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Abstract 

 

DNA microarray expression signatures are expected to provide new insights into 

patho- physiological pathways. Numerous variant statistical methods have been described 

for each step of the signal analysis. We employed five similar statistical tests on the same 

data set at the level of gene selection. Inter-test agreement for the identification of 

biological pathways in BioCarta, KEGG and Reactome was calculated using Cohen’s κ- 

score. The identification of specific biological pathways showed only moderate 

agreement (0.30 < κ < 0.79) between the analysis methods used.  Pathways identified by 

microarrays must be treated cautiously as they vary according to the statistical method 

used.  
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Introduction 

 

DNA microarrays emerged as one of the dominant technologies in biomedical 

research during the past decade. A major promise of the method is thought to lie in the 

potential to identify genes actively involved in patho-physiological pathways1. Discovery 

of such pathways and their genetic regulation may lead to targeted efforts in drug 

discovery.  

It has by now become clear that gene clusters (“signatures”), rather than the 

expression of individual genes, yield higher information contents. The ultimate aim is to 

move from signatures to models, that is, to analyze the data, integrate the information, 

and thus, gain knowledge1.  

The information contained in the expression data is made available through a 

sequence of statistical analyses, which are not yet standardized. Most reports on DNA 

microarray data feature a very unique methodology. Often, the information on the 

methods used is insufficient to allow replication.  

When assessing the usefulness of a technology, much attention must be given to 

the robustness of the knowledge gain, i.e. different observers should come to the same 

conclusion by using this method. 

The present study addresses this point. More precisely, we ask: if one and the 

same set of microarray data is analyzed using different statistical tests at the same 

analytic step, will the same pathways be identified? (The data set and statistical methods 

are described in detail in Appendix A.) This was done by calculating Cohen’s κ - score2, 

which allows to assess whether inter-test agreement is more than a chance product.   
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In addition, we assessed the inter-test mutual agreement at different levels of 

analysis of the data set, namely the biological level (in terms of both gene and pathway 

identification) and the clinical level (case sample clustering). The comparison of these 

test results allows to judge the robustness of the information contents, and the 

independence from the possible introduction of bias through onomastically variant, but de 

facto redundant entries in the protein databases.  

 

 

Results 

 

Each statistical test produced a gene set of 50 genes, according to the conditions 

chosen. There was only partial overlap (Table 1) with not more than three genes common 

to all five tests. The generalized κ-score3 was κ= -28.01.  

At the analytical step of gene selection, Cohen’s κ-score was low (0.15 < κ < 

0.68), indicative of only “fair” to at best “substantial” agreement (Table 2).  

Following submission of the five sets of 50 genes selected by the different 

statistical methods to all three pathway databases as described in the methods section, 

some genes were found to be involved in more than one pathway described in one or 

more of the three databases, and in each set of selected genes, pathways were identified 

that involved more than one of these genes (Table 3). A total of 38 genes (Appendix B: 

Additional Table 1) could not be allocated to any pathway described in any of the three 

databases. We used Cohen’s kappa score to calculate agreement at the level of pathway 

identification between the five statistical methods. The κ –scores ranged from 0.30 to 
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0.79 as displayed in Table 3, which indicates mostly “moderate”, in three cases 

“substantial”, and twice only “fair” agreement between the five test methods. Most of the 

higher agreement scores were seen between Golub’s method and any one of the other 

methods.  

In order to assess the consistency between gene and pathway based inter-test 

similarities, the matrices reported in Table 2 and Table 3 were correlated to each other by 

means of Pearson’s correlation coefficient calculated between corresponding elements. 

The correlation coefficient of r = 0.916 points to a substantial equivalence between gene 

and pathway information and rules out possible bias due to differences in gene 

assignment to different pathways as a function of  the databases used.  

When the inter-test concordance matrix based on the diagnosis reported by Golub 

et al was correlated with the corresponding gene and pathway based matrices, we saw a 

complete lack of concordance between biological (gene and pathway) and clinical 

(diagnosis) levels (r = 0.055 and r=0.916 for gene-diagnosis and pathway-diagnosis 

consistency). 

Table 4 reports the inter-test pairwise k-scores for these three levels of analysis 

while Figure 1 shows the mutual correlation between gene-pathway and gene-patient 

inter-test correlation matrices. 
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Discussion 

 

DNA microarrays have much evolved over the past decade to become a dominant 

technology in the life sciences. The huge promise of this technology lies in its capacity to 

carry out high throughput analysis. As such, it is of great interest for both research in 

basic (patho-) physiology, as well as for screening assays towards “biomarkers” in an 

industrial setting. Microarrays produce vast amounts of data; analysis of this data 

provides information that ultimately serves to increase knowledge.  

Data, information and knowledge are closely related, but separate entities. They 

may be defined as simple observation (“data”, e.g. differential expression of signals on a 

microarray), data with relevance and purpose (“information” e.g. an expression signature 

used to classify samples) and valuable information from the human mind (“knowledge” 

e.g. different prognosis for AML and ALL cases classified by microarray through 

differential expression signals).4  

In a situation where data is commonly analyzed by variant approaches, it becomes 

imperious to ascertain the robustness of information gain and knowledge creation. In 

clinical settings, the robustness of information is commonly assessed by Cohen’s κ-score. 

This κ-score tests whether the inter-tester agreement is factual, or a product of chance. 

We used this simple and elegant method to assess to what extent the information gain 

from microarray data used for pathway discovery is more than a chance product.  

The overall κ-score of -28.01 is indicative of below chance agreement only: the 

agreement between the selected signatures is arbitrary, despite the formal similarities 

between the tests. This indicates that a per-chance choice of method is more likely to 
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succeed. Golub’s method is on average the ‘most correlated’ with the other tests, giving it 

a ‘central’ position. Both at the stage of gene selection, and of pathway identification, the 

inter-test agreement between the five statistical tests is, on average, only “fair” for 

selection and “moderate” for identification. Moreover, the gene and pathway based 

mutual similarities between tests are highly correlated, thus showing that the same basic 

information is carried by gene and pathway based analyses. 

The low kappa scores at the selection stage can be explained by the large 

“marginal imbalance” between selected genes (n=50) and unselected genes (n=6095)5,6. 

This, however, is not the case at the stage of pathway identification which in turn was 

completely consistent with the gene selection procedure with regards to the inter-test 

mutual relations.  Genes selected by different statistical methods may differ in name, but 

be involved in the same physiological functional systems of pathways because of 

redundancy of genes on the chip. This ‘regularization’ effect,  suggested by the 

enhancement of average k-scores going from gene to pathway level (from 0.344 to 

0.515),  is in any case marginal and does not substantially alter the inter-test agreement 

structure (r = 0.916 between gene and pathway based k-scores).  

The kappa scores for the pathway involvement show that the same data set, 

depending on which statistical method the researcher chooses to make use of, may 

provide considerably different “knowledge” gain. In other words, depending on which 

test is used on the same data set, different pathways are considered to be involved in the 

condition. Essentially the same conclusion, expressed in opposite terms, was drawn by 

Suarez- Farinas et al7, who showed that a normalized assessment of raw data from the 
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same tissue analyzed on different microarray platforms increased the consistency of 

results.  

Even more puzzling are the different findings obtained at the level of ‘case 

sample clustering’, i.e. the clinical (as opposed to the biological) level of appreciation of 

microarray data. In this case the inter-test concordance is much higher (average k-score 

0.75, range between 0.60 to 0.89), pointing to a much more robust information content. 

The inter-test similarity structure arising from the case sample classification is 

completely independent from the gene and pathway based similarity structures (Figure 1 

and Table 2). This points to a relative independence of the clinical judgement from the 

related biological explanation. In other words, it seems as if patients ‘respond’ with 

different expression signatures to the same disease condition, nevertheless maintaining an 

‘invariant gene expression signature’ at the level of the whole expression pattern that 

cannot be further decomposed to the level of single genes. 

In a recent study, Michiels et al. investigated the extent by which the composition 

of the “training set” (i.e. what samples are chosen to train the classifying algorithm) 

influences the final classification of “case samples”8. Depending on which “training 

samples” were chosen, the level of misclassification varied considerably. The larger the 

training set, the more robust the diagnosis became. In other words, an algorithm learns to 

correctly identify subclasses in the same way a physician does during his training: 

through studying as many training samples as possible. This opinion directly challenges 

the “robustness” of findings thought to be the main advantage of simply using gene 

clusters (“signatures”) from microarray expression profiles as “biomarkers” in study 

designs with few samples, but high dimensionality of signals9.  
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Do the observations demonstrated here disqualify microarray analysis as a valid 

technology to study biological phenomena? In our opinion, not at all. Technical problems 

concerning the reproducibility of findings even on the same platform have sparked 

research that resulted in more reliable data acquisition and analysis methods. By today, 

much information is gained from studies that use across- platform approaches and have 

advanced from the lab bench close to the bedside10,11. In particular, Suarez- Farina 

provided evidence that a normalized approach to data analysis will result in higher 

coherence of results7, while Michiels has drawn attention to the need to critically appraise 

this information before eventually accepting the newly gained knowledge8. Miller et al., 

whose objective was to test the diagnostic value of an expression signature, moreover 

recognized from thorough analysis of their data the primary importance of the p53 

functional status in predicting clinical breast cancer behavior12- that is, the quantitative or 

systemic behavior of the pathway rather than the common biomarker p53 predicts clinical 

outcome. In the setting of Miller et al’s study, the biomarker p53 is inferior with regards 

to prognostic accuracy compared to the DNA microarray expression “signature” 

described. If considered as a diagnostic tool, DNA microarrays achieve high agreement 

scores on par with experienced clinicians13. The problem of the large difference in 

dimensionality between the number of signals and the number of samples, as is common 

in microarray data, necessitate the scientist to decide on a trade-off against other 

techniques (e.g. PCR) where there is less dimensionality difference. This problem is a 

current focus of research interest; one possible solution may be a reversal of the matrix, 

that is, to classify large numbers of expression signals based on small numbers of clinical 

samples. In this case, from a purely statistical point of view, the problem loses it 
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degeneracy, because the genes (now considered as statistical units) become much more 

numerous than the biological samples (now considered as variables). This last research 

avenue was opened (among others) by Landgrebe et al.14 and by Tritchler et al.15 who 

applied the method to Golub’s data, too. This new perspective is extremely interesting as 

it implies a complete change of emphasis from considering single genes as ‘efficient 

causes’ of the disease towards understanding co-regulation networks of genes as 

‘measurable effects’ of the disease. 

Taken together, the analysis presented here shows that even after the critical 

analytic step of signal processing and normalizing, variation in analytical procedures may 

reduce the coherence of the conclusion.  

The observations reported in the present study should serve two immediate 

purposes. Firstly, the findings remind both technology developers and users that only 

validated information becomes knowledge. In view of the low agreement scores for 

pathway discovery shown here, information from microarray analysis must be considered 

very critically and not be accepted as knowledge too easily.  

Secondly, and in analogy to the technological refinements that have been put into 

place, our observations should encourage research into the refinement of statistical 

analysis methods.  

On a more general level, our results substantiate the need to progressively 

abandon the ‘single gene’ or even ‘pathway’ level of analysis in order to look at a 

different level of physiological co-regulation modes.  

 

 



 11 

Methods 

 

We assessed the inter- test agreement as described by Cohen’s κ-score between 

five statistical tests 16-20 used in the analysis of DNA microarray expression data2. The 

data set analyzed was from the well characterized study on acute leukemia by Golub et al. 

which has a detailed methodology section that allows stepwise replication of the 

analysis16. The authors have updated their methodology and allow download from a 

dedicated website21. Appendix Part A gives a brief explanation of the five tests used, of 

Cohen’s kappa score, and of the original dataset. At the level of gene selection, Golub et 

al. employ an algorithm that requires specification of the number of genes one hopes to 

select from the “training” set of samples. Accordingly, we used alternative statistical 

approaches17-20 with the same formal requirement for comparison. The software 

GenePattern21 was used for data preprocessing. The preprocessed data was imported into 

the program R (The R Foundation for Statistical Computing, Version 2.1.1), in which all 

downstream analysis was performed (see Appendix Part B for the program codes). We 

submitted the gene sets (“signatures”) selected by each of the five classification methods 

to three databases that provide pathway information: BioCarta22, KEGG PATHWAY23, 

and Reactome24 (Appendix C). The gene sets selected from the training samples used by 

Golub and the pathways identified were then compared by calculating the kappa scores. 

κ-scores are reported at the level of gene-selection and pathway identification on the 

“training” samples.  

The matrices reporting the pairwise inter-tests κ-scores relative to the 

concordance were correlated at the level of gene-selection and pathway identification so 
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as to assess the consistency of the observed inter-test similarities at the gene and pathway 

levels. Both these matrices were then compared with the “case sample clustering” matrix 

reporting the inter-tests  κ-scores agreement with clinical diagnosis. 
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Tables 

 t-test Golub SAM EBAM nMigs 

t-test 50 38 26 31 8 

Golub  50 38 25 5 

SAM   50 18 3 

EBAM    50 11 

nMigs     50 

Table 1: Overview of number of genes selected by each pair of the five statistical 

methods  
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 Gene Pathway Patient 

Gene 1.00 0.92 
(0.0002) 

0.06 
(0.8788) 

Pathway  1.00 
 

0.18 
(0.6275) 

Patient   1.00 

 

Table 2: Kappa scores for agreement of “gene selection from training set” between the 

five methods (average = 0.34; “fair”) 
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 t-test Golub SAM EBAM nMigs 

t-test 1.00 0.61 0.30 0.79 0.55 

Golub  1.00 0.60 0.51 0.53 

SAM   1.00 0.34 0.44 

EBAM    1.00 0.48 

nMigs     1.00 

Table 3: Kappa scores for agreement of “pathway involved” between the five methods 

(average = 0.52; “moderate”) 
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Pairname Gene Pathway Patient 

t-Golub 0.52 0.61 0.85 

t-SAM 0.15 0.3 0.6 

t-EBAM 0.68 0.79 0.75 

t-nMigs 0.25 0.55 0.75 

Golub-SAM 0.54 0.6 0.65 

Golub-EBAM 0.4 0.51 0.79 

Golub-nMigs 0.31 0.53 0.68 

SAM-EBAM 0.15 0.34 0.78 

SAM-nMigs 0.19 0.44 0.78 

EBAM-nMigs 0.25 0.48 0.89 

Table 4: Inter-test pairwise k-scores at the levels of gene,  

pathway and patient identification  
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Figures  

Figure 1: Mutual correlation between (a) gene-pathway and (b) gene-patient inter-test 

correlation matrices. 

 


