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Abstract 

In order to obtain a modelling and prediction of tool wear in grinding operations, a Cognitive System has been employed to observe the 
dressing need and its trend. This paper aims to find a methodology to characterize the condition of the wheel during grinding operations and, by 
the use of cognitive paradigms, to understand the need of dressing. The Acoustic Emission signal from the grinding operation has been 
employed to characterize the wheel condition and, by the feature extraction of such signal, a cognitive system, based on Artificial Neural 
Networks, has been implemented. 
© 2016 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Grinding operations are abrasive processes which involve 
material removal. The material removal is carried out by the 
action of abrasive particles, positioned on a grinding wheel 
[1]. The grinding operation is one of the most common of all 
metalworking operations; even if abrasive processes are 
capable of high material removal rates, they are generally 
employed as a finishing operation. 

Grinding processes are directly influenced by many 
factors, such as the workpiece, machine, grinding wheel and 
process settings. The monitoring and control of the process, 
not only allows to keep under control the process itself, but 
allows to improve the process performance and to avoid 
scraps and to reduce defects to a minimum possible to ensure 
high accuracy and quality [2]. 

The grinding wheel plays an important role in both the 
surface roughness and the material removal. The classification 
of the grinding wheel as “sharp” (with cutting capacity) or 
“dull” (with loss of cutting capacity) is fundamental to 
achieve the best performance of any abrasive operation [3, 4]. 
In order to understand the wheel conditions and to estimate 

and approximate the wheel life cycle time, as accurate as 
possible, before the regeneration of the wheel through a 
dressing operation, the grinding operation itself was 
monitored. Through a sensor monitoring system, the Acoustic 
Emission (AE) signal was acquired and statistics derived from 
this signal. The combination of these statistics with the 
working parameters of the grinding operation will be 
employed to feed a cognitive decision making support system, 
such as an Artificial Neural Network (ANN) system, to 
determine the wheel condition at each grinding pass and to 
predict and estimate the dressing need. 

Understanding and estimating the wheel life cycle before a 
dressing pass is fundamental to reduce the time and cost of the 
grinding operation itself, by minimizing the number of 
grinding passes without material removal and, furthermore, to 
avoid defects and to optimize the whole operation time. 

Cognitive systems, such as Genetic Algorithms (GAs) and 
Artificial Neural Networks, are increasingly employed to 
optimize any kind of process and in the planning of any kind 
of engineering system [5 – 14]. ANNs are widely used in 
supporting the decision-making system of various 
manufacturing processes, such as lost wax casting processes, 

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of the 10th CIRP Conference on Intelligent Computation in Manufacturing Engineering



306   Doriana M. D’Addona et al.  /  Procedia CIRP   62  ( 2017 )  305 – 310 

to predict the tool-wear in milling and turning operations and 
to predict the dressing wear of grinding operations [8]. 

This research work focuses on a methodology for the 
prediction of the wheel wear and dressing need in cylindrical 
internal grinding operations. The aim of this study is, 
therefore, to supply a robust tool for the detection and 
prediction of the best time for the dressing operation, in order 
to minimize time for stops and to optimize the whole grinding 
operation. 

2. Description of the grinding and dressing operation 

The grinding operation were carried out at the Ar.Ter. SrL 
factory plant. The worked material was an AISI316; the 
performed operation was a cylindrical internal grinding, 
executed with the parameters indicated in Table 1, cooled with 
a water based coolant mixed to oil (4% oil, 96% water): 

Table 1. Working parameters for each Test. 

Parameters Test 1 Test 2 Test 3 

Material AISI316 AISI316 AISI316 

Feed rate [m/s] 0.00875 0.00875 0.00875 

Speed of the spindle [rpm] 440 440 440 

Speed of the piece [rpm] 40 40 40 

Depth of cut per pass [mm[ 0.03 0.03 0.05 

Initial piece diameter [mm] 245.11 324.60 326.55 

Required diameter 245.40 324.90 326.90 

# of Passes 18 16 9 

 

 
Fig. 1. Internal grinding operation at Ar.Ter. SrL. 

 

Fig. 2. Dressing operation at Ar.Ter. SrL. 

A parameter, which has been monitored and kept under 
control during the dressing operation of the wheel, was the 
overlap ratio [15]. The overlap ratio, Eq. 1, is a parameter 
which correlate the width of action of the dresser, bd, which 
was assumed as a constant in each Test, and the dressing feed 
rate per wheel revolution, Sd, which was constant during each 
Test. From all of this, it comes that the overlap ratio, Ud, is 
constant for assumption  

 (1) 

The working piece was a CAGE16 component for Gas and 
Oil distribution pipes. Each piece was worked with the same 
conditions. The signal acquisition was performed on three test 
acquisition. The tests were carried out on a real production 
piece and, because of this, they had to be set with real 
production parameters, to avoid any scrap or defect. Basically, 
the test number three differs for the lowest number of passes, 
due to the deepest depth of cut set. The diameter of the 
working piece may also change, according to the production at 
Ar.Ter. SrL (Fig. 1). Starting from an initial diameter as the 
piece reached the working station for grinding, a material 
removal operation at the internal diameter was needed to set 
the piece at the data sheet specification. The abrasive grinding 
wheel, which was used for the material removal, was a Norton 
Silicon Carbide (SiC) 38A60LVS. The dressing passes (Fig. 
2) were carried out by mean of a DIAVIK natural diamond at 
1.5 carat weight; the diamond was mounted on a turned CM1 
steel tool and the depth of cut was set at 0.03 mm. The feed 
rate of the wheel at 0.00875 m/s, turning at 440 rpm, without 
coolant. The wheel dimension was d1-3x50x65 mm, where d1-3 
was the diameter of the wheel measured for each of the three 
tests that varied from a maximum of 176 mm to a minimum 
value of 126 mm. The peripheral speed varied according to the 
wheel diameter used of each test and it oscillated from 4.05 
m/s to 2.90 m/s. 

3. Signal acquisition 

The acoustic emission signal was acquired using the 
Montronix BV100™ broadband vibration sensor, provided 
with two channels to measure both the vibrations and the high 
frequency acoustic emission (AE) signals. The acoustic 
emission signal was acquired at 10 kHz. The analogue 
acoustic emission and sensor signals was then amplified by a 
Montronix TSVA4G amplifier. The specifications of the AE 
amplifier are reported in Table 2. The use of AE sensor 
signals has been widely employed to detect many phenomena 
in manufacturing processes, due to the working wide sensor 
bandwidth from 100 to 900 kHz [16, 17]. The AE sensor 
signals have as input a preamplifier with a high input 
impedance and low output impedance. Furthermore, a root 
mean square (RMS) converter, a gain selection unit, and 
filters are embedded in the preamplifier. In order to pass by 
this acquisition problem, the Montronix BV100™ was set to 
acquire RMS signals. The gain set for the acoustic emission 
RMS (AERMS) signals is equal to 10 to properly visualize the 
signals without exceeding the maximum threshold of 10 V 
imposed by the data acquisition (DAQ) board. 
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Table 2. Montronix TSVA4G specifications. 

Parameter Value 

Gain Settings: 1, 2, 5, 10, 20, 40, 80, 200, 
400, 800 

Gain Error ±2% 

Output Voltage 0 to 10 V 

Power provided to Sensor + 15 VDC @ 4mA constant 
current 

Amplifier Power Requirements +15 VDC @ 80mA 

-15 VDC @ -60 mA 

Temperature Range 0° to 60° C 

Connectors PG9 threated fittings, 
sensor-specific 

Weight 680 g 

  

 
Fig. 4. Signal acquisition system. 

 
Fig. 5. Montronix AE BV100 sensor. 

 
Fig. 6. Experimental setup and tests. 

The time constant for RMS was set as short at 0.12 ms. 
The AE signal has been acquired as RMS signal. RMS is a 
technique used to rectify a RAW signal and convert it to an 
amplitude envelope,, besides other significances; it is a 
measure of energy content in a given signal and, therefore, is 
widely used in monitoring systems. The rectification process 
converts all the numbers into positive values rather than 
positive and negative. The analogue signals from the AERMS 
sensors were digitalized by the National Instruments DAQ 
device NI USB-6361. The NI Signal Express 2014 software 
was used to acquire the data. Figures 4 - 6 illustrate the 
acquisition process and the experimental setup. 

4. Data Processing and elaboration 

The process consisted of a set of three tests of grinding 
operations. Each test counted a number of about 20 passes. As 
the operator detected that the effectiveness of the grinding 
lowers, a dressing operation was required. Each 
grinding/dressing pass was assigned a storaged file, which 
was identified with the coded name “PASSm”, with m = 001, 
…, n. 

For each pass the workpiece condition was monitored and 
measured, until the desired diameter and the planned material 
removal was reached. Figure 7 (a – c) shows the AERMS 
signals acquired during Test 1 and they refer to the TEST 1 - 
PASS002, TEST 1 - PASS012 and TEST 1 - PASS022. The 
Figures show the whole AERMS signal during the acquisition, 
which contains noise and tails. 

In order to avoid the undesirable signal segments and thus 
to work on the signal itself during grinding, the AERMS signal 
needs to be cut and filtered. To identify the start and end of 
the actual signals, they were cut on the basis of thresholds 
fixed on the moving average (Figure 8, a - c) of AE signal for 
each pass. The filtering process was carried out by using a 
low-pass filter, with cutting frequency of 10 Hz. 

In Figure 8 (a) it is important to notice that the signal 
sequence keeps low values of voltage and it has a low 
oscillation during the pass, while in Figure 8 (b) it can be 
noticed more oscillations and voltage values higher. This is 
precisely due to the fact that TEST 1 - PASS002 is the start of 
the processing, and it was performed after a dressing pass. 
While TEST 1 - PASS012 is right before the dressing 
operation. In Figure 8 (c), TEST 1 - PASS022, it can be 
noticed a high oscillation trend. 

The AERMS signals were then segmented at the same start 
and end points for every pass, in order to obtain signals with 
equal duration and number of samplings (Figures 9 a - c). 

5. Feature Extraction 

The relevant features from the signal extraction is critical 
to define the intrinsic characteristics of the signal itself, in 
order to then use the same for the supply of a cognitive 
system based on artificial neural networks. Features can be 
extracted from the AERMS sensor signals in the time domain. 
These features have been extracted and selected on the basis 
of their capability to describe the signal itself and are related 
to the process and the tool condition. In this case, the tool 
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condition is given by the need of dressing, according to the 
capability of the wheel to remove material. The most common 
signal features in the time domain, and those selected to feed 
the ANN decision making system, are the following [17 – 20]: 

 Arithmetic features: mean and average value of the signal; 
 Conventional statistical features: variance, kurtosis, 

skewness; 
 Acoustic emission energy [21 -23]. 

(a) 

(b) 

(c) 
Fig. 7. (a) PASS002, (b) PASS012, (c) PASS022 AE signals. 

(a) 

(b) 

(c) 
Fig. 8. (a) PASS002, (b) PASS012, (c) PASS022: 

Moving Average of the AERMS signals. 

(a) 

(b) 

(c) 
Fig. 9. (a) PASS002, (b) PASS012, (c) PASS022: 

Signal portion of the AE signals. 
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In particular, audible sound energy appears to be an 
effective tool that could adequately replace operator’s 
experience based on knowledge. Audible sensing techniques 
have been widely investigated for grinding and dressing 
operations. The investigation on the relationship between tool 
condition and measurable signals for the detecting of the 
dressing need has been extensively studied. In particular, the 
use of AE signal allows to monitoring the tool condition from 
the AE feature extraction. AE signals differ from the vibration 
signals as they are not influenced by the environment noises 
without interfering with the process. In order to feed the ANN 
decision-making system, the aforementioned features have 
been combined with the working parameters of the grinding 
operation, such as the followings [24, 25]: 

 Feed rate [m/s] 
 Depth of cut [mm] 
 Peripheral speed of the workpiece and of the wheel [m/s] 
 Internal diameter [mm]. 

6. Cognitive system implementation 

The foregoing features have been employed as the input of 
the ANN decision-making system, while the output has been 
identified in the need of dressing during the grinding 
operation. To associate the output with a wheel condition, a 
classification of the grinding wheel as “sharp” (with cutting 
capacity) or “dull” (with loss of cutting capacity) has been 
made. In particular, the condition “sharp” has been classified 
as output with the code 0, while the condition “dull” has been 
classified with the code 1. 

The input matrix of the network is then composed by 43 
rows, where 18 refers to the TEST 1, 16 to the TEST 2, 9 to 
the TEST 3. The matrix has by ten columns, which are 
representative of a machining parameter (feed rate, depth of 
cut, peripheral speed of the workpiece, peripheral speed of the 
wheel, amount of material removed) and of a feature extracted 
from the signal (average value of the signal, kurtosis, 
variance, skewness, acoustic emission energy). While for 
TEST 1 and 2 the machining parameters are quite the same, 
they are slightly changed for TEST 3, depending on the 
geometry of the workpiece, which was slightly different. The 
signal features have been extracted from the corresponding 
AERMS signals. The vector of the encoded output was created 
by associating each row of the matrix to the corresponding 
condition of the grinding wheel. In fact, has been assigned 0 
when the grinding wheel was sharp and therefore able to 
remove material, and 1 for the dull grinding wheel, which was 
the last roughing grinding before the operation of dressing, 
when the grinding wheel was no longer able to remove 
material. It should be noticed that, as regards the TEST 3, it 
has been set to a depth of cut greater, so as to further urge the 
wheel itself, and this was most evident in the number of 
dressing operations, however, associated with a lower number 
of passes for the achievement of the desired diameter. 

The cognitive system for the decision making on the wheel 
condition and the need of dressing has been implemented 
through two ANN models: the first one relies on the 
cascadeforwardnet (CFN) MATLAB R2014b function, while 

the second relies on the newcf (NCF) MATLAB R2014b 
function. Both the models work with Backpropagation Neural 
Networks (BP NN) and have been found particularly 
indicated in understanding functional relationships between 
inputs and given outputs. 

The CFN function is a three-layer neural network, which 
creates a weighted connection from the input and every 
previous layer, which are connected to the following layers 
and also creates connections from the input to all three layers 
[2, 26, 27]. 

The CFN function has been trained according to the train-
validation-testing (T-V-T) method: in order to find the 
optimal percentage for the training, validation and testing 
phase, an optimization based on the L1 norm has been 
performed. Figures 10 and 11 show the optimal region in 
which the CFN function reaches the best performances, 
according to the given input and outputs. According to the 
Figures, the best region where to train the CFN function is the 
region highlighted in red, where the ANN reaches the lowest 
value of the norm L1, according to a given node number and a 
given training set dimension. 

 
Fig. 10. 3D surface investigation on L1 norm performances. 

 
Fig. 11. 2D surface investigation on L1 norm performances. 

The second neural network model was based on the newcf 
function. While the CFN has been optimized on the basis of 
the T-V-T method, the NCF optimization has been carried out 
by the use of the leave-k-out (L-k-O) method. By setting k=1, 
this method creates a testing variable by leaving out the k-th 
row of the input matrix and of the output vector and it 
performs the training with the remaining n-k rows [2, 26, 27]. 
The performance test is performed by comparing the ANN 
predicted output with the testing variable k. Figure 12 shows 
the L1 norm optimization of the NCF function, according to 
the number of epochs and number of nodes. 
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Fig. 12. 2D surface investigation on L1 norm performances. 

Table 3 shows the obtained results with both the CFN and 
NCF function. The number of nodes and the best setting for 
each ANN has been chosen according to the lowest value of 
norm L1. The configuration which scored best is the CFN with 
90 nodes and a Training given by the 70% of the input matrix. 
With this configuration, the ANN has been capable to predict 
the 100% of the “sharp” and “dull” wheel given condition. 

Table 3. ANN results and summary. 

NET nodes method % training 
Number of errors 

# % 

CFN 40 T-V-T 70 -15 - 15 4 9.30% 

CFN 55 T-V-T 70 -15 - 15 3 6.98% 

CFN 26 T-V-T 70 -15 - 15 2 4.65% 

CFN 90 T-V-T 70 -15 - 15 0 0.00% 

NCF 30 L-k-O FULL - K 13 30.23% 

NCF 60 L-k-O FULL - K 11 25.58% 

NCF 90 L-k-O FULL - K 10 23.26% 

NCF 55 L-k-O FULL - K 11 25.58% 

7. Conclusions 

The artificial neural network models were developed to 
obtain a robust decision making system. The system could be 
employed in real time and can support the operator during 
grinding operation with a view to optimization and continuous 
improvement of the performance. 
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