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Abstract

We prove that both the synchronous data �ow language Lustre restricted to �nite

value types and the synchronous state oriented language Argos are embedded in

the synchronous paradigm Timed Concurrent Constraint �tcc�� In fact� for each of

the two languages we provide a tcc language encoding it compositionally w�r�to the

structure of programs� Moreover� we prove that the �strong abortion� mechanism

of the synchronous imperative language Esterel can be encoded in tcc�

� Introduction

Synchronous languages ����� have been proposed to program reactive systems

����� namely systems which maintain an ongoing interaction with their envi�
ronment at a rate controlled by this� The life of a reactive system is divided
into instants� namely moments in which it is stimulated by the environment
and it must react� Every reaction of the system produces a response which is
expected by the environment within a bounded time� at least within the next
instant� so that reactions do not overlap� Synchronous formalisms are based
on the synchronous hypothesis ��� which states that reactions of a system are
instantaneous� This hypothesis simpli	es reasoning about reactive systems�
since it presents at least two advantages� The 	rst is that the construct of
parallel composition does not give rise to nondeterminism� namely the various
components of a system act synchronously� and their actions cannot arbitrar�
ily interleave� The second is that time is treated as any other external event�
namely no special construct to deal with physical time is needed� In fact� the
notion of physical time is replaced by a notion of ordering among events�
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Since the eighties� two classes of synchronous formalisms have been devel�

oped
 the class of state oriented synchronous languages �Esterel ���� State�

charts ����� Argos ����� which are tailored for programming reactive systems

where the control handling aspects are predominant� and the class of declar�

ative data �ow synchronous languages �Lustre ���� Signal ���� which are tai�

lored for programming reactive systems where the data processing aspects are

predominant�

More recently� the paradigms Timed Concurrent Constraint �tcc and

Timed Default Concurrent Constraint �tdcc have been introduced in �������

to integrate synchronous programming with the paradigms Concurrent Con�

straint �cc ���� and Default Concurrent Constraint �dcc ���� respectively�

cc is based on the idea that systems of agents execute asynchronously and

interact by posting and checking constraints in a shared pool of information

�store� dcc extends cc since agents may check the absence of constraints in

the store� tcc and tdcc extend cc and dcc� respectively� with constructs to

sequentialize� w�r�to sequences of instants� agent interaction with the store�

Moreover� according to the synchronous hypothesis� agents are able to post

and check constraints instantaneously�

In this paper we investigate the expressiveness of tcc and tdcc by re�

lating their expressive power with the expressive power of other synchronous

languages� According to ����� a language L is more expressive than a language

L
� �L embeds L� if there exists an encoding of L� in L which preserves the

meaning of programs� This means that there exists a map from the semantic

domain of L� to the semantic domain of L such that the meaning of each pro�

gram P
� of L� is mapped to the meaning of the program of L encoding P �� As

argued in ���� an interesting property of this encoding is the compositionality

w�r�to the syntax of L��

We prove that the state oriented language Argos is embedded in tcc� In

fact� we provide an encoding of Argos in a tcc language� This encoding

is compositional w�r�to the syntax of Argos and is linear w�r�to the size of

Argos programs� This result suggests that tcc is well suited to e�ciently

encode the weak abortion mechanism ��� which is o�ered by Argos and by

other state oriented synchronous languages� This mechanism permits to abort

a process and to allow it to perform its last reaction in the instant in which it

is aborted� The strong abortion mechanism ��� di�ers from the previous one

because the aborted process is not allowed to react in the instant in which it

is aborted� We prove that also this mechanism can be encoded in tcc� This

result is interesting because the strong abortion mechanism is o�ered by some

synchronous languages� such as Esterel� Note that in ���� it is guessed that

this mechanism can be encoded in tdcc but not in tcc�

Then we consider the subset of Lustre restricted to 	nite value types� We

denote this subset of Lustre by LustreF and we prove that it is embedded

in tcc� In fact� we provide an encoding of LustreF in a tcc language� This

encoding is compositional w�r�to the syntax of LustreF and is linear w�r�to
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the size of LustreF programs and w�r�to the cardinality of values of types�

However� we conjecture that one cannot encode the full language Lustre in

any tdcc language� These results depend on the fact that Lustre o�ers a

mechanism to memorize information which is not available in tdcc� In order

to simulate this mechanism in tdcc� one must transfer explicitly information

from one instant to the subsequent one� This can be done only if types have

	nite values and� in this case� it is e�cient only if types have few values� Note

that the subset of Lustre which can be e�ciently encoded in tcc is interesting�

In fact� it is well known that the subset of Lustre restricted to boolean types

is su�cient to encode any Finite State Machine�

� An introduction to tcc and tdcc

In this section we introduce informally the paradigms tcc and tdcc� For a

formal and complete treatment� we refer to ��������

tdcc is a family of languages parametric w�r�to a constraint system which

determines the information that can be treated by agents� A constraint system

C is a tuple hDC��C� V arCi� where DC is a set of primitive constraints �tokens�

�C� Fin�DC � DC is an entailment relation� and V arC is a set of variables�

Tokens express possibly partial information on the value of the variables in

V arC� A set of tokens fc�� � � � � cng entails a token c if the information given by

c follows from the information given by c�� � � � � cn� We consider the following

syntax for tdcc


P 

� In 
 seqvar � D � A � Out 
 seqvar

seqvar 

� � j X� seqvar

A 

� tell a j if a then A j if a else A j �A�A j next A j p

D 

� � j p � A � D

where a� X� seqvar� p� A� D� P are metavariables for tokens� variables� se�

quences of variables� procedures� agents� sequences of declarations and pro�

grams� respectively� We obtain a tdcc language by choosing a suitable con�

straint system� The syntax of tcc is obtained by removing the construct

if else � Here we do not consider the construct of tcc to de	ne local

variables� This can be used to encode both the analogous construct of Lustre

and the construct of Argos to de	ne local signals� Also these constructs are

not considered here�

Each tcc program P interacts with the environment by exchanging infor�

mation at each instant� In fact� at each instant the environment stimulates

P by posting in the store a set of tokens expressing information on input

variables� and P reacts by posting in the store a set of tokens expressing infor�

mation on output variables� All information is removed from the store between

any instant and the subsequent one� The operational semantics of P is given in

terms of sequences of pairs of sets of tokens �����
�

�
� � � � � ��n��

�

n
� � � �� where

�n is the set of tokens prompted by the environment at the nth instant and

�
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��

n
is the set of tokens posted in the store by P at the same instant� for every

n � ��

According to the synchronous hypothesis� constructs tell� if then �
if else and � �  do not take time� while construct next takes exactly

one unit of time�

The agent tell a posts the token a in the store and then terminates� Both
agents if a then A and if a else A query the store about the validity of token

a� If the store entails a then the 	rst agent behaves as A else it terminates�

Symmetrically� if the store entails a then the second agent terminates else it
behaves as A� The agent �A�� A� is the synchronous parallel composition

of A� and A�� Tokens posted in the store by A� are available to A� at the

same instant� and conversely� The agent nextA will behave as A at the next

instant�

In order to specify cyclic behaviors� an agent can be a �recursive proce�
dure� Two syntactic restrictions are required� The 	rst is that recursion is

guarded� namely that if a call of procedure p is in the body of p then it must
be in the body of a next� The second is that procedures have no parameters�

so that at runtime there is a 	nite number of procedure calls�

As in �������� we write a for tell a� we denote by always A the agent p�
with p � �A� next p� which starts A at each instant� Moreover� we denote by

fAi j � � i � ng the agent �� � � �A�� A�� A�� � � � � An� Finally� we denote by
if a � b then A the agent �if a then A� if b then A and by if a � b then A

the agent if a then if b then A�

� Embedding Argos and strong abortion in tcc

In this section we show that Argos is embedded in tcc� We begin by intro�

ducing informally Argos� Then we de	ne the tcc language tccArgos and we
provide a compositional encoding of Argos in tccArgos� Finally� we prove that

the strong abortion mechanism can be encoded in tccArgos�

��� An introduction to Argos�

An Argos program P has an interface w�r�to the environment� consisting of a
set of input signals IP and a set of output signals OP � and a body� consisting

of an Argos agent� Agents may be Mealy machines� Mealy machines re	ned

by agents� and parallel composition of agents� We assume a set of signals S

with IP � OP � S for every program P � Each Argos agent has a graphical

representation� We choose to present a process�like syntax


P 

� In 
 seqsig � A � Out 
 seqsig
A 

� M j M � fA�� � � � � Ang j A k A

seqsig 

� � j s� seqsig

�
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where s� seqsig� A� M � P are metavariables for signals� sequences of signals�

agents� Mealy machines and programs� respectively�

AMealy machine M is a tuple �SM � s�M � IM � OM � TM� with SM � fs�M � � � � �
snMg a set of states� s�M � SM the initial state� IM a set of input signals� OM

a set of output signals and TM � SM �B�IM ��
OM �SM a set of transitions�

Here� B�IM  denotes the set of boolean expressions with variables in IM � The

set B�IM is ranged over by b�

A Mealy machine M starts running in its initial state s�M � Whenever M is

in state shM and the environment prompts a set of signals I � IM � a transition

�s� b� O� s
�
 is triggered if and only if s � shM and expression b evaluates to

true� provided that each variable in b evaluates to true if it appears in I� while

it evaluates to false otherwise� If �shM � b� O� skM  is triggered then it �res� so

that the output signals in O are broadcast to the environment� M leaves state

shM and it reaches the state skM �

Whenever M is in state shM and no transition is triggered then M does

not leave shM � Since only deterministic programs are admitted� it is re�

quired that b� � b� 	 false for boolean expressions b� and b� such that

�shM � b�� O�� sk�M
� �shM � b�� O�� sk�M

 � TM �

The agent A � M � fA�� � � � � Ang denotes the Mealy machine M re�ned

by the agents A�� � � � � An� A global state of A is formed by a state shM � SM

and by a state of Ah� � � h � n� At the 	rst instant� both M and A�

start running� If a state shM is reached by M at the i
th

instant and is left

by M at the j
th

instant� then Ah starts running from its initial state at the

�i� �
th

instant and performs its last reaction at the j
th

instant� In practice�

the machine M can activate and weakly abort the agents A�� � � � � An� Now� A

has IA � IM 

S

��h�n IAh as input set of signals and OA � OM 

S

��h�nOAh

as output set of signals�

The agent A � A� k A� is the parallel composition of A� and A�� A global

state of A is a pair consisting of a state of A� and a state of A�� A reaction of

A consists of both a reaction of A� and a reaction of A�� The agent A has IA �

�IA�

 IA�

n �OA�

OA�

 as input set of signals and OA � OA�

OA�

as output

set of signals� Signals broadcast by A� are sensed both by the environment

and by A�� and conversely� These instantaneous communications may give

rise to causality paradoxes which originate nondeterminism or nonreactivity

�namely the inability of agents to react� Argos rejects statically programs

where causality paradoxes may appear� We will assume to deal with correct

programs�

��� The tcc language tccArgos

Let us assume the constraint system A � hDA��A� V arAi such that


� V arA contains both S and the variables in shM and out shM � for shM a state

of a Mealy machine M �

� DA contains tokens of the form b � t and b � f � where b is a boolean expres�

�
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sion with variables in V arA and t and f denote true and false� respectively�

� �A is the least relation such that


fb � tg �A �b � f fb� � fg �A b� � b� � f

fb � fg �A �b � t fb� � f� b� � fg �A b� � b� � f

fb� � tg �A b� � b� � t fb� � t� b� � tg �A b� � b� � t�

We denote by tccArgos the tcc language obtained by instantiating tcc

over the constraint system A� Our aim is to give an encoding of Argos into

tccArgos� Intuitively� given a signal s� the token s � t encodes the fact that s

is broadcast� Given a state shM of a Mealy machine M � the token in shM � t

encodes the fact that M enters shM � while the token out shM � t encodes the

fact that M leaves shM �

We de	ne now the tccArgos construct �do watch � which will be used

to simulate the weak abortion mechanism of Argos� Given a tccArgos agent

A and a boolean expression b� the agent do A watch b starts behaving as A

and is weakly aborted when b � f is not entailed by the store� The construct

do watch is de	ned as follows


do a watch b � a

do �if a then A watch b � if a then do A watch b

do �A�� A� watch b � �do A� watch b� do A� watch b

do �next A watch b � if b � f then next �do A watch b

do p watch b � do A watch b� where p � A�

We de	ne now the tccArgos construct � init � which will be used to

simulate the activation mechanism of Argos� Given a tccArgos agent A and a

boolean expression b� the agent A init b checks the token b � t at each instant�

If this is entailed by the store� then A init b starts A at the subsequent

instant� The agent A init b is de	ned as follows


A init b � always �if b � t then next A�

��� An encoding of Argos in tccArgos�

We de	ne both a function h i from Argos agents to tccArgos agents and a

function � � from Argos agents to sets of declarations of tccArgos procedures�

The encoding of an Argos program P with body A is a tccArgos program

denoted by hP i and having �A� as declaration set and hAi as body�

Intuitively� the prompting to an Argos agent A of a set of signals I by the

environment corresponds to the prompting to the tccArgos agent hAi of the

set of tokens fs � t j s � Ig 
 fs � f j s � IA n Ig� The broadcasting of a set

of signals O � OA by A corresponds to the posting in the store of the set of

tokens fs � t j s � Og 
 fs � f j s � OA nOg by hAi�

�
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h�SM � s�M � IM � OM � TM �i � p�M

�SM � s�M � IM � OM � TM �� � fphM � AhM j � � h � ng� where
AhM � �fif b � t then�O�O�� next pkM � out shM � t� in skM � t� j �shM � b� O� skM � � TMg�

if RhM � t then �next phM � out shM � f��

hM � fA�� � � � � Angi � �hMi� f�do hAhi watch out shM � init in shM j � � h � ng�
do hA�i watch out s�M �

M � fA�� � � � � Ang� � M � �
S
��h�nAh�

hA� k A�i � �hA�iO
�
A�
�OA�

�� hA�iO
��
A�
�OA�

�� falways�if s� � t � s�� � t then s � t�

if s� � f � s�� � f then s � f�j s � OAg�

A� k A�� � A��O
�
A�
�OA�

� � A��O
��
A�
�OA�

�

hIn � s�� � � � � sn�A� Out � sn��� � � � � sn�mi � In � s�� � � � � sn� A�� hAi� Out � sn��� � � � � sn�m

Fig� 	� The functions h i and 
 ��

The de	nitions of h i and � � are in Figure �� Before explaining these

de	nitions� we need some notations�

Given an Argos agent A and a set of signals O � OA� we denote by O�O

the tccArgos agent �fs � t j s � Og� fs � f j s � OA nOg which simulates the

broadcasting of signals in O�

Given a Mealy machine M and a state shM � SM � we denote by RhM the

boolean expression
V

�shM �b�O�skM ��TM
�b� If RhM evaluates to t and M is in

state shM then M does not leave shM � since no transition is triggered�

For a Mealy machine M � hMi is the procedure call p�M and �M � contains

the declaration of a procedure phM for each state shM � SM � Each transition

�shM � b� O� skM  of M corresponds to a parallel component of the body AhM of

phM which checks the token b � t and� if this is entailed by the store� performs

the following actions


� it posts in the store s � t �resp� s � f for each s � O �resp� s � OM nO

� it activates the procedure pkM at the next instant

� it posts in the store the tokens out shM � t and in skM � t� These tokens

permit to weakly abort the tccArgos agent hAhi at the current instant and to

activate the agent hAki at the next instant if M is re	ned by Argos agents

A�� � � � � An�

Moreover� a parallel component of AhM checks the token RhM � t and� if this is

entailed by the store� it posts the token out shM � f in the store� representing

that M does not leave shM � So� phM posts either out shM � t or out shM � f

in the store�

The encoding of M � fA�� � � � � Ang is obtained from the encodings of M

and A�� � � � � An� The tccArgos agent hAhi is activated at the �n � �th instant

if in shM � t is entailed by the store at the nth instant� namely if M enters

shM at the nth instant� The agent hAhi is weakly aborted when the token

�
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out shM � t is entailed by the store� namely when M leaves shM � The agent

hA�i is activated also at the 	rst instant� since A� starts running in the 	rst

instant�

The encoding of A� k A� cannot be obtained as the parallel composition

of the encodings of A� and A� since it may happen that hA�i posts the token
s � t in the store and hA�i posts the token s � f in the store� when s is

broadcast by A� and not by A�� We denote by hA�i�O
�

A�
�OA�

� the tccArgos

agent obtained from hA�i by renaming each signal s � OA�
in the body of a

tell by s
�� and we denote by hA�i�O

��

A�
�OA�

� the tccArgos agent obtained from

hA�i by renaming each signal s � OA�
in the body of a tell by s

��� Now�

when either s� � t or s�� � t is entailed by the store then hA� k A�i posts the
token s � t in the store� Otherwise� it posts the token s � f in the store�

It is immediate to observe that the encoding of Argos in tccArgos given by

the functions h i and � � is linear w�r�to the size of Argos programs�

We observe that in ���� a translation of Argos into boolean equations has

been given� Our technique to encode the mechanisms of activation and weak

abortion has some analogies with that of �����

The following theorem states the soundness of our encoding� namely that

there exists a correspondence between the operational meaning of an Argos

program P and the operational meaning of the tccArgos program hP i�

Theorem ��� The following facts are equivalent�

� The Argos program P reacts to a sequence of sets of input signals I�� � � � � In� � � �

by broadcasting sets of output signals O�� � � � � On� � � ��

� The tccArgos program hP i reacts to a sequence of sets of tokens��� � � � ��n� � � ��

with �n � fs � t j s � Ing
fs � f j s � IP nIng� by producing sets of tokens

��

�� � � � ��
�

n
� � � �� with ��

n
� fs � t j s � Ong 
 fs � f j s � OP nOng�

��� Encoding the strong abortion mechanism�

We de	ne the tccArgos construct �do strong watch � such that� given a

tccArgos agent A and a boolean expression b� the agent do A strong watch b

starts behaving as A and is strongly aborted in the instant in which b � f is not

entailed by the store� The construct do strong watch is de	ned as follows


do a strong watch b � if b � f then a

do �if a then A strong watch b � if a then do A strong watch b

do �A�� A� strong watch b � �do A� strong watch b� do A� strong watch b

do �next A strong watch b � if b � f then next �do A strong watch b

do p strong watch b � do A strong watch b� where p � A�

Now� given an agent A and a signal s� the agent do A strong watch s is

strongly aborted when s � f is not entailed by the store� This means that

�
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do A strong watch s is strongly aborted when s � t is entailed by the store�

In fact� we have assumed that for each signal s � IA� the environment prompts

either s � t or s � f at each instant� Moreover� at each instant each tccArgos
agent posts either s � t or s � f in the store for each output signal s�

We note that in ���� it is shown how one can encode a construct equivalent

to do strong watch s in tdcc� but it is conjectured that strong abortion

cannot be encoded in tcc� So� we have proved the tcc is more powerful than

expected�

� Embedding Lustre in tcc

In this section we show that LustreF is embedded in tcc� We begin by intro�

ducing informally Lustre� Then we de	ne the tcc language tccLustre and we

provide a compositional encoding of LustreF in tccLustre�

��� An introduction to Lustre�

A Lustre program has as body a set of equations of the form X � E� with

X a variable and E an expression� Both X and E denote 	ows� namely pairs

consisting of a sequence of values of a given type and of a sequence of instants

�clock� A �ow takes the nth value of its sequence at the nth instant of its

clock� The equation X � E assigns to X the �ow of E�

A program has a basic clock such that at each instant of this clock the

environment prompts the value of the input variables� Slower clocks can be

de	ned by means of �ows with boolean values�

Expressions are constructed from constants and variables by means of data

operators and temporal operators� Data operators are usual operators over ba�

sic types which operate pointwise on the sequences of values of their operands�

Temporal operators operate explicitly over �ows


� pre ��previous� acts as a memory
 if �e�� e�� � � � � en� � � � is the sequence

of values of an expression E then pre�E has the clock of E as clock and

�� e�� � � � � en��� � � � as sequence� where  represents an unde	ned value�

� � ��followed by�
 if E and F are expressions with the same clock and

with sequences �e�� e�� � � � � en� � � � and �f�� f�� � � � � fn� � � � then E � F has

the clock of E and F as clock and �e�� f�� � � � � fn� � � � as sequence�

� when samples an expression according to a slower clock
 if E is an expression

and E � is a boolean expression with the same clock then E when E � has the

clock de	ned by E � and the sequence extracted from the one of E by keeping

only those values of indexes corresponding to t values in the sequence of E ��

� current interpolates an expression on the clock immediately faster than its

own
 if E is an expression whose clock is not the basic one� and E � de	nes

this clock� then current�E has the clock of E � as clock� and at any instant

of this clock it takes the value of E at the last time when E � was t�

�
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The e�ect of operators when and current is showed below�

X x� x� x� x� x� x	 x


E � t f t t f t f

Y � X whenE � x� x� x� x	

current�Y  x� x� x� x� x� x	 x	

As argued in ���� we can assume without loss of generality that all operators

are applied to variables� In fact� every equation can be transformed into an

equivalent set of equations satisfying this requirement by introducing auxiliary

variables� So� we consider the following syntax for Lustre


P 

� In 
 varseq � Eqs � Out 
 varseq

varseq 

� � j X� varseq

Eqs 

� Eq j Eq � Eqs

Eq 

� X � E

E 

� k j X j dop�X� � � � � X j X � X j pre�X j X whenX j current�X

where k� X� varseq� dop� E� Eq� Eqs� P are metavariables for constants�

variables� sequences of variables� data operators� expressions� equations� sets

of equations and programs� respectively�

The Lustre compiler checks that the following requirements are satis	ed


� operators are applied to operands having the same clock

� any output variable is de	ned by exactly one equation

� any output variable does not depend on itself�

The operational semantics of a program P with input variables
�

Y� fY�� � � � � Yng�

output variables
�

X� fX�� � � � � Xng and sets of equations
�

X�
�

E is given in

terms of sequences of pairs �
�

Y�
�

y��
�

X�
�

x�� � � � � �
�

Y�
�

yn� � � � �
�

X�
�

xn� � � �� where

yn
i
is the value assigned to the input variable Yi by the environment at the

nth instant of the basic clock� and xn
j
is either � if the clock of the output

variable Xj does not evaluate to t at the nth instant of the basic clock� or k�

if the expression Ej evaluates to k at the nth instant of the basic clock�

��� The tcc language tccLustre�

We consider the constraint system L � hDL��L� V arLi such that


� V arL contains the variablesX� ckX � PX � CX for each variableX in the syntax

of Lustre�

� DL is the set of tokens of the form X � E� with X a variable in V arL and

E an expression over variables in V arL�

� �L is the least relation such that fX � E� Y � Xg �L Y � E�

��



Tini

We denote by tccLustre the tcc language obtained by instantiating tcc

over the constraint system L�

��� An encoding of LustreF in tccLustre�

We de	ne both a function � � from LustreF equations to tccLustre agents

and a function �� �� from LustreF equations to sets of declarations of tccLustre
procedures� Both functions are extended to sets of equations� The encoding

of a LustreF program P with body Eqs is a tccLustre program� denoted by

� P �� with ��Eqs�� as set of declarations of procedures and with body

derived from � Eqs��

Intuitively� the prompting of a set of values
�

y for the input variables
�

Y to

a LustreF program P by the environment corresponds to the prompting of the

set of tokens
�

Y �
�

y to the tccLustre program � P �� At each instant� and

for each output variable X� the program � P � posts tokens constraining

the variable ckX either to t� if X has the basic clock as clock� or to the value

of the boolean variable B� if B de	nes the clock of X� So� ckX represents the

clock of X� Moreover� if X evaluates to k in P then� P � posts in the store

the token X � k� If X evaluates to  in P then � P � posts in the store

the token X � �

The de	nitions of � � and �� �� are in Figure �� where in the de	nition

of � X � pre�Y  � we have assumed that Y ranges over fv�� � � � � vng and

in the de	nition of � X � current�Y � we have assumed that B�� � � � � Bm
are the boolean variables which appear in P in the body of a when� namely

which de	ne clocks of expressions�

At each instant� the agent � X � k � constrains ckX to take the value t

and X to take the value k� This re�ects that X has the basic clock as clock

and that it always evaluates to k�

At each instant� the agent � X � Y � constrains ckX to take the value

of ckY and X to take the value of Y � This re�ects that X has the clock of Y

as clock and that it always evaluates as Y �

At each instant� the agent � X � dop�X�� � � � � Xn � constrains ckX
to take the value of ckX�

and X to take the value of dop�X�� � � � � Xn� This

re�ects that X has the clock of ckX�
as clock and that it always evaluates as

dop�X�� � � � � Xn� Note that ckX�
� ckXi

for every � � i � n�

Let us consider now the agent � X � Y� � Y� �� It constrains ckX to

take the value of ckY� at each instant� to re�ect that X has the clock of Y�

as clock� The procedure pX constrains X to take the value of Y�� while the

procedure qX constrains X to take the value of Y�� The procedure pX is active

from the 	rst instant up to the 	rst instant in which the clock of X is t� qX is

activated afterwards�

At each instant� the agent� X � Y when B � posts in the store the token

ckX � B re�ecting that B is the clock of X� Moreover� � X � Y when B �

constrains X to take either the value of Y � if B has value t� or � otherwise�

��
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X � E�� �

�
�
�
fpX � ApX � qX � AqX g if E � Y� � Y� for some Y�� Y�

� otherwise
� where

ApX � �if ckX � t then �X � Y�� next qX�� if ckX � f then �X � Y�� next pX��
if ckX � � then �X � Y�� next pX��

AqX � �X � Y�� next qX�

	 X � k 
 � always �ckX � t�X � k�

	 X � Y 
 � always �ckX � ckY � X � Y �

	 X � dop �X� � � � � Xn� 
 � always �ckX � ckX�
� X � dop �X� � � � � Xn��

	 X � Y when B 
 � always �ckX � B� if B � t then X � Y�

if B � f then X � �� if B � � then X � ��

	 X � Y� � Y� 
 � �pX � always ckX � ckY��

	 X � pre�Y � 
 �
�PY � �� always�ckX � ckY �

if ckY � t then X � PY � if ckY � f � ckY � � then X � ��
if Y � v� then next PY � v�� � � � � if Y � vn then next PY � vn�

if PY � v� � �ckY � f � ckY � �� then next PY � v��
���
if PY � vn � �ckY � f � ckY � �� then next PY � vn�

if PY � �� �ckY � f � ckY � �� then next PY � ���

	 X � current�Y �
 �
�CY � �� always�if ckY � t then X � Y� if ckY � f then X � CY �

if ckY � � then X � ��
if ckY � B� then ckX � ckB�

� � � � � if ckY � Bm then ckX � ckBm �

if Y � v� then next CY � v�� � � � � if Y � vn then next CY � vn�

if CY � v� � �ckY � f � ckY � �� then next CY � v��
���
if CY � vn � �ckY � f � ckY � �� then next CY � vn�

if CY � �� �ckY � f � ckY � �� then next CY � ���

	 Eq�Eqs
 � �	 Eq 
�	 Eqs
�
Eq�Eqs�� � Eq�� � Eqs��

	 In � Y�� � � � � Yh � Eqs � Out � X�� � � � � Xk 
 �
In � Y�� � � � � Yh � Eqs �� � �	 Eqs
� always �ckY� � t� � � � � ckYh � t�� � Out � X�� � � � � Xk

Fig� �� The functions � � and 

 ���

��
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The agent� X � pre�Y � de	nes an auxiliary variable PY carrying the

value taken by Y at the last instant in which the clock of Y was t� When the

clock of Y is t then the agent � X � pre�Y  � constrains X to take the

value of PY else it constrains X to take �

The agent � X � current�Y  � constrains ckX to take the value of

ckBi
� where Bi is the clock of Y � This re�ects that X has as clock the clock

of the clock of Y � The variable CY plays the same r�ole of PY in the body of

� X � pre�Y  �� Finally� � X � current�Y  � constrains X to take

either the value of Y � if the clock of Y is t� or the value of CY � if the clock of

Y is f � or � otherwise� Note that the clock of Y is either t or f i� the clock

of X is t�

For each LustreF program P � the body of � P � has always �ckY� �

t� � � � � ckYh � t as parallel component� to re�ect that all input variables have

as clock the basic clock�

It is immediate to observe that the encoding of LustreF in tccLustre given

by the functions � � and �� �� is linear w�r�to the size of LustreF programs

and w�r�to the cardinality of the values of types�

Now� in order to encode the equation X � pre�Y � we need to transfer

explicitly the value of Y from an instant to the subsequent one� since tcc �like

tdcc does not o�er any mechanism to memorize information� This would not

be possible if Y ranges over an in	nite set of values� So� we conjecture that

the full language Lustre can be encoded neither in tcc nor in tdcc�

The following theorem states the soundness of the encoding of LustreF in

tccLustre� namely that there exists a correspondence between the operational

meaning of a LustreF program P and the operational meaning of its encoding

� P ��

Theorem ��� The following facts are equivalent


� A Lustre program P with input set of variables
�

Y� fY�� � � � � Yhg and out�

put set of variables
�

X� fX�� � � � � Xkg reacts to an input sequence
�

Y�
�

y�

� � � � �
�

Y�
�

yn� � � � by giving the output sequence
�

X�
�

x�� � � � �
�

X�
�

xn� � � �

� The tccLustre program� P � reacts to a sequence of sets of tokens ��� � � � �

�n� � � �� with �n �
�

Y �
�

yn� by producing the sequence of sets of tokens

��

�� � � � ��
�

n� � � � with ��

n � Xj � xnj � and ��

n � ckXj
� t i� the clock of

Xj at instant n is t�

� Conclusion

We have investigated the expressiveness of the synchronous paradigm tcc� We

have de	ned the tcc languages tccArgos and tccLustre and we have proved that

they encode compositionally the synchronous state oriented language Argos

and the synchronous data �ow language LustreF � respectively� We have also

��
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proved that tcc encodes the strong abortion mechanism� Finally� we have

conjectured that tdcc is not su�ciently powerful to encode the full language

Lustre�

Note that a language embedding both tccArgos and tccLustre could be used

for merging Argos and Lustre� Other proposals for merging synchronous lan�

guages can be found in ����� where Argos is mapped to Lustre� and in �����

where the idea is to map both Argos and Lustre to the DC code ����
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