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A novel system of image retrieval, based on Hadoop and Spark, is presented. Managing and extracting information from Big Data is
a challenging and fundamental task. For these reasons, the system is scalable and it is designed to be able to manage small collections
of images as well as huge collections of images. Hadoop and Spark are based on the MapReduce framework, but they have different
characteristics. The proposed system is designed to take advantage of these two technologies. The performances of the proposed
system are evaluated and analysed in terms of computational cost in order to understand in which context it could be successfully

used. The experimental results show that the proposed system is efficient for both small and huge collections.

1. Introduction

Due to the dramatic growth of available images and videos
and the spread of social networks, surveillance cameras, and
satellite images, an important challenge is how to effectively
manage the computation and storage requirements imposed
by these data [1]. The trend towards many-core processors
and multiprocessor systems is thwarted by the complexity
in developing applications that effectively utilize them [2].
There are many methods available for retrieving images from
acollection. In the medical industry, for example, recent stud-
ies have identified in CBIR (Content-Based Image Retrieval)
systems a very effective technique. In these systems, input is
represented by images and output consists in all the similar
images contained in the database [3, 4]. A CBIR system
typically operates through three steps:

(1) extraction of the features which represent images in

the collection (e.g., wavelet transform and Gabor filter
bank);

(2) extraction of the features which represent the query
image;

(3) comparison of the query image with the images in the
collection by using the features extracted.

Often these techniques have proved to be inadequate as
the number of images grows. Many studies have shown
that the use of MapReduce [5] techniques can, however,
greatly speed up the image processing [6, 7] while Hadoop
is helpful for achieving scalability [8]. These performance
improvements have to be paid in terms of constraint for data
access pattern, RAM sharing rigid frameworks, and algo-
rithms major redesign. Furthermore, a set of hybridizations
of the original MapReduce framework [9] can efficiently
scale the indexing pipeline across a distributed cluster of
machines [10-12]. With the objective to fill the gap between
complicated modern architectures and new image processing
algorithms this work aims to produce a high-performance
image retrieval system able to hide the software complexity
from researchers allowing them to focus on designing inno-
vative image processing algorithms. The proposed system
embeds just one feature to demonstrate its effectiveness, and
many other features could be embedded because the system
considers the features as an abstract object. The technologies
used in the system are chosen to satisfy the requirements
of each specific task. To evaluate the effectiveness of the
proposed system its performances, in terms of computational
cost, are evaluated with collections of different size. The rest of
the paper is organized as follows. In Section 2 the MapReduce



framework is explained, while in Section 3 the technologies
used in the proposed system are described. The architecture
of the system is described in Section 4. In Section5 the
experimental results are reported, while the conclusions are
drawn in Section 6.

2. MapReduce

The MapReduce framework has been introduced by Google
[13] in order to allow a distributed processing over a server
cluster. Despite the traditional distributed processing frame-
work, where the data are pushed to the nodes that belong
to the cluster, which are responsible for the processing, in
the MapReduce system the approach is different [10]. In this
case, the data are distributed among the nodes and the tasks
are pushed to the particular node that stores the data. The
MapReduce framework is made up of two steps: Map and
Reduce, and the whole framework is based on the concept
of key, value pair (k,v) [14]. The Map function, known also
as mapper, receives (K", v"™"™) as input and produces a list
of pairs as output:
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Since the key emitted from the mapper could not be unique,
the Reduce function, called reducer, groups the values alto-
gether for each unique key:
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Depending on the implementation of the MapReduce frame-
work, the reducer could also produce multiple key, value pairs
as output. There are many advantages in using the MapRe-
duce framework related to both data storing and processing
aspects. Indeed, the file system blocks are duplicated across
the nodes, ensuring in this way a great tolerance in case of
node failure. Furthermore, the framework manages the block
in order to minimize the traffic of network data. Regarding
performances, the framework assigns the task to the nodes
that are not busy, balancing in this way the load among the
nodes. Finally, the framework is scalable and the number
of nodes in the cluster depends only on the specific case
of use. In the context of image retrieval, the MapReduce
framework could be employed principally in two ways: single
image processing [15, 16] or image collections processing [5].
Although it is even possible to combine these two approaches,
in the proposed architecture the second approach has been
adopted.

3. Technologies

The proposed system is based mainly on two technologies,
Hadoop and Spark, which are described in this section.
Although these technologies are based on the MapReduce
framework, for many aspects they are very different and both
of them are used in the proposed system. In order to take
advantage of their potentialities, these two technologies are

Advances in Multimedia

used in different parts of the system. Hadoop and Spark are
described in Sections 3.1 and 3.2, respectively.

3.1. Apache: Hadoop. Hadoop, developed by the Apache
Software Foundation, is an open source framework created
by Doug Cutting and Mike Cafarella in 2005 [18]. Its aim is
to make available a framework for distributed storage and for
distributed processing. The main modules that made up the
Hadoop framework are as follows:

(1) Hadoop Common: this module contains the libraries
and the utilities.

(2) Hadoop Distributed File System (HDFS): originally
it was the Google File System. This module is a
distributed file system used as distributed storage for
the data; furthermore, it provides an access to the data
with high throughput.

(3) Hadoop YARN (MRv2): this module is responsible
for the job scheduling and for managing the cluster
resources.

(4) Hadoop MapReduce: originally Google’s MapReduce,
this module is a system, based on YARN, for the
parallel processing of the data.

There are many projects related to Hadoop, such as Mahout,
Hive, Hbase, and Spark. One of the main aspects that char-
acterize Hadoop is that the HDFS has a high fault-tolerance
to the hardware failure. Indeed, it is able to automatically
handle and resolve these events. Furthermore, HDES is able,
by the interaction among the nodes belonging to the cluster,
to manage the data, for instance, to rebalance them [19, 20].
The processing of the data stored on the HDFS is performed
by the MapReduce framework. Although Hadoop is written
principally in Java and C languages, it is accessible by many
other programming languages. The MapReduce framework
allows splitting on the nodes belonging to the cluster the tasks
that have to be completed. The main drawback of Hadoop is
the lack of performing efliciently real-time tasks. However,
this is not an important limitation because for these specific
aspects other technologies could be employed.

3.2. Apache: Spark. As well as Hadoop, Spark is a project of
the Apache Software Foundation, originally created by the
AMPLab at the University of California, Berkeley. Concern-
ing the performances, the main advantage of Spark is that it
outperforms Hadoop; indeed it is 100x faster for in-memory
operation and 10x faster for on-disk operations. Spark adopts
the MapReduce paradigm, and it is accessible by using the
API by different programming languages (such as Scala, Java,
and Python). The core of the system is made up of a set
of powerful libraries that currently include parkSQL, Spark
Streaming, MLIib, and GraphX. Spark is divided into various
independent layers each one with specific responsibilities:

(1) Scala interpreter: it takes care of creating an oper-
ator graph through RDD (i.e., responsibility-driven
design) and applying operators.

(2) DAG scheduler: it divides operator graph into stages.
Every stage is comprised of tasks based on partitions
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FIGURE 1: Architecture of the system. The gray objects represent the server side, while the green objects represent the client side.

of the input data. The DAG scheduler pipelines
operators work to optimize the graph.

(3) Task scheduler: it activates tasks via cluster manager.

(4) Worker: it executes the task on a slave (i.e., the
machine on which the Executor program runs).

Spark can run on the Hadoop YARN cluster and it is able to
access the HDFS; this allows an easy and efficient integration
of Hadoop and Spark within the same system.

4. Proposed Architecture System

The aim of this paper is to propose the architecture of a system
prototype able to manage huge collection of images and
deeply analyse its performances in terms of computational
cost, and not in terms of recall, precision, retrieval rate, and
so on, because these aspects are not important in this context.
The proposed system is able to manage huge collection
of images thanks to its scalability. It is based on the use
of two important technologies in the context of Big Data:
Hadoop and Spark; both of them employ the MapReduce
framework. In the previous sections, the MapReduce frame-
work (Section 2) as well as Hadoop (Section 3.1) and Spark
(Section 3.2) is described.

Roughly speaking, the system is made up of a client side
and a server side (see Figure1). The client side allows the
interactions between the users and the system by a web page.
Indeed, it is used by the users to provide the query image and
by the system to show the results. The processing and all the
operations with a high computational cost are performed on
the server side. For this reason it needs to be optimized and

efficiently designed in order to manage huge collections of
images. The architecture of the system, taking into account
only the server side, could be considered to be made up of
two main parts: one used during the indexing phase and
the other one dedicated to the retrieval phase, as shown in
Figure 1. However, both of them are based on a layer that is
the Hadoop file system. The indexing phase and the retrieval
phase have different requirements and then are separately
designed. The indexing phase needs to write the index files
to the file system and also has to process all the images
belonging to the collection. Hadoop succeeds in an optimal
way to meet these needs. On the other hand, the retrieval
phase should be as fast as possible; then the operations should
be done in memory; for these reasons Spark is better than
Hadoop for this task. Combining these two technologies into
the system it is possible to take advantage of their positive
sides, minimizing the impact on the performances of their
negative sides. Concerning the first part (i.e., the indexing
phase), it makes use of the Hadoop technology and it stores
the result (i.e., the index files) in the Hadoop file system.
Based on the HIPI project [5], a list of images is assigned to
each mapper and the result of the processing activity is index
files with the features extracted from the images [21]. Once all
the images have been processed, the reducer merges the index
files created by the mappers and generates the final index file.
Obviously, the computational cost, expressed in time, of this
operation is

N
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where



(i) t" is the total time spent for the indexing phase;

(ii) t;, is the time related only to the processing of the
images belonging to the collection; this is made up of
the time 7;, spent from each of the N mappers;

(iii) tiys is the time spent from the system, strictly related to
the proposed architecture (e.g., managing of the map-
pers and reducer and the reading/writing operations
on the Hadoop file system).

In this paper we focus our attention on tiys. The second
part of the system (see Figure 1) responsible for the retrieval
phase is based on the Spark technology, but it makes use of
the Hadoop file system to read the index file. The system
performs the retrieval operation by using an image as query.
From the index file the information needed to perform the
comparison with the query image is loaded into memory and
to each mapper is assigned a list of images, with their features,
to compute the similarity with the query image. At the end
of these tasks, the reducer computes the final ranking based
on the similarity computed between the query image and the
images within the index file. As well as for the previous part
of the system, the computational cost, expressed in time, is

N
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where

(i) t" is the total time spent for the retrieval phase;

(ii) t,. is the time related only to compare the query image
with all the images of the collection; this is made up
of the time 7. spent from each of the N mappers;

(iii) tg,s is the time spent from the system, strictly related
to the proposed architecture (e.g., managing of the
mappers and reducer, reading the index file on the
Hadoop file system, performing the ranking, and
processing the query image).

It is important to analyse this last component of the com-
putational cost. Finally, in this context the color feature and
its comparison metric, described and used in [22, 23], have
been considered. This is not a limitation because any features
can be deployed in the system, adding them to the same
index file or creating a new index file for each of them,
depending on the specific case of use. Obviously, when the
ranking of the images belonging to the collection is based
on more features, storing them into the same index file is
more efficient. Otherwise, if the ranking is based on one
feature, the system is more efficient when the index file stores
only that feature. Furthermore, the computational cost of
the processing of each image depends on which features are
employed, but it does not affect the performances evaluation
object of this paper. Indeed, in this paper, the computational
cost introduced by the system is analysed.

5. Experimental Results

In Section 4 the architecture of the system is described;
furthermore the aspects that are analysed in this paper are
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highlighted. As said in the previous section, the aim of this
paper is to investigate the computational cost introduced by
the system in both parts, the first one based on Hadoop,
related to the indexing operations, and the second one based
on Spark, related to the retrieval operations. In Section 5.1

the experiments performed are deeply described in order to
explain the performances that are reported in Section 5.2.

5.1. Context of the Experiments. Although the technologies
used by the system, described in Section 3, are scalable
and are designed to be used on a cluster of machines,
the experiments are not conducted on a cluster but on a
single machine. Our aim is to analyse the computation cost
introduced by the proposed system in order to understand
its limitations in an image retrieval scenario. Our analysis is
not focused on the technologies employed or on the overall
performances of the system in terms of efficiency or retrieval
rate; indeed just the color feature is considered. The analysis is
centred on the complexity introduced by the proposed system
in a context, heavy from the computational cost, such as those
of image retrieval. The operations related to the indexing
phase and related to the retrieval phase are performed by
using different collections with a growing size. In particular,
collections made up 0f 100, 1K, 10 K, 100 K, and 500 K images
are used. In the next section the results and the performances
are extensively described.

5.2. Performances. The results of the performances analysis
of the proposed system are presented in Tables 1 and 2. In
particular, the results regarding the indexing phase, that is
based on Hadoop, are presented in Table 1 and those regard-
ing the retrieval phase, that is based on Spark, are presented
in Table 2. Our aim is to investigate and to understand
the behaviour of the proposed system for collections with
different size. In our analysis the computational costs, strictly
related to the feature extraction and feature comparison,
are isolated. These aspects affect the performances in terms
of retrieval rate, precision, and recall, but not in terms of
computational cost that is analysed in this work. The feature
extraction algorithm and the feature comparison algorithm
are relatively simple and then their computational cost is low.
This feature has been chosen for this reason because this is
the worst case of use for the system. Roughly speaking, if the
proposed system is efficient in this case, employing it when
the features are more complex, in other words with a higher
computational cost, is even more convenient.

Table 1 shows that the computational cost due to the
architecture of the system becomes relevant when the collec-
tion is made up of 500 K images. This is also highlighted in the
graph shown in Figure 2. Since adding nodes to the cluster
impacts only on the image processing time, this aspect has
to be faced when the collection size is 500 K or higher. It is
important to notice that the percentage of architecture time
is related to the time to process an image that, as said before,
is very small for the chosen feature. In any case, a possible
solution is to split the collection in order to minimize the
impact of the architecture time.

Concerning the retrieval phase, the percentage of archi-
tecture time is comparable for any collection size, as shown
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TaBLE 1: Indexing phase performances (i.e., Hadoop based).

. Indexing Time to process Architecture Percentage of
Number of images . I . . 1 . .
time [s], t all images [s], tio time [s], L‘Sys architecture time
100 29 28 1 3.45%
1000 285 280 5 1.75%
10000 2820 2800 20 0.71%
100000 28297 28000 297 1.05%
500000 165661 140000 25661 15.49%

TABLE 2: Retrieval phase performances (i.e., Spark based).

. Retrieval Time to process Architecture Percentage of
Number of images . R . . R . .
time [s], ¢ all images [s], t;. time [s], tys architecture time
100 0.559 0.245 0.314 56.17%
1000 0.625 0.262 0.363 58.08%
10000 1.140 0.367 0.773 67.81%
100000 4.603 1.472 3.131 68.02%
500000 22.635 9.230 13.405 59.22%
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FIGURE 2: Percentage of architecture time with respect to the number
of images, indexing phase.

in the graph in Figure 3. This is essentially related to the time
spent to process the query image and to read the index file
from the Hadoop file system and write it into the memory.
Although a more eflicient implementation of this operation
could be developed, this is a necessary operation in order
to take advantage of the Spark technology. For instance, the
index file could be loaded into memory only once when
the application is started or when the comparison method
is set. The use of this technology allows adding nodes to
the cluster in order to reduce the time needed to make
the comparison among the query image and the images in
the index file. This aspect becomes fundamental when the
comparison algorithms are complex in order to maximise
the retrieval rate performances. Summarizing, the results
show that, for both phases, the proposed system could be
efficiently employed with small collections (e.g., ~100 images)
as well as huge collections (e.g., ~500 K images), even if the
chosen feature has a very low computational cost. Obviously,
the impact of the architecture time decreases when more

100 1000 10000 100000

Number of images

500000

FIGURE 3: Percentage of architecture time with respect to the number
of images, retrieval phase.

complex, and efficient, features are employed to represent the
images in the collection.

In Figure 4 the ratio between the indexing time and the
retrieval time, with respect to the collection size, is shown.
This is an important aspect of the image retrieval system
because it should be as high as possible. Indeed, since the
indexing time grows as well as the collection size grows, the
retrieval time should be bounded in order to not annoy the
users. Furthermore, while the indexing phase is performed
just once, the retrieval phase is performed much more times.
This ratio, for the proposed system, has a value higher than
the value obtained by the system, which is based only on
Hadoop, proposed in [17]. Figure 5 refers to a collection made
up of 160 K images, and the maximum value of the ratio is
when the cluster is made up of 30 nodes. Also, in this case,
the ratio is lower than the ratio of the proposed system for
the same collection size, as shown in Figure 4, although the
proposed system has been tested on a single machine; this
means that the ratio could increase if the nodes are added to



8000,00 :
7000,00 731880
6000,00
5000,00

4000,00

3000,00 : : :
2473,68
2000,00 . . .

1000,00 . .
456,00

100 1000

0,00

10000 100000

Number of images

500000

Ratio between indexing time and retrieval time

FIGURE 4: Ratio between indexing time and retrieval time with
respect to the collection size for the proposed system.

60,00 -
50,00 4
40,00
30,00 4
20,00

10,00 ~

0,00

1 5 10 20 30
Number of nodes

Ratio between indexing time and retrieval time

FIGURE 5: Ratio between indexing time and retrieval time with
respect to the number of nodes for the system proposed in [17], with
a collection made up of 160 K images.

the cluster. This shows that combining Hadoop and Spark in
a system of image retrieval, as done in the proposed system,
improves the efficiency of the whole system.

6. Conclusions

In this work a system to manage huge collection of images,
based on the MapReduce framework, has been presented. The
technologies used, Hadoop and Spark, allow the system to
be completely scalable and to reduce the computational cost
proportionally to the nodes in the cluster. Hadoop has been
used in the indexing phase, while Spark has been used in the
retrieval phase. The performances, in terms of computational
cost, and not in terms of retrieval rate, are evaluated. A rela-
tively cheap feature in terms of computational cost, regarding
the algorithms of extraction and of comparison, has been
employed in order to analyse the worst case. Furthermore, the
performances have been evaluated by using collections made
up of 100, 1K, 10K, 100K, and 500K images. Concerning
the indexing phase, the results show that the percentage of
architecture time is very low with exception for the collection
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made up of 500 K images. This is not a limitation because this
percentage decreases when a more complex feature is used;
furthermore it could be decreased by splitting the collection
into smaller subcollections. On the other hand, regarding
the retrieval phase, the percentage of architecture time is
quite constant for all the collections but could be decreased
with more efficient implementations. Future work should
be focused on improving these two critical aspects and on
testing the system behaviour on a cluster with a variable
number of nodes. Finally, the performances show that the
system is efficient for small collections (e.g., ~100 images)
as well as huge collections (e.g., ~500 K images), even with
one simple feature. Furthermore, the results show that the
efficiency of the proposed system, based on the combination
of two technologies (i.e., Hadoop and Spark), is higher than
the efficiency of a system based only on Hadoop.
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