1. INTRODUCTION
Modern mobile phones store vast amounts of data and have become an integral
part of peoples’ daily lives. The ever evolving technologies in the field of mobile
communications introduced a whole new experience of using mobile devices,
either for personal or professional use. Users rely on smartphones for an infinite
number of tasks, from planning their day to browsing the Internet. But the
increasing usage of smartphones in day-to-day activities cause these devices to
store more and more information about their owners’ life: where they’ve been,
who they called, who they ‘texted,’ and so on. These data could be a rich source
of evidence when the device itself is involved in a criminal activity and is seized
as part of an investigation process, whether it is a target, an instrument or just a
silent "witness". This brings the need to study forensically sound methods to
handle the examination and analysis of these devices and of the data they contain.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

32

Among the mobile phones available on the market we chose to work on the
iPhone device from Apple Inc. The iPhone is a new generation smartphone which
is seeing an incredible diffusion throughout the world, with a wide range of
functions storing a wide range of data that can be extracted during a forensic
analysis. We decided to analyze the iPhone data via the backup feature, because
that is the methodology which appears more forensically sound by producing the
slightest amount of modifications in the device under test: in fact, being able to
exploit the backup data prevents the examiner from having to modify the device
in order to extract data (a slightly bigger amount of data could be obtained by
jailbreaking the device, but this procedure, whenever available, implies
permanently modifying the evidence and thus should be avoided). While the
acquisition of the content of an iPhone using its standard backup feature is widely
known and reported, we found a lack of literature explaining in detail how the
data acquired in this way are organized, and what forensically interesting data
they contain. This research will explore the logical backup of an iPhone made
using the standard backup features and try to describe all its contents we’ve been
able to identify and which could be useful during an investigation. We’ll present
also a tool we developed to browse through the elements of the backup.
All the results shown in this article will assume that the backup was not encrypted
(the encryption is an iTunes option disabled by default). If the backup data is
encrypted, it has to be decrypted in order to perform the analysis described in the
following chapters. Commercial products such as the Phone Password Breaker™
from Elcomsoft™ claim to be able to enable forensics access to password
protected backups. Once decrypted, the backup data can be analyzed as stated in
the following chapters.

This document is organized as follows:

• Section 1: Introduction.

• Section 2: Creating a logical backup. This section describes what is
the logical backup of the iPhone, how can be obtained and why it
can be useful for forensics purposes.

• Section 3: Backup structure. This section describes the structure of
the iPhone backup and the elements we found inside: the standard
files and the possible types of the other ones.

• Section 4: Backup Content. This section gives a comprehensive list
of all the data we found in the backup directory, with an
explanation of how the single files and databases are structured
and which useful information we could find in them.

• Section 5: iPBA - iPhone Backup Analyzer. This section describes
the software we built and used to analyze the backup data.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

33

• Section 6: Conclusions.

2. CREATING A LOGICAL BACKUP
The iPhone backup on which all of the further analysis is performed is obtained
using the iTunes software. The iTunes utility by Apple Inc. is available for Mac
OS X™ and Windows™ platforms, and is the default software (and the only
officially supported one) to interact with the iPhone. The software provides a
backup feature which utilizes Apple’s proprietary synchronization protocol to
copy the iPhone data to a workstation. While the backup system can be manually
disabled and provides an optional encryption function, the default behavior of
iTunes is to make an unencrypted backup without asking, whenever the iPhone is
connected. It can be noted that when the iPhone is synchronized with the
computer it is paired with (via USB cable), data is copied from the phone to the
computer and vice-versa, whether each element has a newer version on the phone
or on the computer. Hence, in a forensics examination it is necessary to back up
the device with a clean installation of iTunes which contains no data, to prevent
newer elements to be copied from the forensics workstation to the device under
analysis. Moreover it is known that the pairing can’t be established via a USB
write blocker, because the backup utility needs to mount the iPhone filesystem
[1]. While this methodology was initially developed to analyze seized mobile
phones, it is noted that it can be used the same way to conduct forensics analysis
on seized computers which have been paired with unknown iOS devices (being
the backup feature enabled by default).
Our analysis was conducted on an iPhone 3GS with iOS version 4.2.1 and iTunes
version 10.2, the latest versions available during the research work. While more
extensive studies should be conducted to prove it, it is noted that all iPhone
devices sharing the same version of the operating system should be equally
interested by the results described in this document. Moreover, Apple iPad™
devices, which share a slightly different version of iOS, should be analyzed with
the same tools.
The results we provide in this paper were achieved by studying the logical backup
with iPBA iPhone Backup Analyzer, an utility we developed as a simple mean to
browse through the backup data. The software is written in Python and provides a
graphical interface which shows the tree of domains and files in the backup, and
provides a simple analysis of each file based on the content of the file itself. For
example, binary files of known types are automatically converted to a readable
form. As another example, for each SQLite database file the tool shows a list of
the tables it contains, and it provides the possibility to click on a table name to see
its contents.
Deeper analysis of each file has been conducted with standard instruments which
are described in the text. These instruments include some standard Mac OS X
utilities (such as the Plist editor for analyzing binary and plain text plist files),
third party utilities (such as the SQLite client to explore the content of SQLite

Journal of Digital Forensics, Security and Law, Vol. 6(3)

34

database files) and standard UNIX command line utilities (such as dd, strings or
hexdump).

3. BACKUP STRUCTURE
The backup data is stored in a preconfigured folder for each of the operating
systems iTunes is made available for.

Mac OS X: /Library/Application Support/MobileSync/Backup/
Windows XP: \Documents and Settings\(username)\Application
Data\Apple Computer\
MobileSync\Backup\
Windows Vista, Windows 7:
\Users\(username)\AppData\Roaming\Apple Computer\
MobileSync\Backup\

It is possible to have an arbitrary number of backups, as each backup is stored in a
subdirectory of the previously described path. The name of the backed-up folder
is a string of 40 hexadecimal digits, and represents a unique identifier for the
device from where the backup was obtained. This unique identifier appears to be
a hashed value since it was the same unique name given to the backed-up folder
by iTunes on both Mac and Windows operating systems. Within this folder, there
are hundreds of backup files with long hashed filenames consisting of 40 numbers
and characters. These filenames signify a unique identifier for each set of data
copied from the iPhone memory [Bader and Baggili, 2010].
The files found in the backup directory can be classified into five categories:

• SQLite3 database files;
• Plain text plist files;
• Binary plist files;
• Multimedia and text files.
• Non-standard data files.

The SQLite3 database files store a single database each in SQLite3 format. Each
database can contain an arbitrary number of tables. The plain text plist files are
Extensible Markup Language (XML)-like text files. Their binary counterparts are
XML-like files stored in binary format which can be easily converted back to a
plain text format with the Mac OS X plutil utility. A more in-depth description of
those file types is provided in sections 3.2 and 3.3.
In addition to the files described before, the backup directory contains five more
standard files with a fixed name, described in section 3.1.

3.1 Standard backup files
These files are created by the backup system and store data about the backup itself
and the device it was made of. Their names are:

Journal of Digital Forensics, Security and Law, Vol. 6(3)

35

• Info.plist
• Manifest.plist
• Status.plist
• Manifest.mbdb
• Manifest.mbdx

The first three files are plist files which can be easily analyzed using the Property
List Editor application on Mac OS X or by manual examination with a text editor
(binary plist files must be converted to text format first by the MacOsX plutil
utility). The file Info.plist (plain text plist) stores data about the backed up device
(such as the device name, GUID1, ICC-ID2, IMEI3, and serial number) and the
iTunes software used to build the backup (such as iTunes settings and the iTunes
version number).
The file Manifest.plist (binary plist) describes the contents of the backup. In this
file we find the applications installed on the backed up device (each with its
version number), along with the date the backup was made, whether the backup is
encrypted or not, and again data about the device and the iTunes software.
The file Status.plist (binary plist) seems to store information about the status of
the backup itself, such as whether the backup is complete or not.
The last two files of the list, Manifest.mdbd and Manifest.mbdx, are binary files
which store the descriptions of all the other files in the backup directory. It can be
noted that in these files there are also, described as separate records, the
directories and the symbolic links, which of course don’t have a corresponding
file in the backup directory.
The structure of the index file Manifest.mbdx is shown in Figure 1.

Figure 1: Structure of file Manifest.mbdx.

1 GUID (Global Unique IDentifier): a unique reference number used to

identify a device.
2 ICC-ID (Integrated Circuit Card IDentifier): an international identifier

for the SIM card in the device.
3 IMEI (International Mobile Equipment Identity): a number, usually

unique, used to identify mobile phones.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

36

Manifest.mbdx consists of a header and a number of records, one for each element
indexed (files, directories, symbolic links). The header contains two fields: a
string identifying the file type and the number of records in file. Each record
contains three fields. The first field is a 20 characters unique identifier of the
element (if the element is a file, the key is also the name of the corresponding file
stored in the backup directory). The second field is the offset (in bytes) of the
corresponding element in the Manifest.mbdb file. It must be noted that offsets in
file Manifest.mbdb don’t count the file header (first 6 bytes), so to obtain the
absolute offset we must add 6 to the value in the offset field. The last field is a 16
bit value describing the file permissions. The first 4 bits of this last field identify
the file type:

• 0xAxxx: symbolic link
• 0x4xxx: directory
• 0x8xxx: regular file

The xxx part (three nibbles) in the file mode seems to carry information about the
referenced element permissions in Unix style [2].
The second file, Manifest.mbdb, contains a record for each element indexed by
the previous file. The structure of the file is shown in figure 2.

Figure 2: Structure of file Manifest.mbdb.

Each record can contain an integer, an array of integers or a string. The strings are
composed of an uint16 that contains the length in bytes (or 0xFFFF for empty
strings) followed by the characters in UTF8 format (Unicode normalization form
D). All the numbers are big endian.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

37

As shown in figure, each record contains (among the other fields):
• Domain: the domain the element belongs to. Domains are a way to

functionally categorize elements in the device backup and will be
described later.

• Path: the full path of the element.
• Link Target: the target of the element, if the element itself is a symbolic

link (otherwise the field contains value 0xFFFF).
• Mode: the file permissions. This field holds the same value seen in file

Manifest.mbdx.
• User ID and Group ID.
• M. time: the time (in Unix time format) when the actual content of the

file was last modified.
• A. time: the time when the file was last accessed.
• C. time: the time when changes were last made to the file or directory’s

inode.
• File size: the size of the file in bytes.

Each record can contain a list of properties of arbitrary dimension [3].
3.2 SQLite files

SQLite is an ACID4-compliant embedded relational database management system
contained in a relatively small (275 KB) C programming library. The source code
for SQLite is in the public domain and implements most of the Structured Query
Language (SQL) standard. It is arguably the most widely used database engine, as
it is used today by several widespread browsers, operating systems and embedded
systems among others. Due to its small size, SQLite is well suited to embedded
systems, and is also included in Apple’s iOS (where it represents one of the
primary means of archiving data) [4].
It is important to point out that the in some cases it is possible to retrieve deleted
data from SQLite files. When a record is deleted, the area in the file where it was
stored is marked as unused but is not immediately overwritten, so its content can
already be recovered, for example by the Unix strings command. (The strings
command scans a file and outputs all the ASCII strings it found. It has been
verified that among those strings it can be found the content of deleted records.)
By this mean it has been possible to recover, for example, deleted notes, messages
and contact names from the device under test.

3.3 Plist files
Property Lists (often referred to as Plist files) are files that store serialized objects.
In iOS (as well as all versions of Mac OS X) the property lists are stored in XML

4 ACID (atomicity, consistency, isolation, durability) is a set of

properties that guarantee database transactions are processed reliably.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

38

format, with a public DTD5 defined by Apple. The XML format supports non-
ASCII characters and storing NSValue objects. The most used tags found on the
device under test are:

• <string>: UTF-8 encoded string.
• <real>, <integer>: decimal string.
• <true />, <false />: boolean values (tag only, they don’t contain other

data).
• <date>: ISO 8601 formatted string representing a date.
• <data>: Base64 encoded data.
• <array>: a list that can contain an arbitrary number of elements.
• <dict>: a list containing an arbitrary number of pairs of <key> and plist

element tags.
Because XML files are not the most space-efficient means of storage, Mac OS X
10.2 introduced a new format where property list files are stored as binary files.
Starting with Mac OS X 10.4, this is the default format for preference files.
The plutil utility (introduced in Mac OS X 10.2) can be used to check the syntax
of property lists, or convert a property list file from one format to another. XML
property lists are hand-editable in any text editor, but Apple provides a "Property
List Editor" application as part of their Developer Tools installation that provides
a hierarchical viewer/editor which can also handle binary formatted plists. [5]
Base64 encoded data can be decoded with many utilities which can be freely
found online. Mac OS X does not provide a default application to decode Base64,
but the result can be achieved by saving the data block in a text file and then
exploiting a function of the openssl utility (provided by default in the standard
installation of Mac OS X):
openssl base64 -d -in <infile> -out <outfile>

4. BACKUP CONTENT
The first categorization of backup files is described by their domain. The domain
for each file is written in its corresponding record in the Manifest.mbdb file. Each
file has a domain name chosen from the following list:

• Application domain.
• Home domain.
• Keychain domain.
• Managed Preferences domain.
• Media domain.
• Mobile Device domain.
• Root domain.
• System Preferences domain.
• Wireless domain.

5 DTD: Document Type Declaration

Journal of Digital Forensics, Security and Law, Vol. 6(3)

39

The domains Managed Preferences and Mobile Device do not appear to contain
useful informations (at least in the device under test), while the others contain
useful data which is described in further sections. It is noted that elements in the
Application domain are listed with a subdomain related to the name of the
application they belong to, while elements in the other domains appear not to use
this feature. When the subdomain is used, the domain string in Manifest.mdbd is
written as <domain>-<subdomain>.

4.1 Application domain
The domain AppDomain contains a certain number of subdomains, one for each
installed application. Each subdomain contains some files divided into a number
of directories, most of them standard for all applications. A typical structure is
shown in figure 3.

Figure 3: Typical structure of backup files of an application.

The directory Documents contains application-specific data, such as multimedia
files for media players. Data in this directory is saved in an application specific
format.
The directory Library contains standard elements and has an almost identical
structure for every application.
The subdirectory Library/Cookies contains a plist file named Cookies.plist
containing the cookies for the application, i.e. simple data chunks used for
temporary data storage.
The subdirectory Library/Preferences usually contains two files:

• .GlobalPreferences.plist: a symbolic link to a standard file containing
settings common for all applications on the device.

• A file with the same name as the application with extension plist
containing application specific preferences.

The subdirectory may also contain other settings files (usually symbolic links)
related to standard elements of the operating system used in the application (such
as PeoplePicker.plist for selecting names from the device Contacts or ADlib.plist
for managing iAD banners).

Journal of Digital Forensics, Security and Law, Vol. 6(3)

40

Figure 4: WebKit databases storage in backup data.

The subdirectory Library/WebKit contains elements related to WebKit, which is
the standard engine used under iOS to render web pages. The directory contains a
subdirectory LocalStorage into which temporary data is archived for offline use
and could contain another directory named Databases. The ability of web
applications to create databases on client machines is a new feature of HTML5
and the directory Databases is used to save such data. This data is saved as a
single SQlite file (in a specific subdirectory, as shown in figure 4) for each
HTML5 database, plus a file called “Databases.db” which lists the other ones.
The data structure in each database is application specific and can be easily
analyzed to retrieve all the data stored in the Webkit offline storage by the
application. For example, Fring (a free voice-over-IP application) uses this
methodology to store events (like call or chat logs or Twitter events) and contact
photos. These pieces of information can be easily dumped from the database file
and used as evidence.

4.2 Home domain
The Home domain contains a Library directory with a structure similar to what
described for the single applications. This directory contains all data for the
applications provided by default by iOS. In this section we describe the elements
we have been able to identify, ordered by the application they belong to.
Address Book Library/AddressBook contains the address book data of the
device. The directory contains two SQLite databases:

• AddressBook.sqlitedb contains contact data.
• AddressBookImages.sqlitedb contains contact images, both thumbnails

and full size images.

The main table is the one named ABPerson, which stores a record for each
element of the address book and the main values associated to it (first name, last
name, organization, job title, creation date and so on). Each contact in the address
book may have an unlimited number of contact data (phone numbers, emails,
etc.), so these values are stored in a separate table ABMultiValue. Each record of
this table has a label and a value. Some kinds of entries can be made of more than
one element (for example, the address field is made up of an address, a city name,
a ZIP code and so on), so it’s necessary to link to another table

Journal of Digital Forensics, Security and Law, Vol. 6(3)

41

ABMultiValueEntry where the single elements are stored, each one identified by a
label.
Each entry in the address book can be linked to a group, defined in the table
ABGroup. The connection between contacts and groups is made by the table
ABGroupMembers.
At last, each contact may have an image. Images are stored in the database file
AddressBookImages.sqlitedb as thumbnails and as full size images with crop size
data.
Safari Mobile Browser Library/Caches/Safari/Thumbnails contains PNG
images of the open tabs in the Safari browser. The files, along with their creation
date and time, can provide useful information about the device and its user.
The directory Library/Safari also contains data related to the Safari web browser.
Three files can be found in this directory:

• Bookmarks.db is a SQLite database file in which all the web bookmarks
are stored. The database contains three tables, the most important of
which is bookmarks that contains a record for each bookmark or
collection of bookmarks (bookmark folder). Each record contains,
among the other fields, a unique numeric id, a type identifier (0 for
bookmarks and 1 for folders), a parent id (which links an element to the
bookmark folder it is placed in), a descriptive title, the number of
children (only for bookmark folders), the URL (only for bookmarks)
and the attributes deletable and editable (1 for true and 0 for false).

• History.plist is a binary plist file which contains the recently visited web
pages. It is structured as an array of dictionaries, each of which
represents a single entry. Each element has, among the other attributes, a
title (corresponding to the title of the linked page), a URL, the last
visited date and a visits counter.

• SuspendState.plist is a binary plist file which contains information about
the open tabs in the Safari browser. It is structured as an array of
dictionaries (one for each tab), each one in turn containing a dictionary
with information about the back function (i.e., the URLs visited before
the current one in each tab). The dictionary stores all the information
needed to show the page as it was shown to the user last time (scale,
vertical position, etc.).

Calendar Library/Calendar contains the data for the Calendar application. The
directory contains a single SQLite file named Calendar.sqlitedb. The main table
in the database is the table Event, which stores a record for each calendar entry.
The most significant tables linked to a calendar entry are the one depicting the
reminders (table Alarm), the recurrence of the event (daily, weekly, monthly,
yearly, none) (table Recurrence) and the attendees to the event (listed in table
Participants and linked to events via table Attendees).

Journal of Digital Forensics, Security and Law, Vol. 6(3)

42

Configuration Profiles

Figure 5: Contents of Configuration Profiles backup directory.

Library/ConfigurationProfiles and its subdirectory PublicInfo contain plain text
plist files related to the device configuration (the structure of this directory as
found in the device under test is shown in Figure 5). The most interesting files are
UserSettings.plist and EffectiveUserSettings.plist which contain system
preferences related to the capabilities of the device user (such as parental control).
It is unknown what is the difference between the two aforementioned files, and
they appear to contain the same values.

Cookies

Figure 6: Contents of Cookies backup directory.

Directory Library/Cookies contains the device cookies, which are structures used
to temporarily store small amounts of text. A cookie can be used for
authentication, storing site preferences, shopping cart contents, the identifier for a
server-based session, or anything else that can be accomplished through storing
text. A cookie consists of one or more name-value pairs containing pieces of
information, which may be encrypted for information privacy and data security
purposes.
In the analyzed device this directory contains four files:

• Cookies.binarycookies, a binary file which seems to contain cookies
created by the Safari web browser. A simple string analysis using the
strings Unix command revealed a list of visited sites with their
associated cookie values (which could include, for example, session

Journal of Digital Forensics, Security and Law, Vol. 6(3)

43

keys that can be used for further investigation). As an example, the
following listing contains part of the output of the Unix strings
command performed on the previously described file.
.support.github.com
A__utmb
100728323.5.9.1292667876786
.support.github.com
A__utmz
100728323.1292667788.1.1.utmcsr=(direct)|utmccn=
(direct)|utmcmd=(none)
.support.github.com
?__utma
73095439.847495668.1263931189.1263931189.1263931
189.1
.manuali.net
?__utmv
73095439.user_level_anonymous

While the exact meaning of the entries is not known, we can
assume that the device browser accessed the listed urls:
support.github.com and manuali.net. Further analysis could be
performed on the single strings extracted to uncover their meaning
and how they could be used during a forensic analysis (for
example, a string bound to a url could be a session id for a logged
in user; thanks to this information an investigator could be able to
obtain more data about him from the provider of the web service).

• com.apple.iAd.cookiedb, a SQLite file which contains a single cookies
table, presumably used to store cookies for the iAd system.

• com.apple.itunesstored.plist, a plain text plist file containing cookies
stored by the iTunes Store as an array of dictionaries.

• com.apple.itunesstored.2.sqlitedb, a SQLite file which also seems to
contain cookies stored by iTunes Store. It contains a single cookies
table.

Keyboard Directory Library/Keyboard contains one or more plain ASCII files
used to store dynamic dictionary words, i.e. recently used words which are used
by the auto-completion dictionary (as recently used words are supposed to be the
most likely candidates for words auto completion). This list includes words not
present in the default orthographic dictionaries which have been inserted by the
user. In the analyzed device there are two files, one for each dictionary used
(standard English dictionary and Italian dictionary).

• dynamic-text.dat

Journal of Digital Forensics, Security and Law, Vol. 6(3)

44

• it_IT-dynamic-text.dat
These files can be examined by the Unix strings command to reveal all the text
stored, and can be useful to retrieve non standard words used by the device owner,
such as proper names.
Maps The Maps application provides an interface to the Google Maps service for
searching and browsing locations. The directory Library/Maps contains data for
the application in three binary plist files:

• Bookmarks.plist seems to contain the locations bookmarked in the
application. After decoding the file with the plist utility, it appears to
contain the bookmarks saved as data elements:
<data>
CAAQABgDIAAqJ1ZpYSBWYWxsb
NTA1MCBQYXNzaXJhbm8gQlMsI
YWxpYTUBAAAAQglQYXNzaXJhb
...
</data>

The bookmarks’ data, stored under the data key, is encoded in
Base64 format. After decoding we found that it contains the
description of the bookmark, either by its search string, its address
or by the URL used to show it on Google Maps online.

• Directions.plist seems to contain the current status of the directions
system of the Maps application. After decoding the file with the plist
utility, it appears to contain the directions saved as a data element. The
data section contains Base64 encoded strings of all the instructions to
reach the destination, along with the distance and time between each of
them.

• History.plist contains the history of recent searches made by the user in
the Maps application. The file contains an array of elements. Each
element is a dictionary identified by a numeric key HistoryItemType
which assumes values 0 or 1. Type 0 elements represent a searched
address, and are stored in clear text with the text used by the query,
latitude and longitude values. Type 1 items represent a searched
direction (from two positions), and are stored as data elements in the
format seen above.

In the directory Library/Maps there is also a PNG image named
MapIcon.png. This image shows the position of the temporary
bookmark placed on the map by the user. This file is used as the profile
image when creating a Contact element from a position on the map, and
combined with its creation date and time could represent useful
information during a forensics analysis.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

45

Figure 7: Example of MapIcon.png from a test device.

Applications preferences The directory Library/Preferences contains a number
of binary plist files (66 in the device under test). Each file stores preference for a
specific core application (or part of it). The application to which each file belongs
is easily identified by its name. During our examinations we found files
containing data which could be useful for forensics purposes, listed below.

• com.apple.Maps.plist stores information about the status of the Maps
application. We found some interesting keys, such as the last viewed
latitude, longitude and zoom scale, the start and end strings in the route
search fields along with the search strings inserted by the user.

• com.apple.MobileBluetooth.devices.plist stores a list of all the bluetooth
devices paired to the host device. The file is structured as a list of key-
dictionary couples. The key contains the MAC address of the bluetooth
device and the dictionary contains a list of properties of the device itself,
such as a default name, a complete name and the capabilities (handsfree,
headset, and so on).

• com.apple.MobileBluetooth.services.plist stores a list of all bluetooth
services supported by the device, and for each service stores a history of
paired devices with the date of the last use, along with other
information. The file is structured as a list of key-dictionaries. The key
contains the name of the service, and the dictionary stores the saved
data.

• com.apple.accountsettings.plist stores information about the accounts
set on the device, for example the accounts used for synchronization
purposes or for managing email or notes. The file is structured as a list
of dictionaries. Each dictionary is related to a single account and stores
data as key-content pairs. The account is identified in each dictionary by
the key Class. On the device under test 5 account have been found. We
provide a brief description of each.

• Class: DeviceLocalAccount. This seems to be the default account
existing on the device. It has a list of Enabled Dataclasses (Notes
and Bookmarks) and a Type string showing the value On My
iPod Touch.

• Class: SMTPAccount. This is an account for sending emails using
a Gmail address via SMTP protocol. It contains, among the
others, the key hostname (which contains the Gmail host address
for SMTP services, http://smtp.gmail.com) and Username.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

46

• Class: SMTPAccount. This is an account similar to the one
described before but bound to a Mobile.me account.

• Class: GmailAccount. This file seems to be related to the main
Gmail account used to receive email in the device. It contains,
among the others, the key AccountPath which points to the path
where the email files are stored on the host computer (under the
Mac OS X directory ~/Library/Mail/) and the full Gmail
username.

• Class: LocalAccount. This file represents the host computer local
account, used to store elements not included in the previous one.
In the device under test these elements are the Notes and the
Outbox folder. This element contains, among the others, the path
where the files are stored on the host computer.

• com.apple.locationd.plist stores a list of applications allowed to access
the location (GPS) capabilities of the device.

• com.apple.mobilemail.plist stores settings related to the Mail
application. Among other settings, we find the key SignatureKey, which
contains the default signature appended to every email sent from the
device.

• com.apple.mobilephone.plist stores data about the telephone application.
The most interesting keys found in this file are

• AddressBookLastDialedUid, which stores the user id (as seen in
the Contacts database) of the recipient of the last call made by
selecting a name from the Contacts application.

• DialerSavedNumber, which stores the last number dialed on the
phone.

• RecentsLastViewedDate, which stores the timestamp of the last
time the recent calls have been shown to the user.

• com.apple.mobilephone.speeddial.plist stores data about the speed dial
function of the mobile phone (the bookmarked numbers for faster
dialing). The file is structured as an array of dictionaries, each one about
a single bookmark. For each entry the device stores data like the name,
the number and the id of the recipient in the address book.

• com.apple.mobiletimer.plist stores user configuration about the two
functions of the Clock application: the mobile timer and the world
clock.
For the mobile timer, the file stores an array of dictionaries (under
the key Alarms), each one representing a single alarm. Among the
other pieces of information, the most interesting keys are the
alarm time (keys hour and minute), the title (key title) and the last
modified time (key lastModified). If the alarm is set to start on a
specific day of the week, the day is stored in the key daySetting.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

47

For the world clock the file stores an array of dictionaries (under
the key cities), one for each shown clock. Each clock is bound to a
specific city, so the data structure stores data like the country
name, latitude and longitude, and the timezone.

• com.apple.preferences.datetime.plist stores data about the timezone of
the device.

• com.apple.springboard.plist stores settings regarding the user interface.
The most interesting element in this file is the key SBRecentDisplays,
linked to an array of strings. The strings are the names of the last opened
applications in inverse chronological order, as they are shown in the
device’s springboard (task manager).

• com.apple.stocks.plist stores the configuration of the Stocks application.
• com.apple.weather.plist stores the configuration of the Weather

application.
• com.apple.youtube.plist stores information about the YouTube

application. The data which can be retrieved from this file are the
bookmarks and the history of the last seen videos. For each video it
stores the eleven character code with which the videos are identified in
the YouTube system.
The easiest way to discover the video linked to a code is to insert
it in the YouTube URL:
http://www.youtube.com/watch? v=XXXXXXXXXXX
where the Xs represent the code.

Mobile SMS

Figure 8: Contents of SMS backup directory.

The directory Library/SMS stores the Short Message Service (SMS) messages in
the device. The main storage area is the file sms.db, an SQLite database. It is
important to know that iOS stores SMS messages as "conversations," i.e. threads
of messages sent to, and received from, a single phone number shown in

Journal of Digital Forensics, Security and Law, Vol. 6(3)

48

chronological order. For each group of messages there is a single entry in the
msg_group table, which also shows the number of unread messages in the thread
and the ID of the most recent message. Each element in the previously mentioned
table is linked to an element of the specular table group_member, which stores the
address, i.e. the phone number of the recipient.
Each SMS is a single record in the message table. Each record holds the text of
the message, the number of the sender/receiver, the id of the message group, a
flags field which represents whether the message was sent or received (values 3 or
2 respectively), the read/unread flag and the timestamp.
The device stores also drafts, which are text strings written in the text area of the
SMS application but not yet sent. These strings are stored in subdirectories of the
directory Library/SMS/Drafts. Each subdirectory is named after the ID of the
group it refers to (see figure 8) and contains a single binary plist file named
message.plist. This file contains the text of the draft.
Multimedia Message Service (MMS) messages are stored in the same way as
regular messages, but without the text. The contents of the messages, which could
be multimedia elements and/or text, are stored as separate records in the table
msg_pieces. Each record of this table contains, among the other data, the content
type (image or plain text), the content itself and the ID of the message it belongs
to. If the content is an image, it can be contained in the record or be referenced by
file name on the multimedia directory of the device. If the referenced content is
not stored in the table then it is stored under the Media domain, in the directory
Library/SMS/parts. Each subdirectory contains one or more multimedia elements,
often in pairs: the element and its preview (the latter has the same name of the file
it references, but without extension and with suffix "-preview"). The name of each
element contains the ID of the message it belongs to and an ordinal value.

4.3 Keychain domain
The Keychain is a centralized, system-wide storage where iOS applications can
store information they consider sensitive. Typically, such information includes
passwords, encryption keys and certificates. Data in the keychain is always
encrypted.
When a user backs up iPhone data in an unencrypted form, the keychain data is
backed up, but the sensitive data remain encrypted as it was in the device
filesystem. The keychain password is a unique device key, which is deemed
impossible to access from outside the device itself. Therefore, passwords and
other secrets stored in the keychain on the iPhone cannot be used by someone
who gains access to an iPhone backup [6].
This form of backup has a limitation: it is not possible to restore the backup onto
another device, because it would not know the key used to encrypt the keychain.
To address this issue, Apple changed the way keychain backup works in iOS 4.
Now, when creating an encrypted backup, the user has to create a password to

Journal of Digital Forensics, Security and Law, Vol. 6(3)

49

protect backup, then keychain data is re-encrypted using an encryption key
derived from backup password, and thus can be restored on another device (by
providing the backup password). If the backup password has not been set, then
everything works like before iOS 4. Keychain encrypted with device key is
included in the backup [7]. We’ll explain later why this could be interesting on a
forensics perspective.

Figure 9: Contents of Keychain backup domain.

The Keychain domain contains files related to security and encryption systems on
the device. The most interesting file in this domain is the keychain-backup.plist,
which stores a copy of the keychain of the device, containing all the stored
passwords and certificates. The file is a binary plist file which, after being
converted into a plain text plist file with the Mac OS X utility plutil, shows a
structure composed by an array of dict entries like this one:

<dict>
 <key>acct</key>
 <string>Brainld</string>
 <key>agrp</key>
 <string>apple</string>
 <key>pdmn</key>
 <string>ck</string>
 <key>svce</key>
 <string>AirPort</string>
 <key>v_Data</key>
 <data>
 AAAA...
 </data>
 <key>v_PersistentRef</key>
 <data>
 Z2NucAAAAAAAAACP
 </data>
</dict>

This example is the entry extracted from a test device containing the password to

Journal of Digital Forensics, Security and Law, Vol. 6(3)

50

access a WiFi network named Brainld. The password is stored (in encrypted
format) in the first data tag.
Keychain encryption As stated before, the keychain data is always stored in
encrypted format, even for unencrypted backups. As we have been able to
understand by searching the Internet [8], it appears that the algorithm used to
encrypt data is Advanced Encryption Standard (AES) with a 256-bit key length.
In unencrypted backups (as well as in the device filesystem) the sensitive
information is encrypted with a key stored inside the device which can’t be
accessed from outside. This leads to the conclusion that trying to break this form
of protection is not a feasible way.
In encrypted backups, instead, the sensitive data in the keychain has to be re-
encrypted using a key derived from the encryption password provided by the user.
The symmetric AES key is extracted from this password by applying the
PBKDF2 algorithm with an unknown salt over 10,000 iterations on the password.
This is a standard practice for key strengthening user supplied passwords for
AES, because the process makes brute force attacks more expensive in terms of
computational power and time.
From a forensics perspective, knowing the keychain is encrypted only by a key
derived from the user password means that by knowing the details of the
encrypting algorithm along with the password,it is possible to decrypt the
keychain and acquire all the passwords stored in it. Commercial software (like
iPhone Password Breaker from Elcomsoft) are reported to be able to accomplish
this result.

4.4 Media domain
The Media domain is where all the multimedia information of the device is
stored. In this domain we can find, for example, the directory Library/SMS,
which, as stated before, stores multimedia elements (photos and videos) from the
MMS archive.
Except for the SMS data, all the Media domain is stored in the device under the
directory Media. The simplified structure of the Media folder is shown in figure 1.
In this section we will describe all the data found in this domain which is deemed
interesting for forensics purposes.
The folder Media/DCIM/100APPLE stores the unmodified files for the elements
in the device’s multimedia library (images, audio recordings and videos). The
files are all stored in the form IMG_XXXX.EXT, where XXX is a consecutive
number attributed to files during creation and EXT is the file type extension. In the
device under test we found JPG, PNG image files and MOV, MP4 videos or
audio recordings.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

51

Figure 10: Contents of Media domain folder.

Note that JPG images can store EXIF data. EXIF data are pieces of information
stored in the file header which can contain various elements about the image and
the device used to create it. We found that the amount of EXIF data varies with
the application used to take the photo: for example, images taken by the Photo
application of the iPhone store the largest amount of data, while photos taken by
other applications (such as the Facebook app) store fewer elements.

For forensics purposes, the most important tags (i.e., the tags that might prove
useful as evidence) are DateTimeOriginal, which stores the date and time when
the photo was taken, and GPSInfo, which stores the geographic position where the
picture was taken according to the iPhone GPS unit. The GPS data is stored as a
list of key-value pairs, as depicted in EXIF 2.2 standard [9].
As an example we show a GPS tag extracted from the EXIF data of an image
found in the device under test.

Tag: GPSInfo, value: {1: 'N', 2: ((45, 1), (3010,
100), (0, 1)),
3: 'E', 4: ((9, 1), (1028, 100), (0, 1)),
7: ((13, 1), (27, 1), (89, 100))}

This data shows, according to EXIF 2.2 Standard [9], that the photo was taken at
latitude 45 30.10’ 0” N, 9 10.28’ 0” E at 13:27 UTC.
The folder Media/PhotoData contains a plist file (storing the date of the last
modification of photo databases) and two SQLite databases containing
information about the photos and videos stored in the device.
The main table is the one named Photo (in Photos.sqlite), where there is a record

Journal of Digital Forensics, Security and Law, Vol. 6(3)

52

for each photo or video. In this record we found, among other information:
• Width and height in pixels.
• Thumbnail index: the position in the .ithmb files (see later in this

chapter) where we can find the thumbnails of the photo or video.
• Directory and filename: where the original file is stored (usually in

Media/DCIM/100APPLE).
• Capture time: timestamp of when the photo (or video) was captured.
• Duration: the duration of the video (0 for image records).
• Orientation: 6 for portrait or 1 for landscape orientation.

The records in table AuxPhoto (in file PhotosAux.sqlite) store latitude and
longitude for each photo.
The folder Media/PhotoData/100APPLE contains preview data for the video files
seen in folder Media/DCIM/100APPLE. For each video file this folder contains
two or three files with the same name as the original file but different extension:

• IMG_XXXX.JPG is an image with a preview of the first frame of the
video.

• IMG_XXXX.THM is also a JPG image with a small, square preview of
the first frame of the video.

• IMG_XXXX.THP is a data file which exists only for MOV video files
and stores preview frames of the video. The frames are stored (after a 16
bit header) as 22x29 pixel raw images (with no padding between each
frame), in the same format used to store thumbnails (see later in this
chapter).

The folder Media/PhotoData/Thumbnails contains three files:
• thumbnailConfiguration
• 120x120.ithmb
• 79x79.ithmb

thumbnailConfiguration is a plain text plist file containing version numbers for
the thumbnail management system. The other two are raw graphic files storing the
thumbnails for all the images in the multimedia library of the device. The files
store the single images as 120x120 and 79x79 pixels bitmaps respectively in RGB
555 Highcolor format, in which each pixel is represented by a 16 bit value (of
which only 15 effectively used). Between each bitmap there is a 28 bytes padding.
It is interesting to note that when a file is deleted from the library its thumbnail is
not immediately overwritten.
The folder Media/PhotoData/Videos stores in its subdirectory structure the BTH
files for the video in the multimedia library. The files have the same name of the
video they refer to but with BTH extension (IMG_XXXX.BTH). The BTH files
contain a preview of some frames of the video. Their structure is similar to what
we saw for thumbnails files: each file store a number of frames as 79x78 pixels

Journal of Digital Forensics, Security and Law, Vol. 6(3)

53

bitmaps in RGB 555 format. The file embeds also a binary plist storing some
properties of the preview, the most interesting of them being the duration of the
video.
The folder Media/Recordings stores data for the Audio Recorder application. In
this folder we found:

• The recorded audio files in M4A format.
• A plist file named CustomLabels.plist.
• A SQLite database file named Recordings.db.

In the SQLite database, the only interesting table is ZRECORDING, which stores
a record for each recording. For each recording the table stores the duration (in
seconds), the timestamp, the complete path of the audio file and the index of the
label used to name the recording on the device (there are many preset labels). A
label code of 7 indicates that the user created a custom label, which is also stored
in a field of the record. The file CustomLabels.plist contains a dictionary of key-
string pairs, in which the key is the complete name of a recorded audio file (with
extension) and the string is the label associated (being it a standard label or a
custom made one).

4.5 Root domain

Figure 11: Contents of Root domain folder.

In the device under test the only content of the Root Domain appears to be the
directory Library/Caches/locationd which, as the name suggests, seems to hold
information about the location capabilities of the iPhone. The structure of the
domain is shown in figure Error! Reference source not found..
The file clients.plist is a binary plist file. It contains a list of key-dictionary pairs.
Each key holds the name of an application which has requested access to the
location capabilities, and the corresponding dictionary contains information like:

• Whether the application has been authorized to access the location data.
• The name of the main executable of the application.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

54

• The timestamps of when the location acquisition has been started and
stopped the last time by the application.

The file which seems most interesting from a forensics perspective is
consolidated.db, which is.an SQLite database file which seems to contain the data
used by the device assisted GPS. The assisted GPS is a system to achieve an
approximate localization of the device by using data from mobile cells and
wireless networks found nearby, and it is used while the main GPS system isn’t
ready to give the exact position. To achieve this result the device needs to store a
cache of known cells and WiFi networks with their approximate geographical
position.
The most interesting tables in consolidated.db appear to be WifiLocation and
CellLocation. The table CellLocation seems to store a cache of Base Stations (one
for each record), identified by their MCC6, MNC7, LAC8 and CI9.
Each record stores:

• A single cell identification: MCC, MNC, LAC and CI.
• A timestamp.
• A geographic position (latitude, longitude, altitude).
• Vertical and Horizontal accuracy.

While it is not known exactly how the system works, it has been verified that for a
single value of timestamp (i.e. for a single instant) many records are recorded, all
belonging to a limited area. It has also been verified that the mobile phone was
effectively located in the area among the base stations found at the time recorded
by the timestamp. So we can reasonably assume that the device stores, at the time
specified by the timestamp, data about all the base stations the device "knows"
and their approximate geographical position (probably this data is temporarily
stored elsewhere as it is harvested, maybe in the now empty table
CellLocationHarvest, and then written to this table). This information may be
valuable to a forensics examiner, because it can be used to prove that a seized
device was in a known, limited area at a certain time. In the device under test we
have been able to recover even one year old positioning data. The locations can be
extracted from the table by a simple SELECT statement and then used to create a
Keyhole Markup Language (KML) file which in turn will be shown by a
geographical application such as Google Maps.

6 MCC: Mobile Country Code. The code identifies the country of the

operator.
7 MNC: Mobile Network Code. The code identifies the mobile provider.
8 LAC: Location Area Code. The code identifies a set of base stations

grouped together to optimise signalling.
9 CI: Cell Identity. The code identifies a single Base Station.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

55

Figure 12: Cell and WiFi location, each for a single timestamp (images

from Google Earth).

After researchers reported that location-based information was stored in such
unencrypted and unprotected form, Apple was forced to change the way this file
is managed. From iOS version 4.3.3 the file consolidated.db no longer contains
the location tables (either for cells or WiFi hotspots).

4.6 System Preferences Domain

Figure 13: Structure of the System Preferences domain folder.

The domain System Preferences appears to contain only the directory
SystemConfiguration, which stores some binary plist files holding information
about the configuration of the core components of the iOS system. The files in the
System Preferences Domain of the device under test are depicted in Figure13.
The most forensically interesting files found in the device are:

• com.apple.network.identification.plist seems to store data about the
networking devices the iPhone has been in contact with. It appears to be
composed of a list of "identifiers" (the IP address of a router and the
corresponding hardware address, or the name of the interface for a

Journal of Digital Forensics, Security and Law, Vol. 6(3)

56

cellular WAN), each one of them associated to a timestamp and an array
of "services". Each service is in turn a dictionary containing Domain
Name System (DNS) and IPv4 data. In the device under test, by
analyzing this file we could find the addresses of the DNS servers, the
address of the router, the address assigned to the mobile phone and the
subnet mask of the network. These elements could be forensically useful
by letting the examiner know the device has been effectively attached to
a network, along with its Internet Protocol (IP) address.

• com.apple.radios.plist seems to store only whether the device is in
airplane mode or not. Being in airplane mode means that all the radio
components in the device (GSM/UMTS, Bluetooth, WIFi) have been
disabled.

• com.apple.wifi.plist stores a list of known WiFi networks. For each
network the file contains, among the others, BSSID, SSID (name of the
network), security mode (WEP/WPA), strength of the signal, channels
used and the timestamps of the last manual join and autojoin.

4.7 Wireless Domain

Figure 14: Structure of the Wireless Domain domain folder.

The Wireless Domain holds data related to the mobile phone part of the device.
The structure of the domain is shown in Figure14.
The domain is made up of two directories. The first, Library/CallHistory, contains
just one file, a SQLite database named call_history.db. As the name suggests, the
database stores in a table called call one record for each of the last 100 phone calls
the device received, missed or made.
For each call the database tores the number of the other phone involved, the
timestamp (in Unix Epoch time format, i.e. the number of seconds elapsed since
January 1st, 1970), the duration in seconds, the country code of the country the
call was originated from and a flag distinguishing between incoming (value 4)

Journal of Digital Forensics, Security and Law, Vol. 6(3)

57

and outgoing (value 5) calls. This last field has a special value (1507333) which
identifies calls failed due to network problems.
The file call_history.db contains another table called data which appears to store
logs for UMTS data connection of the device. In the device under test we found
that the file has four records, the last three of them with all the "bytes_" fields set
to zero. We can assume that each record was designed to store data for a single
network interface (as it appears to be described by the field "pdp_ip"). In fact, as
seen in previous logs, the iPhone appears to use just the interface pdp_ip0, which
is why the record with pdp_ip = 0 is the only populated one.
In the only populated record, the fields bytes_rcvd and bytes_sent are the values
of incoming and outgoing data traffic (in kilobytes) from the last reset of the
counters. The fields bytes_lifetime_rcvd and bytes_lifetime_sent are the same
values as stated before but can never be zeroed by the user and so represent the
total amount of data traffic of the device during its entire lifetime. The fields
bytes_last_rcvd and bytes_last_sent appear to be the data traffic (always in
kilobytes) for the last connection.
The file call_history.db has another table named _SqliteDatabaseProperties in
which each field consists of a pair key-value and appears to store values related to
the timers measuring the length of calls made by the device. The reason these
values are stored in a proprietary table (in a different way from the data transfer
logs) seems to be that the values in this table are updated by database triggers
whenever a new record is added to the call table. The table contains records for
the data transfers counts, too, but those values are all zero in the device under test
and do not seem to be used. The most notable values found in this table are:

• call_history_limit: maximum number of call records stored in the call
table.

• timer_last: duration (in seconds) of the last call.
• timer_incoming and timer_outgoing: duration (in seconds) of incoming

and outgoing calls from the last counters reset.
• timer_all: sum of the previous values.
• timer_lifetime: sum of durations of all incoming and outgoing calls in

the lifetime of the device.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

58

5. IPBA - IPHONE BACKUP ANALYZER

Figure 15: Main user interface of iPBA.

To analyze the backup data in a simple manner we developed a software tool,
called iPBA - iPhone Backup Analyzer. This tool provides a simple mean to
browse through a backup directory and perform a first analysis of each element
contained. It is written in Python and Tk, and thus it should be able to run on each
platform which supports this scripting language (it has been tested on Mac OS X
and Linux).
The software is started by launching the main script file, passing via command
line the location of the directory, such as:

./main.py -d Backup/

Upon startup, the tool locates the index files Manifest.mbdb and Manifest.mbdx
and parses them for all the data related to each single element they describe. This
data is then stored in a SQLite database built in RAM (one record of a table for
each element). Another table stores the objects properties, as each object could
have an arbitrary number of properties.
After parsing the index files, the user interface is built (see Figure Error!
Reference source not found.). In the left column there is a tree to show the
elements in an ordered manner: first by their domain, then by their subdomain
(only for the Applications Domain), then by their path and at last by their
filename. In the upper part of the left column are shown properties about the

Journal of Digital Forensics, Security and Law, Vol. 6(3)

59

backup, parsed from the Info.plist file, such as the version of iOS on the device,
the date of the backup and unique identifiers of the iPhone (ICCID, IMEI).
When the user clicks on a filename in the tree, the software tries to analyze it and
provides the output in the main text area. The data collected from the index files
are written first:

• File type (file, directory, symbolic link).
• Unix permissions.
• Data hash (if stored in the index files).
• User and Group ID.
• Last modified time, last access time, creation time.
• File key (the name of the file in the backup directory).
• Flag.
• File properties (if any).

Then more data are provided by analyzing the file itself:
• Last modification time of the file in the backup directory.
• File type (by magic numbers).
• Message Digest 5 (MD5) hash.
• First 30 bytes of the file in hexadecimal format.
• First 30 bytes converted to ASCII characters.

Finally, a more comprehensive analysis is conducted based on the type of the file:
• If the file contains ASCII text, the whole content of the file is shown in

the main text area. The same applies when we are analyzing plain text
plist files.

• If the file is a binary plist, it is converted to plain text plist by an
external utility written in Perl to a temporary file. The temporary file is
then shown in the main text area.

• If the file contains binary data, then the file content is displayed as an
hexadecimal dump. The utility displays on each line of the main text
area the input offset, followed by sixteen space-separated bytes of data,
followed by the same bytes converted to their ASCII counterpart.

• If the file is a recognized image (such as PNG or JPG), the image itself
is shown in the main text area. If the image is a JPG, then the software
displays a list of all the EXIF data it contains.

• If the file is a SQLite database, then the software displays a list of all the
tables in the file, each with the number of records it contains.

When an SQLite file is selected, in the right column the software displays a list of
the tables in the file. When the user clicks on a table, the tool dumps the content
of the table (preceded by a description of the table structure) in the main text area.
The software is still in active development, and has been fitted with a couple of
experimental functions which will be extended in future releases, such as a search

Journal of Digital Forensics, Security and Law, Vol. 6(3)

60

function, a timestamp converter (from absolute time format) and an option to
export the text in the main text area to an external file. Future versions of iPBA
will continue to improve the analysis of each object, by providing additional built-
in tools to show additional data more related to each file type (for example a way
to decode thumbnail files, which as shown above are built in a non standard
format). Other improvements will lead to provide personalized functions to
decode and present important data for which the structure has been recognized
(for example, we could provide a function to exploit the structure of the SMS
database to show the conversations in a iPhone-like style). And to make the
software useful in a forensics examination it will need reporting functions with
integrity check of the objects.

5.1 Practical informations
iPBA iPhone Backup Analyzer has been released as open source software under
the MIT license. Further informations about the software itself, along with links to
download the code and screenshots are provided at the address
http://ipbackupanalyzer.com.
We chose to distribute the software as open source mainly to provide a common
platform for the analysis of iOS backup data; all the interested people are
encouraged to participate, by contributing with new code, fixing bugs or by just
testing the software and making suggestions.

6. CONCLUSIONS
This study explored the forensics examination of the content of an iPhone device
by exploiting the backup data acquired by the iTunes software. The examination
process tried to make a comprehensive identification of all the objects found
among the thousands of files contained in the backup directory. During this study
an application has been developed to make the process faster and simpler.
During this research we have been able to locate a significant number of pieces of
data which constitute the first objectives of a forensics analysis of a smartphone
(such as contacts, sms data, browser data and so on) along with the objectives
required by the analysis of a complex device like the iPhone (applications data,
notes, audio memos and so on). We have been able to uncover hundreds of
elements and provide a brief description of each, along with hints about their
usefulness in a forensics analysis and instructions to build tools to further analyze
them.
iPhone forensics is an evolving field, first of all because of the continuous
changes in the structure of the operating system which leads to modifications in
how the data is stored and formatted. The structures we described in this research
will be probably subjected to modifications in the following versions, so the first
goal of the mobile forensics community should be to keep an open eye on future
releases of iOS to uncover these modifications and keep the knowledge of iOS up
to date.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

61

7. ABOUT THE AUTHORS
Mario Piccinelli received the Dr. Ing. degree from University of Brescia, Italy, in
2010, with a degree thesis about extraction and analysis of forensically sound data
from smartphones. He is now a graduate student and Ph.D. candidate in Computer
Forensics at the University of Brescia. His research interests are in security and
forensics applications to digital computer systems in general, and to embedded
systems in particular.
Paolo Gubian received the Dr. Ing. degree "summa cum laude" from Politecnico
di Milano, Italy, in 1980. After an initial period as a research associate at the
Department of Electronics of the Politecnico di Milano he started consulting for
SGS-Thomson Microelectronics (then SGS-Microelectronics) in the areas of
electronic circuit simulation and CAD system architectures. During this period he
worked at the design and implementation of ST-SPICE, the company proprietary
circuit simulator. Besides, he worked in European initiatives to define a standard
framework for integrated circuit CAD systems. During 1984, 1985 and 1986 he
was a visiting professor at the University of Bari, Italy, teaching a course on
circuit simulation. He also was a visiting scientist at the University of California
at Berkeley in 1984. In 1987 he joined the Department of Electronics at the
University of Brescia, Italy as an Assistant Professor in Electrical Engineering. He
is now an Associate Professor in Electrical Engineering. His research interests are
in reliability and robustness of electronic systems architectures and in security and
forensics applications to digital computer systems in general, and to embedded
systems in particular.

REFERENCES
[1] Mona Bader and Ibrahim Baggili. iPhone 3GS Forensics: Logical analysis using

Apple iTunes Backup Utility. Small Scale Digital Device Forensics Journal,
4(1), September 2010.

[2] Understanding file permissions on Unix: a brief tutorial. URL
http://www.dartmouth.edu/ rc/help/faq/permissions.html.
Retrieved February, 2011.

[3] MBDB and MBDX Format. URL
http://code.google.com/p/iphonebackupbrowser/wiki/Mbdb
MbdxFormat. Retrieved February, 2011.

[4] SQLite Wikipedia article. URL
http://en.wikipedia.org/wiki/SQLite. Retrieved February, 2011.

[5] Plist Wikipedia article. URL
http://en.wikipedia.org/wiki/Property\s\do5(l)ist.
Retrieved February, 2011.

[6] Mac OS X Reference Library: Keychain Services Concepts, a. URL
http://developer.apple.com/library/mac/#documentation/
Security
/Conceptual/keychainServConcepts/02concepts/concepts.h
tml. Retrieved February, 2011.

Journal of Digital Forensics, Security and Law, Vol. 6(3)

62

[7] Peeking Inside Keychain Secrets, b. URL
http://blog.crackpassword.com/2010/08/peeking-inside-
keychain-secrets/. Blog post retrieved February, 2011.

[8] Cracking Blackberry Backup Passwords. URL
http://blog.crackpassword.com/2010/09/.

[9] Exchangeable image file format for digital still cameras: Exif version 2.2.
Technical report, Japan Electronics and Information Technology Industries
Association - Technical Standardization Committee on AV & IT Storage Systems
and Equipment, April 2002. Retrieved March, 2011, from http://exif.org/Exif2-
2.PDF.

[10] Cfdate reference on mac os x developer library. URL
http://developer.apple.com/library/mac/documentation/C
oreFoundation/Reference/CFDateRef/Reference/reference.
html. Retrieved on March, 2011.

