
Information Fusion 53 (2020) 134–144 

Contents lists available at ScienceDirect 

Information Fusion 

journal homepage: www.elsevier.com/locate/inffus 

Full Length Article 

Gait-based identification for elderly users in wearable healthcare systems 

Fangmin Sun 

a , Weilin Zang 

a , Raffaele Gravina 

b , Giancarlo Fortino 

b , Ye Li a , ∗ 

a Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 

Shenzhen, China 
b Department of Informatics, Modeling, Electronics, and Systems, University of Calabria, Italy 

a r t i c l e i n f o 

Keywords: 

Wearable healthcare system 

Accelerometer sensors 

Gait recognition 

User identification 

Score level fusion 

a b s t r a c t 

The increasing scope of sensitive personal information that is collected and stored in wearable healthcare devices 

includes physical, physiological, and daily activities, which makes the security of these devices very essential. 

Gait-based identity recognition is an emerging technology, which is increasingly used for the access control of 

wearable devices, due to its outstanding performance. However, gait-based identity recognition of elderly users is 

more challenging than that of young adults, due to significant intra-subject gait fluctuation, which becomes more 

pronounced with user age. This study introduces a gait-based identity recognition method used for the access 

control of elderly people-centred wearable healthcare devices, which alleviates the intra-subject gait fluctuation 

problem and provides a significant recognition rate improvement, as compared to available methods. Firstly, a 

gait template synthesis method is proposed to reduce the intra-subject gait fluctuation of elderly users. Then, an 

arbitration-based score level fusion method is defined to improve the recognition accuracy. Finally, the proposed 

method feasibility is verified using a public dataset containing acceleration signals from three IMUs worn by 64 

elderly users with the age range from 50 to 79 years. The experimental results obtained prove that the average 

recognition rate of the proposed method reaches 96.7%. This makes the proposed method quite lucrative for the 

robust gait-based identification of elderly users of wearable healthcare devices. 
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. Introduction 

Nowadays, the number of elders and empty nesters worldwide takes

n a rising trend, which makes their healthcare a global challenge [1] .

ccording to recent surveys [2,3] , about 77% of persons older than 65

ears suffer from various types of chronic diseases, including hyper-

ension, hyperglycaemia, asthma, stroke, cognitive decline, etc. Accord-

ngly, the long-term and continuous monitoring of physiological param-

ters of elders is indispensable for reducing the risk of their morbidity

nd mortality. 

However, the available hospital monitoring resources are in severe

hortage and fail to provide a high quality of healthcare service [4] . To

rovide a convenient and effective remote monitoring in mobility, the

earable healthcare system was developed [5,6] . The wearable health-

are system is a body area network supporting on-body links and links

o implanted devices. This network is organized around a hub (coor-

inator) following a star topology [7] , it is also referred to as smart

ody area network (SmartBAN) or wearable internet of things (Wearable

oT). Under the mandate of European Telecommunication Standards

nstitute (ETSI), a technical committee (TC SmartBAN) was formed in

013. It defined multiple human monitoring application cases for Smart-

AN, including sleep, fall, blood pressure fluctuation, and abnormal
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ardiac rhythm monitoring in [8] , as well as elderly at home monitoring

n [9] . 

A typical architecture of the elderly healthcare-targeted system is de-

icted in Fig. 1 . It implies that older adults, who usually have chronic

iseases, use their wearable healthcare devices to measure the physi-

logical [10,11] and physical [12,13] parameters they are concerned

bout. For the further assessment and analysis of the results obtained,

he collected data and often a high-level information obtained via multi-

ensor fusion [14] ) are then uploaded to the remote server or cloud

latform. 

Given the increasing scope of sensitive personal information, includ-

ng the physical, physiological, and daily activities, which is stored in

he wearable healthcare devices, the security of the latter is essential to

void threatening the privacy and confidentiality of the users [15] . The

mposter may attack the healthcare system and illegally get access to

he sensitive information. As the cognitive and learning abilities of el-

ers are quite limited, the most diffused authentication method, which

mplies the input of completely matching passwords to obtain the access

uthority of the device, is infeasible, as elders usually have difficulties

n keeping in mind the access control passwords. Consequently, studies

n comprehensive security methods that would be suitable for elderly

sers of wearable healthcare devices are quite topical. 
2019 
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Fig. 1. Typical architecture of the wearable healthcare 

system. 
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Besides, it often becomes economically expedient to share wearable

evices among family members or senior adults in the same nursing

ome. The users need to enter their accounts and passwords before

ach measurement to ensure the collected data can be uploaded to the

orrect user account. However, this may be problematic for elders and

hus reduce the quality of experience (QoE) of wearable devices. Given

his, automatic user identification seems to be the optimal solution to

his problem. As seen in Fig. 1 , the health monitoring devices including

phygmomanometer, blood sugar meter, electroencephalograph, heart

ate band, etc., are shared by multiple users. Providing that these devices

an automatically define the identity of a currently monitored person,

he respective measurement data would be automatically uploaded to

he appropriate account with no manual selection. 

From another perspective, automatic user identification of wearable

ealthcare devices is vital to avoid spoofing attacks and healthcare sys-

em abuse attempts: to apply for potential health benefits that are al-

ocated to people with certain diseases, spoofers may deliberately dis-

ribute their registered individual devices among users with such dis-

ases and claim that the data collected from these devices are their own

16] . 

Studies on automatic user identification have been carried out by

any researchers. Among these, camera-based face or silhouette recog-

ition is the most popular method used for identity recognition [17-19] ,

nd it has been applied to a multitude of applications such as access con-

rol, smart security, entry and exit control, etc. However, the applica-

ion bottleneck of this method lies in that the recognition performance is

asily affected by illumination variation, obstacles, etc. Besides, camera-

ased recognition is not suitable for low-cost wearable devices, which

ave no cameras. 

Another widespread technique is fingerprint recognition [20,21] .

ingerprint-scanning sensors (optical, capacitive, thermal, piezoresis-

ive, and others) have been integrated into multiple off-the-shelf smart

evices, such as smartphones, security doors, attendance systems, etc.

owever, the application of these methods requires dedicated im-

ge/fingerprint capture sensors that are rarely available in wearable

evices, which limits their feasibility for the identification of wearable

ealthcare system users. Furthermore, the fingerprint/face recognition

rocess needs user interaction, which may be an arduous task for elders.

Physiological signals, such as electrocardiograms and photoplethys-

ograms, have also been used to resolve the security issues of wearable

evices in recent studies. The unique feature of the user’s physiological

ignals makes these methods very suitable for wearable healthcare de-

ices. An inter-pulse interval (IPI) based key generation and distribution
135 
olution for the wearable sensor networks using the electrocardiogram

ECG) signals was developed by several researcher groups [22-24] . Liu

t al. proposed an ECG-based biometric human identification and au-

hentication scheme using the multiscale autoregressive method, which

ade it possible to achieve high recognition rates both for the public

ataset and practical test scenarios [25] . However, these methods ne-

essitate the integration of all wearable devices with the same physio-

ogical signal sampling module, which option is not always achievable

n practical applications. 

Previous studies, through a large number of repeated experiments,

ave revealed strong similarities/dissimilarities between gaits of the

ame/different individuals, respectively, and proved that human gait

s a unique feature that could be used for the robust identity recogni-

ion [26,27] . Moreover, as compared to the conventional biometrics like

ngerprints and face recognition methods, the gait recognition method

ombines several advantageous features, namely high fraud-resistance,

ecure data collection, no need for the explicit user interaction, and con-

inuous and long-distance authentication. This lucrative combination

akes the gait a very suitable biometric parameter for user verification

n wearable healthcare devices. 

Gait-based biometric studies can be classified into three categories,

amely machine vision-based, wearable sensor-based, and floor sensor-

ased ones. This study falls into the second category, and hence is fo-

used on wearable sensor-based research results. Noteworthy is that a

roader application of machine vision-based [28] and floor sensor-based

pproaches [29,30] is yet hindered by the lack of sophisticated special-

zed equipment such as high-definition cameras and pressure-sensing

arpets. 

There are numerous reports on gait-based biometrics. Thus, Gafurov

t al. presented a gait authentication scheme based on the histogram

imilarity and cycle length detection methods, which was verified on 21

ounger adults (20–40 years of age) [31] . Ren et al. used the gait pat-

erns derived from acceleration readings to detect possible user spoofing

n mobile healthcare systems [16] . To avoid the spoofing attacks, the

ser-centric and server-centric frameworks were proposed and tested

sing smartphone-enabled mobile healthcare systems with different lo-

ations of cell phones on the user body [16] . Alternatively, Muaaz

nd Mayrhofer suggested a cell phone-based gait recognition method

ased on the machine learning algorithms and conducted experiments,

hich included data on young adults [32,33] . Trung et al. analyzed

he gait recognition performance using different matching methods

34] . A recent study performed by several co-authors of this paper pro-

osed a speed adaptive gait recognition method using the individualized
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hreshold generated when constructing the gait template [35] . The lat-

er method yielded high recognition rates of subjects walking at variable

peeds. 

However, the feasibility of major available methods of gait recog-

ition was mainly tested on young adults, whereas their gait recogni-

ion performance for elderly subjects has yet to be validated. The intra-

ubject gait fluctuation for older adults is known to be more significant

han that of young ones due to the natural decline in physical strength

ith age [36] . In contrast, the gait fluctuation of young adults is quite

mall since they have established their walking style; in other words,

hey have a stable gait pattern [37] . This makes the gait-based iden-

ity recognition of older adults a more challenging task, as compared to

hat of young ones, and this task is getting more urgent with the aging

opulation global trend. 

This paper proposes a gait-based identity recognition solution for the

earable healthcare system, which conveniently implements identity

uthentication and user recognition without user interaction. According

o the recognition results, the sampled data can also be automatically

ploaded to the respective folders in remote servers or cloud computing

latform. 

The main contributions of this study can be summarized as follows: 

1. The gait template synthesis method is proposed to reduce the intra-

subject gait fluctuation of elderly users. The average of several gait

cycles is used to synthesize the gait template, which is more repre-

sentative of a person’s gait. 

2. The score level fusion method for user recognition is proposed. Two

matching algorithms are used to make preliminary decisions; if there

are inconsistencies in the preliminary decisions, the third matching

algorithm is used to provide the final decision. Such procedure is

shown to improve the recognition rate of older adults. 

3. The comparative analysis of gait recognition rates obtained via the

cycle-based and fixed length-based gait template construction meth-

ods is performed. 

4. Recognition performances are evaluated under various ground con-

ditions and sensor placements, and the robustness of the proposed

gait-based recognition method for elderly users is proved. 

The rest of the paper is organized as follows. The gait character-

stics and gait recognition challenges for elder users are presented in

ection 2 . The proposed gait-based identity recognition methods are in-

roduced in Section 3 . The experiments conducted for the verification of

he proposed methods are described in Section 4 , and the experimental

esults obtained are analyzed in Section 5 . Finally, Section 6 concludes

he work. 

. Challenges of gait recognition for elderly users 

The deterioration of gait characteristics of elders, including the gait

ymmetry, balance, and consistency, implies the respective challenges

elated to their gait recognition. 

.1. The gait of elders has poor left-right-symmetry 

Gait symmetry is an essential aspect of human walking. It is widely

ssumed that a healthy gait is symmetrical, while any asymmetric pat-

ern is a sign of gait abnormality [37] . However, this assumption was

ot thoroughly tested, especially for elders. With age, the muscular

trength/nervous system degeneration of elders results in the asymmetry

f the left-right gait, which is depicted in Fig. 2 . The signal was sampled

rom the waist centre of a male subject of 66 years of age walking on

he level ground. 

.2. The gait of elders lacks consistency on time scale 

Studies on the gait biometrics are based on the assumption that the

ntra-subject fluctuation of the gait is negligible. This assumption is valid
136 
or young adults, who have already mastered walking skills and have

stablished their walking style but may not hold for children under ten

ears and elders over 50 years. The intra-subject gait fluctuation of chil-

ren is relatively more extensive due to the immaturity of their walk-

ng skills, whereas that of elders increases with age, due to the natural

ecline of their physical strength [38] . Comparative experiments con-

ucted in [38] revealed that the equal error rates (EER) of gait recogni-

ion for young adults (aged 20–30 years) and elderly ones (over 50 years

f age) were 7 and 18%, respectively. Such a nearly 2.5-fold increase in

he recognition error rate can be attributed to a poor gait consistency of

lderly users. 

.3. Gait cycle periods of elders are hard to detect 

Due to the left-right gait asymmetry and inconsistency on the time

cale, the gait cycle periods of elders are less pronounced than those

f young adults [39] . Therefore, gait recognition methods based on the

ait cycle detection may be unfit for elders, and this necessitates the

pplication of alternative methods, which would take into account the

bove gait-related peculiarities of elders. 

. Methodology 

To resolve the problem of gait recognition of elders, a multiple

atching algorithm-based method is proposed in this study, which can

e reduced to the following procedures. Firstly, the Pearson correlation

oefficient (PCC) and the Manhattan distance (MD) algorithms are used

n parallel for the preliminary assessment of the user identity, whereas

he final decision on accepting or rejecting the user identity is made via

he normalization cross-correlation algorithm. 

The flowchart of the above method, which includes the signal pre-

rocessing and gait-based identity recognition procedures, is depicted

n Fig. 3 . 

For the signal preprocessing procedure, the raw 3-axis acceleration

ignal is denoised by a low-pass filter. Then, the array dimensionality

f the 3-axis acceleration data is reduced utilizing the principal compo-

ents’ analysis (PCA). At the registration phase, gait templates ( T cycles )

re constructed by the proposed cycle-based or fixed length-based gait

emplate construction methods. At the identification phase, the gait to

e recognized ( P cycle ) is acquired by the same methods. For the gait-

ased identity recognition process, the arbitration-based score level fu-

ion algorithm is designed to improve the recognition accuracy, consid-

ring the computation complexity and the matching accuracy. The PCC

nd MD algorithms are first used to recognize the user’s identity. If the

ecognition results of these two algorithms are not consistent, the ad-

itional algorithm, namely the normalization cross-correlation (NCC),

s realized to make the final decision. The processing procedure is de-

cribed in more detail in the following subsections. 

.1. Signal preprocessing methods 

According to the signal preprocessing procedure depicted in Fig. 3 ,

he raw acceleration signal is firstly filtered using a Butterworth low-

ass filter to remove the high-frequency noise. The cut-off frequency of

 Hz is preset, insofar as the average gait frequency is between 1.7 and

.7 Hz. Next, the filtered signal is further processed to extract the gait

emplate and probe data. 

As mentioned in Section 2 , the gait characteristics of elders, which in-

lude irregular cycles and unclear boundaries between two cycles, may

esult in malfunctioning/increased error rates of cycle extraction meth-

ds. To solve this problem, this study proposes a new template con-

truction method, which does not directly use the acceleration signal to

xtract gait cycles. Instead, the synthesized signal is applied to construct

he template. Through this method, the asymmetry inconsistency of the

lderly gait can be resolved. 
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Fig. 2. The left-right-gait asymmetry of an elder male user. 

Fig. 3. The signal-processing flowchart of the proposed method. 
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To reduce the signal processing complexity, the 3-axis acceleration

ignal is firstly synthesized into unidimensional one using the principal

omponents’ analysis (PCA). This is a statistical procedure that uses an

rthogonal transformation to convert a set of observations of possibly

orrelated variables into a set of values of linearly uncorrelated variables

alled principal components [40] . As the same motion source generates

he acceleration signals in the three directions, they should have a strong

orrelation. The application of PCA for recognizing the gait via the first

rincipal component of the 3-axis acceleration signal was found to be

ery effective. Algorithm 1 depicts the signal preprocessing procedure. 

Algorithm 1 Signal preprocessing. 

Input: 

Acceleration signal: Data = {x i y i , z i , i = 1,2,…L}; 

Procedure: 

1. T da t a = PCA(Data) = {t i , % i = 1,2,...L} ; % dimension reduction 

Output: T data 

Fig. 4 depicts the 3-axis acceleration signal sampled from the centre

f the user waist when the user was walking on the level ground, as well
137 
s the first principal component. The latter exhibits a more pronounced

eriodicity than the original signal. 

.2. Gait template construction method 

The mapping signal after PCA is then processed by two different

ethods to construct the gait templates, namely the cycle- and fixed

ength-based ones. The respective procedures can be described as fol-

ows. 

.2.1. Cycle-based method 

According to the cycle-based method, the signal cycles are extracted

nd averaged to construct the template. Firstly, the minimum points of

he PCA signal are detected and selected to extract the cycles. Insofar as

ycles may differ by length, the length normalization of the detected cy-

les should be performed using the cubic spline interpolation algorithm.

hen, the cycles are summed and averaged to reduce the intra-subject

uctuation. The respective pseudo-code is presented in Algorithm 2 . 

An example of the extracted cycles and the constructed cycle-based

ait template is illustrated by Fig. 5 . The signal was also sampled from

he centre of the waist while the user was walking on the level ground.

n the proposed cycle-based gait template construction method, seven
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Fig. 4. Original acceleration signal and the mapping signal obtained by the dimensional reduction via PCA. 

Algorithm 2 Cycle-based method. 

Input: 

Acceleration signal: T da t a = { t i , % i = 1,2,...,L}; 

Smaple frequency: f s ; 

Procedure: 

1. min_index = arg_min(T data );%find the position of the local minimum points of the Acc 

2 start_p = T data (min_index(1));%the start point is the first local minimum point 

3. freq = fft(T data );%Single-Sided Amplitude Spectrum of signal 

4. f m a x = arg_max(freq); % estimate the cycle frequency 

5. len = f s /f m ax ;%the estimated cycle length 

6. for i = 1:1:N %extracted N cycles 

7. searchRange = [start_p + len − d , start_p + len + d]; 

8. end_p = the position of the local minimum point lacate in the searchRange ; 

9. cycle = Acc(start_p: end_p);%the extracted cycle 

10. cycle = spline(cycle , 100);%normalize the length of the extracted cycle to 100 samples 

11. sum_cycle = sum_cycle + cycle ; 

12.start_p = end_p; 

13.end for 

14.avg_cycle = sum_cycle/N; 

Output: avg_cycle ; 

g  

g  

a

3

 

w  

e  

i  

t  

Fig. 5. The extracted gait cycles and the averaged gait cycle. 

l  

l

ait cycles were used to assess the average gait cycle. As the general

ait frequency was about 2 Hz, the gait template construction time was

pproximately 3.5 s. 

.2.2. Fixed length-based method 

For the fixed length-based method, a fixed length ( S ) of the signal

as extracted to construct the template. The data at the starting and

nding periods are removed to reduce the interference of the respective

rregular (start and stop) user body motions. In this study, the impact of

he fixed length S on the recognition rate was explored, and the optimal
138 
ength value was assessed at 300. The detailed procedure of the fixed

ength-based method is given in Algorithm 3 . 

Algorithm 3 Fixed length-based method. 

Input: 

Acceleration signal: T data = { t i , % i = 1,2, . . .L} ; 

Procedure: 

1. fixed_length = {t j ; % j = 100, 101,...(100 + S − 1)}; 

Output: fixed_length; 
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.2.3. Establishment of gait template 

For the above two methods, the signal sampled from the authenti-

ated users composed the template vector as follows: 

 𝑒𝑚𝑝𝑠 = 

[
𝑇 𝑒𝑚 𝑝 1 𝑇 𝑒𝑚 𝑝 2 … … 𝑇 𝑒𝑚 𝑝 𝑀 

]
(1)

here Temp i represents the gait template of user i , whereas M is the num-

er of authenticated users in this system, whose gait templates compose

he template vector Temps. For the signal used in the test, the prepro-

essing results for the cycle- and fixed length-based methods are stored

n Test_gait. The latter contains only the gait signals of a single unknown

ubject, while Temps consists of the gait templates of M authenticated

ubjects. 

According to the template construction methods, the data stored in

he template vector and those used in tests have the same length. There-

ore, the test gait signal length should be equal to that of the gait tem-

late. 

.3. Gait-based identity recognition methods 

.3.1. User recognition algorithm 

To recognize the user’s identity, the distance- or metric function-

ased methods are usually applied. There are many template-matching

lgorithms including the cross-correlation, Manhattan distance, Eu-

lidean distance, dynamic time warping (DTW), Pearson correlation co-

fficient (PCC), etc. However, the above single matching algorithms

ave certain drawbacks. For example, DTW measures a distance-like

uantity between two given sequences but does not guarantee the tri-

ngle inequality to hold. As a result, the series may get so warped that

heir discriminative patterns will be lost [41] . 

In this study, a multiple-decision method is proposed to improve the

ecognition performance. Firstly, two matching algorithms are run in

arallel, and the decisions they make are compared. If these are dif-

erent, the third matching algorithm is performed to compare the two

ecisions further and make the final decision. The three matching algo-

ithms used in this study are briefly described below. 

The first matching algorithm used is the Pearson correlation coeffi-

ient (PCC). It is considered to be the optimal choice for measuring the

orrelation between variables of interest because it is based on covari-

nce. It provides information on the correlation, as well as the relation-

hip trend [42] . This method is also referred to as the Pearson product

oment correlation (PPMC), which shows the linear relationship be-

ween two sets of data. Its value is ranged between + 1 and − 1, where

, 0, and − 1 correspond to the total positive, zero, and total negative

inear correlations, respectively. The PCC definition is as follows: 

𝑥,𝑦 = 

𝑐𝑜𝑣 ( 𝑥, 𝑦 ) 
𝜎𝑥 𝜎𝑦 

= 

𝐸 

((
𝑥 − 𝜇𝑥 

)(
𝑦 − 𝜇𝑦 

))
𝜎𝑥 𝜎𝑦 

, (2)

here cov is the covariance between x and y , 𝜎x and 𝜎y are the standard

eviations of x and y , respectively, 𝜇x and 𝜇y are the means of x and y ,

espectively, while E is the expectation. Correlation between datasets is

 measure of their relation closeness. The PCC between the gait cycle

emplate and the user’s gait cycles is instrumental in determining the

ser validity. 

At the same time, another matching algorithm based on Manhattan

istance (MD) is used for the first-round matching. The MD between two

equences x and y with length N can be calculated via Eq. (3) 

𝑑 ( 𝑖, 𝑗 ) = 

𝑁 ∑
𝑖 =1 

||𝑥 𝑖 − 𝑦 𝑖 
|| (3)

If the recognition results obtained by the above two algorithms are

ifferent, a third matching algorithm would be used to re-judge the two

ifferent identities and make the final decision on the user identity. The

lgorithm used here is the normalization cross-correlation (NCC). Cross-

orrelation is the primary statistical approach to image registration. It

s used for template matching or pattern recognition and reflects the

egree of similarity between the image and template [43] . In contrast
139 
o the above two template matching algorithms, NCC exhibits higher

omputational complexity and more accurate matching performance. 

.3.2. Arbitration-based score level fusion algorithm 

For the gait recognition process, gait samples from unknown users

re used to test the recognition performance of the proposed method. 

The collected data can be presented as Data = {x i , y i , z i , i = 1, 2,…,L} ,

here x, y , and z represent the acceleration data in the respective three

irections of the sensor, while L is the length of the collected data.

irstly, the three dimensions of the T data signal are processed via the

bove signal-preprocessing method using PCA, and T data = t i , i = 1,2,…,

 

Then, according to the template construction method (cycle-based

r fixed length-based) used in the previous section, the gait signal used

or the test is segmented into cycles or portions of fixed length. For the

ycle-based method, the test signal is firstly segmented into K cycles, as

hown in Eq (4) : 

 𝑒𝑠𝑡 = 

{
𝑐 𝑦𝑐 𝑙 𝑒 1 , 𝑐 𝑦𝑐 𝑙 𝑒 2 , … , 𝑐 𝑦𝑐 𝑙 𝑒 𝐾 

}
(4)

Then, the obtained cycles are averaged to get Test_Gait for the recog-

ition procedure of the next step. 

 𝑒𝑠𝑡 _ 𝐺𝑎𝑖𝑡 = 

1 
𝐾 

(
𝑐 𝑦𝑐 𝑙 𝑒 1 + 𝑐 𝑦𝑐 𝑙 𝑒 2 + …+ 𝑐 𝑦𝑐 𝑙 𝑒 𝐾 

)
(5)

For the fixed length-based method, the test signal can be expressed

s: 

 𝑒𝑠𝑡 _ 𝐺𝑎𝑖𝑡 = 𝑡 𝑠 𝑠 = 𝐿, 𝐿 + 1 , … , 𝐿 + 𝑆 − 1 (6)

The gait template established in the previous section has been given

n Eq (1) . The recognition procedure is shown in Algorithm 4 , where M

Algorithm 4 Gait recognition process. 

Input: 

Gait templates: Temps 

Gait cycle used for identification: Test_gait 

Procedure: 

1. For i = 1:1:M 

2. Pcc(i) = pcc(Test_gait, Temps(i)); 

3. Md(i) = md(Test_gait. Temps(i)); 

4. End for 

5. [min_Pcc, min_index_Pcc] = findmin(Pcc); 

6. [min_Md, min_index_Md] = findmin(Md); 

7. If min_index_Pcc = min_index_Md:; 

8. Identity_No = min_index_Pcc;%Confirm the identity of the user 

9. Else 

10. Ncc_Pcc = NCC(Test_gait, Temps(min_index_Pcc)); 

11. Ncc_Md = NCC(Test_gait, Temps(min_index_Md)); 

12. If Ncc_Pcc < Ncc_Md 

13. Identity_No = min_index_Pcc; 

14. Else 

15. Identity_No = min_index_Md; 

Output: Identity No. 

s the number of registered users. 

Firstly, PCC and MD between Test_gait and each Temp gait in Temps

re computed. Next, the locations of the maximum PCC ( max_index_pcc )

nd minimum MD ( min_index_md ) are detected, which means that, ac-

ording to PCC/MD values, Test_gait is the closest to Temp with subscript

ax_index_pcc/min_index_md. 

If max_index_pcc and min_index_md are points of the same Temp , then

est_gait values are recognized to have the same identity as Temp with

ubscript max_index_pcc/min_index_md. However, if max_index_pcc and

in_index_md are points of two different Temps, the third matching al-

orithm (NCC) should be applied to compare the normalized cross-

orrelation between the two Temps with the Test_gait, and the identity

ould be recognized to be the same with that Temp , for which the nor-

alized cross-correlation is more significant. 
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Fig. 6. Placement of the acceleration sensor nodes. 
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Fig. 7. Distribution by age and gender of the sub-dataset used for this study. 
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. Experiments 

In this section, the performance of the proposed recognition method

s tested via the OU_ISIR public dataset [44] . The impact of the sen-

or placement in different body locations and ground conditions on the

ecognition performance is explored and discussed. 

.1. Data sources 

The aging gait provided by OU-ISIR gait database is used to test the

erformance of the proposed method. There are gait samples of 744

ubjects with age ranging from 2 to 78 years, including 64 older adults

f age over 50 years. The accelerometer data are sampled at 100 Hz

ith a measuring range of ± 8 g. As this study is mainly focused on gait

ecognition, only the gait samples of 64 older adults over 50 years are

sed. 

The OU_ISR uses three IMUZ sensors (each one including a triaxial

ccelerometer). The left, right, and central IMUZ sensors (denoted as l -,

-, and R-sensor, respectively) are placed on the user’s waist as shown

n Fig. 6 . For each subject and each sensor, two sequences for the level

alk ( level walk1 and level walk2 ), one sequence for the upslope walk ,

nd one sequence for the downslope walk were extracted. As a result,

ach subject had 12 traces (3 sensors × 4 traces) recorded in total [38] .

The dataset has several advantages, including a large number of sub-

ects with a balanced gender ratio, variations of sensor locations, and

round slope conditions. The gender and age distributions of the used

ub-dataset are shown in Fig. 7 . 

.2. Evaluation method 

For the evaluation criterion, the impact of the ground condition on

he recognition rate was studied for each (central, left, and right) sensor.

hen, using the level walk1 sequence sampled from central sensors to

onstruct the template and level walk1 sequence sampled from the left

nd right sensors as test samples to evaluate the impact of the sensor

lacement on the recognition performance. 

The template for each subject was extracted from the level walk1 se-

uence sampled by C-sensors, while level walk2, upslope walk , and downs-
140 
ope walk sequences were used as test samples to verify the recognition

erformance of the proposed method for different ground condition sce-

arios. The level walk2 sequences sampled by C-, L-, and R-sensors were

sed to evaluate the impact of sensor placements on the recognition

ate. 

The conventional recognition performance of the method was eval-

ated by receiver operating characteristic (ROC) curve, which reflected

 trade-off between false rejection rate (FRR) and false acceptance rate

FAR) when the threshold was changed by a receiver in personal recog-

ition scenarios. However, in this study, the individualized threshold

as automatically generated, so that FAR and FRR values were calcu-

ated and compared with the available results. 

The cumulative match characteristics (CMC) curves were con-

tructed in “rank versus identification rate ” coordinates to evaluate the

ecognition performance for different scenarios. Each CMC curve indi-

ated the cumulative probability of a match being within the top n clos-

st matches [45] . 

The recognition rate of the proposed method was evaluated for dif-

erent scenarios. The recognition rate was defined as the ratio of the

umber of accurately recognized subjects and the number of the total

ubjects enrolled in the tests. 

. Results and discussion 

In this section, the user recognition performance of the proposed

ethod is discussed. The effects of the sensor placement and ground

onditions on the gait-based identity recognition performance were an-

lyzed in detail. 

.1. Impact of the sensor placement on the recognition rate 

To study the effect of sensor placement on the recognition rate, the

eft, right, and central IMUZ sensors placed on the user’s waist were

onsidered. For each sensor placement, the level walk1 sequence was

sed to construct the gait template, whereas the level walk2 sequence

as applied for the performance test. The recognition performances of

he cycle- and fixed length-based methods were tested. The obtained

MC curves of the three sensor placements are depicted in Fig. 8 . Their

omparative analysis provided the following findings. 

(1) For both cycle- and fixed length-based methods, the recognition

rate of the central sensors was higher than that of the left and

right ones. This can be explained by the fact that sensors placed

on the left and right sides of the waist are more prone to be af-

fected by other body parts’ movement, e.g., lifting arms. 
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Fig. 8. The impact of sensor placements on the recognition performance (a) cycle-based method (b) fixed length-based method. 

Fig. 9. The impact of ground conditions on the recognition performance (a) cycle-based method (b) fixed length-based method. 
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(2) The recognition rate of the cycle-based method was higher than

that of the fixed length-based one. This can be attributed to the

fact that the gait signal extracted by the cycle-based method con-

tains more complete gait features than that obtained via the fixed

length-based one. 

(3) For all sensor placements, the rank-1 recognition probability

rates of both proposed methods exceeded 0.8. 

.2. Effect of ground conditions on the recognition rate 

For the performance evaluation under different ground conditions,

he gait sequences sampled by the central sensors were used. For each

ubject, the level walk1 sequence was adopted to construct the gait tem-

late, whereas the sequences of different ground conditions ( level walk2,

pslope walk , and downslope walk ) were applied to evaluate the recog-

ition rate. The performances of the cycle- and the fixed length-based

ethods were compared for the three ground conditions. The obtained

ecognition results are depicted in Fig. 9 . According to the test results,

he recognition rate for the level walk (flat ground) was superior to

hose of the upslope or downslope walks (slope ground). This trend

as not unexpected: insofar as the gait template was extracted from the
141 
evel walk signal, its matching rate with the test signal from the slope

alk was inferior to that from the level walk. Nevertheless, for all three

round conditions, the rank-1 accuracy of the cycle- and fixed length-

ased methods exceeded 0.82, and the rank-1 accuracy of both methods

xceeded 0.9 when users walked on the flat ground (level walk). 

.3. Performance comparison of the fusion and single methods 

To validate the efficiency of the fusion matching method used for gait

ecognition proposed in this study, the comparative analysis of results

rovided by the fusion method and single matching methods (PCC, MD,

nd NCC) was performed. Firstly, the sequences sampled by the three

ensors on the flat ground were used for each subject. The level walk1

nd level walk2 were used as the gait template and the test sample, re-

pectively. Secondly, the sequences sampled by the central sensors un-

er three ground conditions were used: level walk1 as the gait template;

evel walk2, upslope walk , and downslope walk sequences as test samples.

The recognition results of the single and score level fusion match-

ng method tested on data sampled from different sensor placement are

hown in Fig. 10 . The test results imply that the proposed score level

usion matching method has superior recognition performance than any
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Fig. 10. The impact of the sensor placement on the recognition rate (a) cycle-based method (b) fixed length-based method. 

Fig. 11. The impact of ground conditions on the recognition rate (a) cycle-based method (b) fixed length-based method. 

Fig. 12. The impact of the number of templates in Temps on the recognition 

rate. 
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142 
f the single matching methods for all three sensor placement scenarios.

imilar to the results obtained in study [35] , the recognition rate of the

entral sensor was higher than those of the left and right ones for all

atching methods used. 

The test results for the comparison of the fusion and single methods

nder different ground conditions are shown in Fig. 11 . They imply that

he recognition rate of the proposed score level fusion method is superior

o those of any single matching algorithms for all ground conditions, and

he recognition performance of the level walk was higher than that of

he upslope walk and downslope walk ground conditions. 

From the test results shown in Figs. 10 and 11 , one can conclude that

he NCC has a better recognition performance than those of the other

wo matching methods. For this reason, the NCC was chosen as the final

ecision-making matching algorithm. 

.4. Effect of the template size on the recognition rate 

Experiments with different number M of gait templates in Temps =
 Temp , Temp ,…,Temp } were carried out and analyzed. To avoid the
1 2 M 
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Fig. 13. Comparison of identity recognition of older adults by the proposed method and the histogram similarity based method. 
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nfluence of other factors, only the sequences sampled by the central

ensors on the flat ground were used in this experiment. 

The analysis of the test results depicted in Fig. 12 implies that an

ncrease in the number of gait templates in Temps would slightly re-

uce the user recognition rate. The gait cycle ( Test_Gait ) waiting to be

dentified needs to be compared with all templates in Tmeps to finally

etermine the identities of the Test_Gait, so when the number of gait

emplates in Temps increases, more comparison operations are needed,

hich may lead to more matching errors and reduce the identity recog-

ition accuracy. 

.5. Comparative analysis of recognition performance via the available 

ethod and proposed one 

The proposed score level fusion scheme was applied to older adults,

nd its recognition performance was compared to that of the known

cheme [31] , which ensured the gait-based identity recognition by the

istogram similarity algorithm. For comparison, only the cycle-based

ait template construction method was considered in this experiment,

he number of gait templates in Temps M was set to 64, whereas a 10-

in histogram was computed for the histogram similarity method. The

dentity recognition rates for different sensor placements and various

round conditions were assessed and compared. 

First, using the acceleration data sampled from the centre sensors,

he recognition rate of the proposed method was compared with that

f the histogram similarity-based method [31] under different ground

onditions. The test results as shown in Fig. 13 (a) strongly indicate that

he proposed score level fusion method outperforms that adopted in

31] under all ground conditions under study. This is can be attributed

o the fact that the histogram similarity-based method neglects the intra-

ubject gait fluctuation of elderly users. 

Next, the acceleration data sampled when older adults walked on the

at ground were used to compare the identity recognition rate of the

wo methods with three different placements of IMUZ sensors. The test

esults shown in Fig. 13 (b) also prove the recognition rate improvement

y the proposed method, as compared to that of [31] , for all three sensor

lacements. 

. Conclusions and future work 

To improve the recognition performance of wearable devices for

lder adults, we proposed an acceleration-based gait recognition
143 
ethod, which involved cycle- and fixed length-based procedures of the

emplate construction, as well as the arbitration-based score level fu-

ion matching technique. The proposed method was applied to a public

ataset containing acceleration signals of 64 older adults of age ranging

rom 50 to 79 years. The experimental results showed that the recog-

ition rate via the proposed method was improved by 26.7% on the

verage, as compared to available PCC-based single matching methods.

he follow-up studies will address the gait recognition of children and

atients with muscle and nerve diseases, whose gait patterns are unsta-

le. Moreover, additional user identification tests of older adults will

e conducted with sensors’ placement in various body locations and

nvolve different realistic scenarios to evaluate the robustness and re-

iability of the proposed approach. The computation and memory cost

f the proposed method will be analyzed, and the relationship between

he processing time and the identification accuracy will also be studied

n our future work. 
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