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Abstract                                                                                                                                                                       
In this work we present a faults detection method for photovoltaic systems (PVS). This method is based 
on the calculation of sets of parameters of a PV module in different operating conditions, by means of a 
Neuro-Fuzzy approach. The PV system status is determined by evaluation and comparison of norms 
based on the aforementioned parameters, with threshold values. This intelligent system developed in 
Matlab&Simulink environment, consists on the study of the crucial information that the six parameters in 
normal and faulty condition contain. They are calculated using the I-V curves and synthesized by 
"hybrid" models. Results show that the diagnosis system is able to discern between normal and faulty 
operation conditions and with the same defective existence of noise and disturbances. 
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1. Introduction 

With the growth of world energy consumption and the concerns about environmental effects of fossil 
fuels, human society is in desperate need of renewable energy sources (e.g., solar, wind, geothermal). 
They are clean and eco-friendly. Among this renewable energy sources, photovoltaic (PV) energy draws a 
significant attention since solar energy is accessible and abundant [1].  

The problem is that, differently from traditional power sources, the photovoltaic (PV) energy may have 
undetectable and unlearned faults in current and in voltage during the utilization in conventional 
overcurrent (OCPD) and in overvoltage (OVPD) protection devices. 

The faults in PV plants do not only affect the performances and services of the plant but may also lead 
to critical and detrimental situations. In fact, without proper fault detection, the presence of faults in PV 
arrays not only causes power losses, but also can cause a probable fire hazard for the whole system [2]. 
Having considered these problems, it is of paramount importance to check the PV system status (normal 
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or off-normal condition).   
Accordingly, numerous PV monitoring and fault detection methods related to a definite PV model 

have been studied in the literature. Firstly, the traditional modeling approaches based on long-term energy 
yield and power losses (V-I measurement and Flash test) have been proposed [3, 4].

An extension of method using correlation function and the matter-element model was suggested to 
identify specific the fault types of a PV system (PVS) [5]. Furthermore, a decision tree model has been 
proposed for the detection and classification of defects in PV systems [6]. Additionally, the capacitance 
measurement (ECM) and the time domain reflectometry (TDR) for fault detection in PV array were 
introduced [7].  

Finally, intelligent system (based on neural network, Fuzzy systems or Neuro-Fuzzy network)   for 
automatic detection of faults in PV fields were proposed [8-10]. Interpreting I-V curve characteristic by 
applying flash test to determined fault type [11, 12] and using signal processing to detect online fault in 
PV system [13, 14]. However, none of the previous works have presented a complete algorithm and 
methodology for faults detection and classification that is able to represent the real system effectively. 

After reviewing relevant works in PV systems diagnosis area, this paper presents an intelligent faults 
diagnosis system, based on “Norm-test“of the six attributes of I-V curves. 

The detection system initially uses an I-V curves estimation by the ANFIS PV model simulator. 
Secondly it uses a Norm-test to generate the difference among sets of parameters calculated in different 
conditions at operating conditions.  The diagnostic method can detect the fault and classify the specific 
fault type and it deals with noises and disturbances. The models of the PV system and the whole 
diagnostic procedure has been developed on Matlab&Simulink environment. 

This intelligent procedure of fault detection has been tested for a a-Si:H triple layer amorphous module  
(Uni-Solar ES-62T), that is installed at the MIS laboratory renewable energy platform at the  University 
of Picardie Jules Verne, Amiens (France).   

2. Photovoltaic module modeling in ANFIS 
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For modelling the PV systems for real time applications, two main approaches can be followed: the 
“classic” one based on equivalent electric circuits [15÷19] and the “innovative” one based on meta-
heuristic algorithms (Neural network, Fuzzy logic  and Neuro-Fuzzy systems) [20, 21]. In this work we 
have chosen an Adaptive Neuro-Fuzzy Inference System (ANFIS), using the most common Fuzzy system 
architecture that is Sugeno model, because it is less time consuming and more transparent than other 
Fuzzy models. 

The advantage of the proposed representation is that Neuro-Fuzzy model of a PVS includes both the 
ability of neural networks to learn from the experience (training/testing phase) and, then, to provide a 
quite precise output when real-time input are used, and the potentiality of Fuzzy systems to establish 
relationships between input and output variables. On other hand this type of modelling works well if there 
are a large number of data to be used for training. To obtain these data, we have employed a hybrid 
simulator PV model, implemented in Matlab Simulink/ Simscape / SimElectronics / Pspice library [13, 
14,22].                                                                                                                                                                     

By the hybrid model a set of I-V curves of a PV module are calculated in different operating 
conditions, defined by means of PV module temperature (TPV) and global irradiation on the plane of the 
array (GPoA). For each I-V curve, four parameters (Impp,Vmpp, Isc, Voc) are extracted. Knowing the first four 
parameters, we can define and calculate other two parameters named S1 and S2, where: 
- S1 is the incremental derivative ratio calculated considering the following relevant points in the I-V 
curve: short current point (0; Isc) and maximum power point (Vmpp ; Impp);
- S2, is the incremental derivative ratio considering the two points (Vmpp ; Impp) and open circuit (Voc ; 0). 
S1 and S2 have the following expressions: 

Our target is to apply ANFIS techniques to model PV module starting from the data calculated by 
means of hybrid model. The following steps are performed : 1) loading input( TPV, GPoA) and output 
(Impp,Vmpp, Isc, Voc, S1, S2);  2) generation of  ANFIS system; 3) training and test ANFIS system. In this 
way, instead of saving the whole I-V curves, just six values (Impp,Vmpp, Isc, Voc, S1, S2)   are considered and 
used  as output target of the general ANFIS model in normal and faulty conditions. Fig.1 shows 
qualitativelly how the faults can affect  the shape of an I-V curve in normal operation conditions (red line) 
where three distict zones can be identified : 1) a slightly sloped region above short circuit point; 2) a bend 
or “knee” in the curve in the region of the maximum power point; 3) a steeply sloped region below open 
circuit point;. 

Six characteristics (named Cx) are shown in fig.1(see the dashed red lines) that differ from the I-V 
curve in normal operating condition for some symptoms due to the presence of faults.  

Each fault generates a set of  symptoms which can be identified by means of the variations of one or 
more parameters. In Table 1 the six charateristics are listed, for each  Cx the corrispondent following 
information are provided: 1) the zone of I-V curve affected by the fault, 2) the involved parameters (i.e. 
the parameters that have changed their values compared to the ones calculated starting from the I-V curve 
on the same operating conditions but without faults), 3) the related symptoms. 
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 Fig.1. Pattern of six points along the I-V curve 

The ANFIS PV model is trained also in faulty conditions by using as output the previous six 
parameters, but it has a further  input, that is the fault that has determined the variations of the parameter 
values. So, the PV model will be represented in the subsequent theoretical diagnostic procedure as a 
“black box”, in which all data of the PV system are intrinsically contained in a more compact and 
effective  manner.

Finally, taking in consideration the STC (Standard Test Condition, GPoA = 1000 W/m2 and TPV=25 °C), 
the I-V curves of a PV module in normal and faulty operating conditions are calculated and they are 
shown in fig.2. The numerical values of the six parameters for each I-V curve are calculated and reported 
in Table 2. Based on these figures it is possible to achieve a quantitative comparison related to the fault 
impact on each I-V curve. This manner of proceeding consists in exploiting numerical information from 
the faulty I-V curve of a PV module. These pieces of information will be used in the next phase of 
diagnostic procedure in order to perform the fault detection and classification using the Norm-test. 

Characteristic Zone  Involved  
parameters 

Name of symptoms 

C1 2 Impp,Vmpp Change maximum power point, (rounder knee) 
C2 1 Voc Smaller  Voc

C3 3 Isc Smaller  Isc

C4 2 - Step(s)  in the I-V curve 
C5 3 S2 Reduced slop near Voc

C6 1 S1 Increased slop near Isc

Table 1. Presents of different symptoms identified
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Table 2. Six parameters values in normal and faulty conditions 

Voltage (V) 

3 “Norm-test“ of the six attributes of an intelligent system of faults diagnosis 

We have found that the Neuro-Fuzzy PV model performs well and fast in both normal and faulty 
conditions and we have identified it with six attributes that allow us a nearly complete knowledge of the 
I-V characteristic. 

The problem is that we used hybrid model, develop in  Matlab / Simscape Environment,  to simulate the 
behavior of the PV system (module), in this way we have neglected the impact of disturbances, that are 
always present in real PV systems, on the calculations of the six parameters.  In fact, for example, 
irradiance is measured by pyrometer and cell temperatures are measured according to IEC61724 standard 
with a thermocouple and these signals have some noises due to both the variations of the measured 
variables and to measurements error. There also to consider effect of the presence of current and voltage 
transducers. 

Finally we have to considered the noise and errors introduced by the acquisition systems that are used 
to handle real data.  It is worth highlighting that it is be more precise and simpler characterize and model 
the PV system by means of synthesized data by means of numerical models (e.g. hybrid model); however 
for an effective diagnostic procedure. this type of characterization it is not enough because a real system 
behavior is not adequately modelled for all the considerations made previously about noise and 
disturbances.

In this context we consider in our model the losses linked to the measurements. The values that we 
attribute to the measurement noise and errors can be seen as a sort of systematic error that occurs in the 

Normal operation 
conditions

Upper earth 
Fault 

Lower earth 
Fault 

Diode short-
circuit fault 

Partial shading 
condition

Parameter 
Impp (A) 4.314 3.857 4.276 4.305 2.618 
Vmpp (V) 14.370 2.463 11.478 12.858 5.380 
Isc (A) 5.155 5.127 5.153 5.154 4.666 
Voc (V) 21.123 4.743 17.419 19.019 18.975 
S1 (A/V) -0.058 -0.514 -0.076 -0.066 -0.380 
S2 (A/V) -0.638 -1.692 -0.719 -0.698 -0.192 

Fig.2. I-V curve in normal and faulty conditions 

Table 2. Six parameters values in normal and faulty conditions 

(A
) 
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same entity every time that measurements are performed (offset or bias). In this context, we assume an 
accurate knowledge of the measurement apparatus. Therefore the considerations made in paragraph 2 
needs to be revised modifying the “Neuro-Fuzzy PV model” from ideal conditions (that is: two inputs and 
six outputs), to a new one where it has been added a new inputs that stands for the contributions of 
disturbances and noises to the Neuro-Fuzzy PV model. As matter of fact we have: in normal condition, 
three inputs and six outputs, whereas in faulty condition, four inputs (the fourth is the faulty type) and six 
outputs.  ”Fig.6 (step 1) shows the “Neuro-Fuzzy PV system” in ideal, normal and faulty condition. 

3.1 Fault diagnostic system 

The proposed theoretical diagnostic procedure is carried out in four consecutive steps: 
1. Identification of the object of fault diagnosis;  
2. Generation of the residual signals;  
3. Calculation of norms;  
4. Evaluation of test norms and classification of system status.  

First of all, we want to define the objects of our procedure for detection of faults; so we define three 
Neuro-Fuzzy PV blocks, that model the PV module in three conditions, such as: “ideal”, “normal” and 
“faulty”.

To fulfill our analysis of fault diagnosis these blocks are compared in pairs: 
-“ideal” and “normal”; 
-“ideal” and “faulty”. 

These are the two cases that we want to analyze and they can be used in reality for on-line diagnosis 
system. Given the operation condition (irradiance and PV cell temperature), the Neuro-Fuzzy block 
model of an “ideal” PVS is the reference. It presents all the desired features in terms of values of input 
and output variables, that we suppose are perfectly constants and not affected by noises and disturbances, 
on the basis of which we evaluate the other two blocks. On the contrary, the “normal” and “faulty” 
Neuro-Fuzzy PV models recreate the monitored mode of operation of the PV module that reflects the real 
behavior that can be expected in practice or not. As already mentioned, to show the real behavior of the 
PV module we chose to add the effect of real losses measurements (noises and disturbances), assuming 
that their values are constant and they arise in the same entity every time that the measurement campaign 
is repeated. After identification of the blocks, we can start the effective diagnosis procedure,  that is 
developed for each value of TPV and GPoA, and which is based on residuals calculation and Norm-test. 

Specifically residuals calculation procedure consists on the generation of twelve residual signals 
through the comparison of a target signal output (generated always from the ideal system) and estimated 
output (generated as the first from the normal system and then, as second from the fault system). 

We denote the set of input variables (TPV, GPoA ) by I1, the set of noises and disturbances that can occur 
in a PV system by I2 and, the set of  possible faults (diode short-circuit, lower earth fault, upper earth 
fault, partial shading condition) by I3. Then we denote by X the set of  the output variables(six 
parameters), that assume different values in ideal (Xid), normal (Xnm) and faults (Xft) conditions. Then the 
residuals (RX) have to be evaluated, specifically the generic i-th component RXid,nm and RXid,ft. are 
expressed in this way : 

After the generation of residue, for each value of PV temperature and irradiation,  the norm test 
includes the evaluation of all the values of norms Nn in normal condition and Nf for each type of fault.  

So we can define two Euclidean real norms: 

RXid,nm. = Xid - Xnm  RXid,ft. = Xid – Xft (2)
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- Nn, that is the numerical value of norm calculated by a comparison between the Neuro-Fuzzy PV model 
in ideal condition and the Neuro-Fuzzy PV model in normal condition;  
- Nf, that is the numerical value calculated by a comparison of the Neuro-Fuzzy PV model in ideal 
condition and the Neuro-Fuzzy PV model in faulty condition. 

Figs.3 a) and b) show graphically what has been explained mathematically, pointing out the passage 
between the generation of residues in the normal and faulty case and the calculation of norms Nn and Nf .
The norms  Nn and  Nf  have to be compared with suitable reference values  in such a way not only to 
identify if there is just a normal disturbance in the PV system but also  to detect the correct fault that is 
eventually present in the system.

     The reference value that allows to understand if there is or not a fault in the system is called 
“threshold”, S, and we have fixed it equal to 0.9. This value has been calculated by means of random 
simulations, where in each simulation the values of the measured variables (GPoA, TPV, current and 
voltage) are generated with a given error (determined by the type of sensors).  A threshold value equal to 
0.9 is an optimal value that represents a compromise between an high probability of fault detection and a 
low probability of a false alarm. In practice, interpreting the threshold as a constant boundary, we can 
define these two rules valid for the PV diagnosis system based on norms evaluation :   
- if the value of norm is under the boundary it means that the PV system is in normal condition;             
- if the value of norm is over the boundary it means that the PV system is considered in faulty condition.  
                                                                                                         

Fig.3. (a) Block diagram from the residual generation in the normal case to the calculation of norm Nn
(b) Block diagram from the residual generation in the faulty case to the calculation of norm Nf

(3)
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Finally the main results of the diagnosis and fault detection procedure are summarized in figs.4 a) and
b), where the trends of the calculated norms in both normal and partial shading condition are plotted. 

Two important considerations can be made even in such a noisy and disturbing condition.  
For the Neuro-Fuzzy PV model in normal condition (PV module in normal state), the norm signal 

value Nn  is nearby zero and does not exceed the limitation of threshold S according to its maximum  
values max(Nn); instead, for the Neuro-Fuzzy PV model in faulty condition (PV module in partial shading 
condition), the norm signal value Nf is far from the  zero value and exceed the threshold value S; 
besides Nf  is in the range distinctive of the Partial shading condition, i.e. comprised between an upper 
and a lower  limit constant values. 

After establishing and showing the rules of theoretical diagnostic in the normal and partial shading 
condition, we can extend and make the same considerations for the other type of faults.  

Normal 
operation 
conditions

Diode short-
circuit fault 

Lower earth 
fault 

Partial shading 
condition

Upper earth 
fault 

Norms values 0.318÷0.694 1.103÷2.962 3.006÷4.963 5.650÷9.758 12.720÷20.648 

Fig.4.(a) Trend of  normal norm for a PV module  (b) Trend of faulty norm for a PV module in partial shading  

Table 3. Minimum and Maximum norms numerical values in normal (at STC) and faulty conditions

Fig.5. PV system status classification by Norm-test

Fig.4.(a) Trend of  normal norm for a PV module  (b) Trend of faulty norm for a PV module in partial shading  
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In this context we realize a classification by Norm-test , as shown fig.5, where the correspondence 
between ranges of Nn or Nf and normal or faulty operating condition is established. To prove this system 
status classification by Norm-test, Table 3 displays  the maximum and minimum norms numerical values, 
for the Standard Test Condition (STC) in both operation cases of normal operation condition and of faulty 
condition of the PV system (diode short-circuit fault, lower earth fault, partial shading condition and 
upper earth fault). 

Finally, Fig.6 shows the general flowchart of the proposed intelligent diagnostic system. It summarizes 
what has been developed about  diagnostic in PV systems. 

4. Conclusions 

In this work, an intelligent fault diagnosis system, in the MATLAB&Simulink environment, has been 
developed. It includes: a Neuro-Fuzzy model of  PV modules, I-V characteristic analysis of the six 
attributes, and the application of a Norm-test. The main idea of the proposed system of diagnosis and fault 
detection of a PV module is based on a periodical inspection of the I-V curve six parameters calculated by 
using an hybrid model. 

Through this parameters extraction we can recreate, at first, the PV system as a “Neuro-Fuzzy PV 
system” and, secondly, we define the theoretical PV system status by the norms evaluation in normal and 
faulty condition, according to a certain threshold value. Finally cataloged these norms information, the 
intelligent fault diagnostic system effectiveness is ready to be checked in a  PV system in a real time 
application.

The Neuro-Fuzzy model is very flexible, so it can be extended to PV module strings and PV array 
quite easily; in fact,  using either data coming from numerical models or measurements, it is possible to 
have the I-V curves (for example of a string) and then to calculate the six attributes. Of course,  when a 

Fig.6. General flowchart of the intelligent fault diagnostic system 
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PV system is considered other faults have to be considered mainly due to the presence of  cables that 
connect the PV modules.  

Future research aims to verify experimentally the proposed method; besides the proposed intelligent 
diagnostic method has to be intended as a “general method;” so additional work has to be carried out in 
the following areas: 
-  considering other PV module technologies (silicon crystalline, thin film and organic cells);  
- extension of the proposed methodology  to a PV generator made by many modules and strings.   
- continuing the diagnosis studies considering also the AC part of the PV system (converter).  

Nomenclature 

PVS photovoltaic system 

TPV temperature of PV cells/module (°C) 

GPoA global irradiation on the plane of the array (W/m2)

STC standard test condition of the PV module ; TPV = 25°C, GPoA = 1000 W/m2, AM=1 

Impp current of maximum power point (A) 

Vmpp voltage of maximum power point (V)  

Isc short-circuit current (A) 

Voc open-circuit voltage  (V) 

S1 incremental derivative ratio between the point (0 ;  ) and the point ( ; Impp)

S2 incremental derivative ratio between the point ( ; Impp) and the point (Voc ; 0) 

I1 set of input variables (TPV, GPoA )

I2 set of noises and disturbances that can occur in a PV system 

I3 set of  possible faults (diode short circuit fault, lower and upper earth faults, partial shading) 

Xid set of  the output variables(Impp,Vmpp, Isc, Voc, S1, S2)  in ideal condition 

Xnm        set of  the output variables(Impp,Vmpp, Isc, Voc, S1, S2)  in normal condition 

Xft set of  the output variables(Impp,Vmpp, Isc, Voc, S1, S2)  in faulty condition

RXid,nm    residual signals generated from the difference between Xid  and Xnm

RXid,ft       residual signals generated from the difference between Xid and Xft 

Nn          Norm, Euclidian distance between Xid and Xnm  

Nf           Norm, Euclidian distance between Xid and Xft  
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