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Editorial

Advanced treatment planning strategies to enhance quality and efficiency of radiotherapy

The radiotherapy (RT) process is becoming increasingly complex.
Advances in RT delivery devices with all the flavors of intensity-mod-
ulation techniques, new approaches for in-room image-guidance in-
cluding magnetic resonance imaging (MRI), and the increased com-
plexity of the input data (from multi-modality imaging to the choice of
optimization strategies) overall require an advanced level of manage-
ment combined with sophisticated skills and tools. Several novel ap-
proaches have been proposed for coping with the treatment planning
challenges [1–3]. In this editorial, important developments in treatment
planning over the last few years are briefly summarized. In particular,
the important contributions from recent papers in the present journal
are discussed and placed in context.

One aim of automation of treatment planning in RT is harmoniza-
tion and standardization, in order to reduce undesired inter-patient and
inter-institution quality variations. Apart from reducing variations,
another goal of automated planning may be the search for (on average)
better plan quality than delivered by manual planners. The basic idea
behind the latter approach is that solving the complex and large multi-
objective planning problems could possibly be better performed by
computers. Ideally the automatically generated plans are then both
Pareto-optimal and clinically favourable. It is well recognized that large
patient loads and often limited resources in the clinics for manual
treatment planning may conflict with the quest for high-quality, in-
dividualized treatments. The potential for increased productivity is also
an important driver for automation.

The current state-of-the-art in automated planning has been de-
scribed in several recent review papers [1–3]. Basically, the solutions
can be divided in i) knowledge-based planning (KBP), ii) protocol-based
automatic iterative optimization, and iii) multi-criterial optimization
(MCO) [1]. Various systems for knowledge-based planning (KBP) have
been described [4–6]. The basic idea behind these systems is that si-
milar anatomies can be treated with similar, intentionally high-quality,
dose distributions. Machine learning is used to correlate anatomy with
dose. Protocol-based automatic iterative optimization entails iterative
heuristic adjustment of optimization objectives and constraints [7–9].
After each iteration, the system evaluates the dose distribution and
establishes objectives and constraints for the next iteration, based on a
pre-established protocol. There are two flavors of MCO; a posteriori
MCO [10–12] and a priori MCO [13–15]. In a posteriori MCO, for each
patient a series of plans is automatically generated and the final plan is
then selected by a user, using Pareto navigation. In a priori MCO, for
each patient only a single plan is automatically generated that is both
clinically favourable and Pareto optimal. All of these strategies are (or
are just becoming) commercially available (a priori MCO is currently
being prepared by one vendor).

Several fully automated workflows for plan generation have been
developed, including automatic segmentation of targets and organs at

risk, automatic setup of beams with heuristic optimization of gantry
and collimator angles, and automatic creation objective functions with
ad-hoc tools [16,17].

A different approach to tackle some of the challenges of current
treatment planning is real-time interactive planning (RTIP) [18,19].
The idea is that the real-time steering of the planning process based on a
strong graphical user interface may result in fast generation of high-
quality plans. RTIP does not require configuration (as for KBP, protocol-
based automatic iterative optimization, and a priori MCO), or pre-
computation of sets of Pareto-optimal plans (a posterior MCO).

The core of KBP consists of the development of mathematical
models capable to predict achievable dose-volume and objective func-
tion constraints for new patients, based on their anatomy, i.e. a con-
toured planning CT-scan. Panettieri et al. [20] presented in this journal
their results on a multi-centric investigation where a KBP model for
prostate (based on commercial planning system) was developed,
trained and validated by two centers and then distributed, re-validated
according to local practice guidelines and then utilized clinically by six
other institutions. The authors suggested the feasibility of developing
and implementing at a multi-centric level an automated planning
workflow. A general improvement in the quality of the dose distribu-
tions was observed. The results could be obtained even with the large
heterogeneity in processes among the centers (particularly concerning
contouring and planning protocols).

Roach et al. [21] investigated for another commercial auto-planning
solution, the portability of system configurations through different
centers. This was tested among three institutions. The study assessed
also the level of adaptation of the pre-defined institutional configura-
tions required to harmonize the results. The authors demonstrated the
possibility to share automated planning configurations with simple
adaptation of local protocols. Also this study was carried out on pros-
tate patients.

In many published studies on automated treatment planning, the
algorithm was trained with manually generated plans that were clini-
cally delivered, while the training procedure had no or only minor drive
to enhance quality in case of an, on average, inferior quality of the
training plans. In these situations, also the automatically generated
plans for future patients will in general not be optimal. Wheeler et al.
[22] studied the use of Pareto navigation techniques in combination
with clinical training plans to derive planning goals and weighting
factors in association to ‘protocol based’ automated iterative optimi-
zation that utilizes dynamic objectives (to ensure trade-off balancing).
They applied their methodology (implemented through a commercial
system), again to prostate cancer cases. The results demonstrated the
possibility to achieve clinically acceptable, well balanced treatment
plans in a fully automated manner. Also in a priori MCO, the applied
wish-list with constraints and prioritized objectives may be configured
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with an explicit aim to improve on the training plans (see [1] and re-
ferences therein).

Creemers et al. [23] retrospectively compared automated vs
manually optimized volumetric modulated arc therapy plans for 25
patients with advanced stage non-small cell lung cancer. The study
demonstrated that in about 50% of the cases, the plans were ready after
the automated phase. In the remaining cases, some manual adjustment
was needed. In conclusion, the automated plans were superior to the
manual ones in terms of dose/volume endpoints for organs at risk while
with equivalent coverage of the target volumes. There was a time gain
of about a factor four in favor of the automated process.

Baker et al. [24] investigated the use of real-time interactive plan-
ning (RTIP) as inspired by the seminal work of Otto [19]. They applied
retrospectively their method to 20 head and neck cases comparing the
RTIP plans against the clinical plans (optimized without MCO or KBP).
All their plans were found preferable by the majority of the five on-
cologists who blindly assessed the results.

Recently, many papers have appeared on the prediction of dose
distributions with deep learning [25–27]. Calculation speed is a highly
attractive feature of this approach; 3D dose distributions can be gen-
erated in seconds. On the other hand, only dose distributions are gen-
erated. Dose delivery needs subsequent establishment of appropriate
treatment machine parameters, which costs time and may also result in
quality loss. Training of the applied networks has no intrinsic me-
chanism to improve on the quality of the input plans. So inferior
training plans will result in inferior plans for future patients. It there-
fore remains essential to continue development of planning approaches
that will result in (near) Pareto-optimal and clinically favourable plans.
In the end, such plans could be used for training of deep learning net-
works.
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