Artificial Intelligence in Medicine (2009) 45, 135—150

ARTIFICIAL
INTELLIGENCE

; IN MEDICINE
coome ¥ Has
ELSEVIER http://www.intl.elsevierhealth.com/journals/aiim

Fully non-homogeneous hidden Markov model
double net: A generative model for haplotype
reconstruction and block discovery

Alessandro Perina®*, Marco Cristani?, Luciano XumerleP®,
Vittorio Murino?, Pier Franco Pignatti®, Giovanni Malerba®

@Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
b Department of Mother and Child, Biology and Genetics, Section Biology and Genetics,
University of Verona, Strada le Grazie 8, 37134 Verona, Italy

Received 31 October 2007; received in revised form 21 August 2008; accepted 22 August 2008

KEYWORDS Summary
Haplotype
reconstruction;
Bayesian network;
Variational learning;
Block structure

Objective: In the last decade, haplotype reconstruction in unrelated individuals and
haplotype block discovery have riveted the attention of computer scientists due to
the involved strong computational aspects. Such tasks are usually addressed sepa-
rately, but recently, statistical techniques have permitted them to be solved jointly.
Following this trend we propose a generative model that permits researchers to solve
the two problems jointly.

Method: The model inference is based on variational learning, which permits one to
estimate quickly the model parameters while remaining robust even to local minima.
The model parameters are then used to segment genotypes into blocks by thresh-
olding a quantitative measure of boundary presence.

Results: Experiments on real data are presented, and state-of-the-art systems for
haplotype reconstruction and strategies for block estimation are considered as
comparison.

Conclusions: The proposed method can be used for a fast and reliable estimation of
haplotype frequencies and the relative block structure. Moreover, the method can be
easily used as part of a more complex system. The threshold used for block discovery
can be related to the quality-of-fit reached in the model learning, resulting in an
unsupervised strategy for block estimation.

© 2008 Elsevier B.V. All rights reserved.

* Corresponding author. Tel.: +39 045 8027803; fax: +39 045 8027068.

E-mail addresses: alessandro.perina@univr.it (A. Perina), marco.cristani@univr.it (M. Cristani), luciano.xumerle@medgen.univr.it
(L. Xumerle), vittorio.murino@univr.it (V. Murino), pignatti@medgen.univr.it (P. Pignatti), giovanni.malerba@medgen.univr.it
(G. Malerba).

0933-3657/$ — see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.artmed.2008.08.015


mailto:alessandro.perina@univr.it
mailto:marco.cristani@univr.it
mailto:luciano.xumerle@medgen.univr.it
mailto:vittorio.murino@univr.it
mailto:pignatti@medgen.univr.it
mailto:giovanni.malerba@medgen.univr.it
http://dx.doi.org/10.1016/j.artmed.2008.08.015

136

A. Perina et al.

1. Introduction

Estimating haplotype’ frequencies has become
increasingly important in the mapping of complex
disease genes, since large numbers of closely linked
single nucleotide polymorphisms (SNPs) can be gen-
otyped. SNPs are single base pair differences among
individuals in a population. Association studies work
on the premise that some SNP genotypes are corre-
lated with a disease phenotype. Numerous studies
have shown that the human genome contains
regions of high linkage disequilibrium (LD) with
low haplotype diversity [1]: these regions are called
haplotype blocks or LD blocks, where LD is a non-
random association of alleles between adjacent
SNPs. It is worth noting that SNPs or haplotypes
within LD blocks may serve as proxies for causative
and still unknown alleles; therefore, an accurate
study on the blocks diversity results in a key factor in
genome-wide association studies [2] to identify LD
blocks containing a susceptible genetic factor that
was not yet genotyped. Unfortunately, the allele
phase of multilocus genotypes in unrelated indivi-
duals is unknown and haplotypes need to be recon-
structed [3] before the discovery of LD blocks [4].

Statistical strategies for haplotype reconstruc-
tion have been recently introduced [3,5—10]. How-
ever, all these strategies, except [6], either do not
perform block discovery or do it after the haplotype
reconstruction, so that block discovery might be
affected by potential reconstruction errors.

In this paper, we propose a statistical generative
model for haplotype reconstruction and block esti-
mation, called fully non-homogenous hidden Mar-
kov model double net (FNH-HMM double net). The
idea of a generative model is to describe the process
that generated the observations, employing random
variables connected by a conditional probability
distribution. Dynamic Bayesian networks (DBNs),
and in particular, hidden Markov models (HMMs)
[11], are the most known examples of generative
models employed for haplotype reconstruction. In
[5—7], the idea is to estimate relevant hidden
““ancestral’” patterns from genotype data, i.e. bio-
logically meaningful allele patterns that represent
high frequency haplotype fragments, mimicking bio-
logical theories [3]. HMMs are employed to model
the fact that alleles at nearby markers are likely to
arise from the same ancestral pattern, thus result-
ing in a block-like structure, where each block
begins and terminates in correspondence with
recombination hot spots. Our approach closely mir-
rors the process of genotype generation, considering

' Haplotypes are combinations of DNA marker alleles in a single
chromosome.

that different portions of the genotype have differ-
ent probabilities of recombination and also that the
LD is higher in some regions than in others (as in
[5,6]). In our model, the phase information that
determines haplotype reconstruction is explicitly
modeled, which differs from all the other HMM-
based approaches [5—7]. To this end, we employ
binary variables with their own distribution esti-
mated by the learning strategy. In this way, the
haplotype reconstruction can be performed very
easily once the model has completed the learning
phase. The uncertainty at each site is therefore
evaluated during the phasing process and cannot
be computed in the other approaches where the
haplotype inference is based on sampling strategies
[7], or on a set of maximization procedures [5,6]. In
our case, the explicit managements of the genotype
generation process is done in terms of a complex
(i.e. with several variables) model that has a mod-
ular structure; each module is a simple generative
model (a FNH-HMM, here formally introduced). This,
together with a novel inference strategy for learning
based on variational learning [12], permits one to
learn the model with a time complexity less than in
[6] and comparable to that in [5,7]. More impor-
tantly, our strategy is not dependent on the para-
meter initialization, and less prone to local minima
solutions.

The variational learning technique was intro-
duced in this field by [13]. Here the authors intro-
duced a similar generative model based on hybrid
HMM for classification purposes: their goal was to
distinguish genotypes that belong to patients
affected by Crohn’s disease from those belonging
to healthy patients, starting with the exact knowl-
edge of the block boundaries.

Together with the learning strategy, we equipped
our model with an inference procedure strategy that
permits it to estimate blocks. In practice, using the
FNH-HMM double net, each reconstructed haplotype
can be considered as the most probable path among
estimated ancestral patterns (due to the recombi-
nation). Our inference identifies frequent splits and
joins among the paths, which can be considered as
block boundaries. Segmentation of block boundaries
are determined by thresholding an econometric-
based statistical measure, the Gini index [14],
which represents the strength of a block. The
threshold is easy to find, but, more importantly, it
can be related to the degree of fit with which the
learning step described the data (i.e. the data log-
likelihood w.r.t. the model parameters). This means
that (1) the uncertainty collected during the learn-
ing can explicitly flow down in the block estimation
step and (2) the block estimation becomes an unsu-
pervised operation.
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Notions of block boundary strength have
appeared earlier in this field [15,16]. For example
in [16] the authors described a dynamic program-
ming algorithm for finding the optimal segmentation
with respect to the minimum description length
(MDL) principle [17]. However, the strength measure
proposed in [16] is very different from the one
proposed here, the time complexity is much higher,
and the blocks are calculated using haplotypes.

The rest of the paper is organized as follows:
Section 2 gives some background mathematical
notions, fix the notation and introduces the FNH-
HMM; Sections 3—6 explain our framework and Sec-
tion 7 shows comparative experimental results on
haplotype reconstruction and block estimation.
Finally, Section 8 draws some conclusions and envi-
sages future perspectives.

2. Preliminaries

2.1. Generative models and Bayesian
networks

The goal of the generative modeling is to develop
statistical models that can explain the input data
(samples or visible variables, v), as tangible effects
being generated by a combination of hidden vari-
ables (h), representing the causes, eventually inter-
connected with conditional interdependencies. A
generative model jointly models the input and the
causes via a joint probability distribution P(v, h) or
P(effects, causes).

Graphical models are well-known instruments
that represent effectively generative models; they
use graphs to represent and manipulate joint prob-
ability distributions. The states of the graphs repre-
sent random (visible or hidden) variables and the
edges codify conditional dependence relations
among them. Several types of graphical models
are present in the literature [18], and, among these,
the most used is the Bayesian network.

A Bayesian network for random variables (RVs)
X1,...,Xgisadirected acyclic graph (see an example
in Fig. 1 a).

Figure 1

The nodes of the graph represent the variables,
while the directed arcs represent probabilistic
dependencies among them. There are two kinds
of nodes, the hidden nodes h modeling the hidden
variables, and the observable nodes v representing
the visible variables. In a Bayesian network a con-
ditional probability function is specified for each RV
given its parents, P(xj|x,,), where A; is the set of
indices of x;’s parents and x; represents either a
hidden or visible variable.

Usually, each P(x;|x,,) is governed by a set of
(hidden) parameters 6; specifying the particular
(parametric) form assumed by the conditional prob-
ability function (e.g. Gaussian). The parameters 6 =
UR_, 6; are treated like hidden variables and are thus
included in h.

The joint distribution P(x), x = {v, h}, is given by
the product of all the conditional probability func-
tions:

R
P(x) = [ [P(xilxa,) (1)
i=1

For example, in the Bayesian network of Fig. 1 a we
have:

P(a,b,c,y) = P(b) - P(c) - P(a|c) - P(y|a, b, c) (2)

After having fixed the topology of a Bayesian net-
work (i.e. the nodes and their interdependencies,
their conditional parametric functional form), it is
necessary to learn the model. Learning consists in
inferring the hidden quantities (hidden variables
and parameters) using the observations, i.e. choos-
ing a possible instance of values for h maximizing the
a posteriori distribution P(h|v) (Maximum A Poster-
iori learning), or alternatively, the likelihood P(v|h)
(Maximum Likelihood learning) [19].

In both cases, this choice cannot often be per-
formed in closed form, and often is not even possible
by exploring the space of the possible values
assumed by h, since such space is exponential in
the number of variables. Therefore, instead of con-
sidering the exact posterior distribution P(h|v), it
becomes advantageous to operate on approxima-
tions of P(h|v), simpler than P(h|v). Variational
approximate learning [12] consists in inferring the

(c) T[], A],B Ty A, B o TEN,A B,

a) An example of Bayesian network. a,b and c are the hidden variables, while y is the only observed variable;

(b) HMM w1th the respective parameters; (c) FNH-HMM; note that transition and emission matrices are now time-

dependent.
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hidden quantities of a distribution Q(h) related to
P(hlv) while minimizing a quantity called free
energy, which is defined as follows:

F(P,Q) = /h Q(h)log Q(h)

- /h Q(h)logP(h,v). (3)

The free energy is a measure of the approximation
accuracy of P(h|v) by Q(h), since
F(P, Q) = KL(P, Q) — logP(v) (4)

where KL(P, Q) is the Kullback—Leibler divergence
[14] between P and Q.

2.2. Graphical models for sequential data:
hidden Markov models

A special type of a Bayesian network is the dynamic
Bayesian network (DBN) [20], aimed at modeling
sequential data, which in turn are intended as reali-
zations of a stochastic process. Roughly speaking, a
DBN is a Bayesian network whose structure is repli-
cated N times (for N slices), where N is the length of
the sequence. Each slice can be connected with the
other ones via additional conditional dependencies.

The best-known DBN is the discrete-time hidden
Markov model A, which can be viewed as a Markov
model whose states are not directly observable
(Fig. 1b); instead, each state is characterized by a
probability distribution function, modeling the
observations corresponding to that state. More for-
mally, a HMMis defined by the following entities [11]:

(1) Q, |Q| =L, the finite set of (hidden) states;

(2) a transition matrix A={a™}, 1<mn<L
representing the probability of moving from
state m to state n:

with @™ >0, St . a™ =1, and where S
denotes the state occupied by the model at index
k. Depending on the context, the index k indi-
cates a time index if the considered sequence is
thought of as generated by a temporal stochastic
process, or it is considered a site index if the
sequence is atemporal, with its spatial structure
regulated by a Markovian process;

(3) an emission matrix B = {b™(v)}, indicating the
probability of emission of symbol v € V when the
system state is m. In this problem context, V =
{A,C,G, T} indicating Adenine (A), Cytosine (C),
Guanine (G) and Thymine (T);

(4) theinitial state probability distribution == {n"™}

A" =P(S;=m), 1<m<L (6)

with 7™ >0and 5 7™ = 1.

For convenience, we represent an HMM by a
triplet A = (A,B, 7).

2.3. Fully non-homogeneous hidden
Markov model

Suppose we have a set of J one-dimensional obser-
vation sequences each of length N, formed by sym-
bols from the set V, i.e. 0Y) with j=1...J.

A fully non-homogeneous hidden Markov model
(FNH-HMM) (shown in Fig. 1c) is a set Apny =
{ A, Bk,n}f:1 composed by the following para-
meters:

(1) A site-dependent transition matrix A, = {a;"}
where
al" = P(Sk+1 = n[Sc = m),
and k=1,...,N;

(2) A site-dependent emission matrix B, = {b}'(v)}
where

by (v) =P(v|Sx =m),veV,
and k=1,...,N;
(3) Aninitial state distribution 7={z"}, 1<m< L.

1<mn<lL

(7)

1<m<L
8)

The learning of a FNH-HMM is devised as a mod-
ified version of the Baum—Welch (BW) algorithm.

In this phase, the E-step consists in first calcu-
lating the standard forward and backward variables
a and B, paying attention that all the transition
and emission probabilities involved are site depen-
dent (i.e. dependent on k). From these variables,
key quantities can be obtained, such as the condi-
tional probability of two consecutive hidden states
in an observation sequence at site k, i.e. P(S¢ =
m, Sy.1 = njoY)) = gfj)(m,n) and the conditional
P(Sx = m[0D)= St D (m n) = /) (m), where &
is defined as

o (m) ap" b (0)) )y (m)
PO

In the M-step the parameters are updated using
these quantities. The transition Ay and the emission
By matrices are updated as follows:

>4 480 (mn)

g (m,n) =

9)

"= L 0
> j—12n=18¢ (M, n)
stO =v (19)
XJ: v (m)
bP(v) =2~

Syt mon)
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(a) FNH-HMM; (b) FNH-HMM double net: nodes in a solid box indicate that they are replicated the number of

times indicated in the bottom left corner; point-dashed arrows mean 1st order Markov dependency. Filled (unfilled)
circles mean observed (unobserved) random variables; dotted circles indicate the parameter set of the variables linked
by the arrow; (c) SNPs’ generative process: the picture is divided in two steps. Each step shows a portion of the process,
drawn in an intuitive fashion (left) and in a formal graphical way (right).

The parameter vector  is calculated as was done for
the HMM.

3. The proposed model: FNH-HMM
double net

In our framework, O is formed by J observation
sequences or samples. Each sample represents the
genotype of the jth human subject, i.e. a sequence
of N allele pairs; each k th SNP, k=1,...,N, is
formed by unordered variable pairs {xx,y} taking
values from {A,C,G,T}.

In each sample, the values of every k th SNP
are considered to be generated by two different
hidden random variables, called also hidden states,
here indicated with s, and t;. These variables can
take index values 1,..., L. An ordered sequence of N
hidden states <sq,...,Sk,...,Sn> (<tq,...,tn>),
with the same index value builds an ancestral pat-
tern. The hidden states s, and t; take the pattern
index values by considering a first-order Markov
property, i.e. considering the previous states, sx_4
and ty_q, respectively (Fig. 2 c, step 1, Pattern
choice).? The generation of a particular nucleotide
symbol x, and y, by a given hidden state occurs by
means of an emission distribution related to the
state s, and ty, respectively (Fig. 2 c, step 1,
Symbols emission).

Now, in order to simulate the allele phasing that
produces the final SNP pair, we add a switch vari-
able my that decides the order (the phase) of the

2 Choosing the “right” L is an issue not faced here. Driven by
biological considerations, we try 7 <L < 10 obtaining results
very similar in quality. Anyway, we set L =7, with which we
gather the best haplotype reconstruction quality measures.

alleles (Fig. 2 c, step 2, Symbols switch). This is a
key aspect that distinguishes our approach from the
others based on HMM for haplotype reconstruction
[5—7]. The addition of the switch variable makes
the generative process underlying our model easy
and intuitive to understand. On the other hand, the
addition of the switch variable makes the applica-
tion of the classical EM algorithm for model learn-
ing very expensive. In our case, the problem is
formally solved through the variational learning
approach, that additionally overcomes the classi-
cal problem of the EM of being highly susceptible to
the parameter initialization. Such problems afflict
other HMM-based approaches, thus forcing
repeated applications of the training algorithm.
We call our model FNH-HMM double net, hereafter
simply double net, which is depicted in a formal
way in Fig. 2 b.

Another way to understand the generative beha-
vior of our model can be observed in Fig. 3, where
the generative process is shown for a portion of a
genotype. In practice, the proposed model connects
two different FNH-HMMs, where the connection
holds at the observation level.

Formally, the double net has a joint distribution
formed by the two sets of variables, h = {my, sk, tx}
and v = {xx, v}, for each SNP k and for each
sample j. The model parameters are the transition
and emission matrices of the two chains and the
initial state distribution 6 = {A.x, Bck, ¢}, for each
k =1...N. The pedix ¢ discriminates between the
parameters of the two chains, i.e. if c=L it
addresses the lower-chain parameters, if c=U
it addresses the upper-chain parameters (see
Fig. 2c).

First of all, it is reasonable to consider the sam-
ples as i.i.d., so we consider only the joint distribu-
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Figure 3 Alternative FNH-HMM double net representation: the two non-homogeneous hidden Markov chains are
coupled at emission level. The dotted box refers to part of the model shown in Fig. 2 b.

tion over a single sample, thus dropping the apex
(j). Therefore, we obtain

P(x,y,s,t,m) = P(xq,y,|my,sq, t1) P(my) P
N

x (s1) P(t1) [ J[P(m) P

k=2
X (X, Yiclmg, Sk, tk) P
X (Sk|sk—1) P(tk|tk—1)] (11)

In the equation above, the connection at the obser-
vation level between the FNH-HMMs is easily recog-
nizable due to the term P(xy, v« |mx, S, tk). The other
terms indicate the switching variable probability,
P(my); the intra-chain transition probabilities,
P(sk|sk—1) and P(tk|tx_1); and the initial state prob-
abilities, P(sy) and P(t¢).

The emission distribution can be further factor-
ized, clarifying the meaning of the switching vari-
able my € {0, 1}, which determines the phase of the
chromosome pair {x, y,}- If my = 1, the state sy (k)
generates the symbol xi (vi), otherwise, my = 0.
This brings us to:

P (X, yi|m, sk, tk)
= (P(xk|s)P(Vilt)™ (P(vils)P(xilte))™  (12)

yielding to the following joint distribution

P(x,y,s, t,m)
= (P(x1]s1) P(y4|t1))™ (P(y4ls1) P(x1]t1))" ™
N

X P($1 H

x (P(Ylsk) (Xk|tk))17 “P(sk|sk—1) P(tk|tk—1)]-

(P(xls) P(yilte))™

>r

4. Variational inference and learning

The free energy (see Section 2.1) of our model can be
written by taking into account a generic form of Q(h)

J o o -
o(h) = 86— 0) [Ja({m{, s, 6/ }3_116) (13)
j=1

where § is the Dirac function. The equation above
means that each sample is considered independent.
Therefore, the free energy is

F= Y { S ql{misi tlo)

samples  my,sg,tk
q({my, sk, tk}|0) }

lo
8 P({Xk7 Vi, Mk, Sk, tk}|0)

(14)

To make the inference easier to handle and to make
it tractable, we use the following constrained form
of the function Q(h), where we employ a factoriza-
tion of several multinomial distributions:

q({sk}gzh{tk}g 1>{mk}g 1)
N

= q({sk}h1) G{tkdhey Hq (15)
k=1

Using this form, known as mean-field [21], we can
write down the free energy and easily solve the
optimization problem (minimizing F). The mean-
field approximation is widely used because of its
simplicity: it consists in assuming all the component
hidden RVs are independent, given the data. This
permits the estimation to be insensible to para-
meter initialization and less prone to local minima
[22], unlike the Expectation—Maximization (EM)
algorithm [23]. The first advantage holds because,
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in the classical EM, variables are connected through
conditional distributions. Setting initial values for
the parameters of such distributions assumes a
priori knowledge about how strongly the causes that
generated the data are interconnected among
themselves (in our case, it would assume knowledge
about the identity of the ancestral pattern at each
state). In such cases, the learning operates by revis-
ing such guesses when faced with the data. In the
mean field approximation, such strong a priori
knowledge does not exist. A random initialization
of each (decoupled) parameter allows the data to
build (and not to revise) the value of the conditional
distribution in a more effective way. This, in turn,
also helps to avoid local minima. For further details,
see [22].

In order to minimize F, we use the variational
Expectation—Maximization algorithm [12] which
alternates in minimizing the free energy w.r.t.
the Q(h) distribution while keeping fixed the para-
meters (E-Step), and using the statistics over Q(h)
just collected (M-Step) w.r.t. the parameters 6.
When updatmg Q, the only constraint is that
fh =1 for each hidden variable h; and for
each sample j. This constraint can be easily
accounted for by using Lagrange multipliers. The
updating rules are simply obtained by setting the
derivatives of F equal to zero.

In detail, the pseudo-code for the learning of our
double net via the EM algorithm is shown below.

Initialization: Randomly choose values for the
parameters 0, i.e. the emission and transition
matrices of the two chains, and set q(mi )) =
0.5 for each sample j and for each posmon k.
E-Step: Minimize F with respect to q(h; () ), forbi
each sample j and for each hidden variable h;,
keeping fixed the values 6. This is done using the
following updating rules:

OF
aqlsc=1)
q(sk = i) = p(sk = i|{Xk; ViJhrt) = Yuk(i)
(16)
IF
aqlte=1)
gty = i) = p(ty = il{Xi,Vidh) = vk (17)

where yy (i) and y (i) are the probability of being
in state i at time k given the observation O and the
model A (P(sx = i|0, 1)) in the respective chain, see
Section 2.3. The updating rules can be derived from
the forward and backward variables « and 8 noting

that, in the FNH-HMM, we have

i) = (18)

where the forward and backward variables are cal-
culated using the following weighted log-likelihood

log p(Xk, Vilsk = 1) = q(m
=1) b (Xi) + q(my
=0) - bl (Vi) (19)

log p(Xk, Yiltk = ) = q(mi
=1) 'blL,k(yk) + q(mg
=0) - by 4 (xc) (20)

Update the distributions over a mask variable as
follows:

_F
aq(mx=1)

ocexp (Z q(si)log byl (xi) + > q(ti) lOgbffk(yk))
Sk ty

(21)

oF
datm =) 1M
xexp (Zq Sk logbUk Vi) +Zq tx) logbLk(xk)>

(22)

g(mg=1) and g(my=0) are then normalized at
every site k.

M-Step: Minimize F with respect to the model
parameters 6 setting the derivative (3F /90) = 0.
Using the convex combination of the observation
likelihoods (Eq. (19)), we can decouple the two
FNH-HMMs and update independently the para-
meters of the two chains A, and Ay using the
standard Baum—Welch algorithm for FNH-HMMs.

At this point, it is worthy to note other differences
of our approach w.r.t the most similar approaches in
the literature: [5—7]. In [6], the haplotypes and the
blocks are estimated simultaneously and the
approach computes the maximum likelihood directly
(i.e. it is not based on a Bayesian network), making
the system really prone to local minima. In [7], the
first-order Markov property that regulates the pre-
sence of a particular ancestral pattern is relaxed,
bringing to a less accurate haplotype estimation
as noted by the authors. In [5], within the context
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of a similar generative framework, haplotypes are
estimated after the Viterbi calculation of the ances-
tral pattern identities and, due to the absence of the
variational trick, the computational load for the
learning step is O(JNL?). In our case, it is O(JNL?),
basing on FNH-HMM inference strategies.

5. Haplotype reconstruction

Once the model is learned, it is easy to reconstruct
the haplotypes from the genotypes. For each geno-
type OU) = ((X1,y1), T (xkayk)v T (XvaN)>’ the
phase of each k th pair is given by the value of
q(m,(j) = 1): if it is larger than 0.5, then x, belongs
to the upper haplotype and y, belongs to the lower,
and vice versa if q(mk’) = 1) <0.5. Note that at each
position we can easily understand the uncertainty
with which the model estimated the haplotype. This
could in principle lead to the creation of measures of
confidence for our haplotype reconstruction. Basi-
cally, whereas the q(m,(j) = 1) are pooledon Os or 1s,
strong certainty is associated to the related alleles
phase.

6. Linkage disequilibrium block
discovery

As mentioned in Section 3, the hidden patterns

1,...,L model ancestral haplotype sequences which
(a)
c Viterbi paths
g : i
Nt 5 .....
23
© 3
2 2
a1
=
<

have been fragmented and recombined through-
out human history, producing all the observed hap-
lotypes. As a first step toward the block discovery,
we estimate the most probable pathway through
these hidden patterns for each reconstructed hap-
lotype sequence. This is done with a straightforward
non-homogeneous version of the Viterbi algorithm
[11], paying attention to use the log-likelihood
previously introduced in Eq. (19). In this way, we
account for all the uncertainty of the haplotype
reconstruction in the block discovery task.

All the Viterbi paths (Fig. 4 a) are then placed on a
lattice L x N (Fig. 4b). In this way, at each allele site
k we can distinguish W distinct paths, each one
indicated with wy(i),i=1,... . W, <L; |wk(D|
indicates the number of haplotypes traversing
wi(i) (see Fig. 4b).

We are now able to perform block discovery. The
idea is that if two paths wy(i) and w(i") do join at
site k+ 1, they represent two sets of haplotypes
with highly different haplotype fragments up to k,
becoming similar after k. Therefore, a block bound-
ary exists between k and k + 1. Similar reasoning
holds for a split site (see Fig. 4b). We translate this
intuition with the boundary presence strength mea-
sure Q(k,k + 1) €0, 1), which models the existence
of a block boundary between sites k and k + 1, i.e.

QK k+ 1) = 150in(K) G(K) + 1spiie (k + 1) G(k + 1)
(23)

. <

Projection

(b)

Ancestral pattern
o = NowW b v
T

. '\'|'|W13 (2)”=3 ...... 3
liwas (D]f=1 -

0Q(12,13)=.0.375

Figure 4 Toy example (J=4 haplotypes): (a) Viterbi paths; (b) paths over the lattice structure and the relative Qplot;
note that (b) is projection of (a) over the SNPs—**Ancestral Pattern’ plane.
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where 16in (k) (1spiit(k + 1)) is equal to 1 when at
least one join (split) is present at time k (k + 1), and
G(-) is the Gini index [14]:

RO e

i=1.. Wy

Gk)=1—

The Gini index can be used to describe whether a
graph join or split is well balanced or not. For
example, a split at site k is well balanced if the
cardinalities {||wg||} of the child paths {w} are
similar. The idea is that the higher the Q(k), the
more likely the presence of a block boundary
between site k and k+ 1. On the other hand, a
low Q(k) means that in the join (split) site k, a
dominant path (i.e. with a high number of haplo-
types associated) merges (splits) with one or more
irrelevant paths (see Fig. 4b). Given a threshold zq,
we can assign a block boundary to the site k when
Q(k) >10.

It is valuable to note that all the block boundary
measures in the literature [24] are strongly depen-
dent on the accuracy with which the haplotypes
are estimated, but there is no way to codify for-
mally this dependency. In our approach, instead,
we calculate for a given set of simulated genotypes
(with the positions of blocks boundaries a priori
estimated) of length N, the mean log-likelihood
LLp, that results from the learning step. This repre-
sents a likelihood-based quality of fit criterion for
the data, given the model. Then, we evaluate using
the ground truth information about the “optimal”’
value of g in order to minimize the error of block
discovery for each genotype produced. We average
the values obtaining Q. By varying the length of
the data we can build a look-up table of Qp,, LLny,
and N. Therefore, when a novel dataset is available
(length N), if the log-likelihood obtained during the
training is higher than the one precalculated for
that data length, we can inherit the correspondent
7o. Otherwise, we have to be more conservative
and must choose an higher value for z(. Note that
all the data have been processed by fixing the
number of ancestral haplotypes to [ = 7. The value
of L has been chosen by maximizing on the haplo-
type reconstruction quality measures (see next
section).

7. Experimental results
7.1. Haplotype reconstruction

To evaluate the proposed approach, our framework
has been extensively tested on different data
sets and compared to five other state-of-the-art
systems.

Concerning the initialization issue, we again
remark that no a priori knowledge has been used
(random parameter initialization), and that all the
results reported here derive from standard execu-
tions of the two inference strategies proposed here.

In the first two experiments, we compared the
FNH-HMM double net to various haplotype recon-
struction systems in terms of various quality mea-
sures. These tests show how our method successfully
identifies the largest number of correct haplotypes,
while keeping the number of incorrect haplotypes
inferred and the correct haplotype frequencies in
line with the other state-of-the-art systems. This
observation may have practical value if our problem
regards the functional genetics, where the issue is
identifying the largest number of correct haplo-
types, instead of minimizing the number of incor-
rect haplotypes inferred.

The first data set is taken from the hapmap
project [25] from chromosome 73 from SNP marker
rs323917 to SNP rs324375. The reconstructed hap-
lotype frequencies are summarized in Table 1,
where Emp stands for the empirical frequencies,
PhLD stands for Phase with linkage disequilibrium
[3], fPh stands for fastPhase [7], SPHP stands for
SNPHAP[10], Ger stands for Gerbil [6], Hit stands for
Hit [5] and Double net stands for our method.
Table 3 summarizes the statistics in terms of various
measures of quality. In particular, haplotype fre-
quency estimation (Ir) and haplotype identification
index (ly), proposed in [26], are two appropriate
quality measures for the haplotype reconstruction
task.

The haplotype frequency estimation () is a
measure defined as the proportion of haplotype
frequencies in common between the estimated
and the true haplotypes

1

lf=1=5 > |Pex— Pexl (25)

haplotypes

where p, and p; are the estimated and the true
haplotype frequency of the k th haplotype, respec-
tively.

The index Ir varies between zero, when true
haplotypes have estimated frequencies approaching
zero, and one, when observed and estimated fre-
quencies are identical. The index weights more
heavily the high-frequency haplotypes.

A second commonly used index is the haplotype
identification index Iy, defined as

J — 2Mirue — Maisseq) (26)

Mtrye + Mestimated

% Caucasoid r 21 phasell.
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Haplotype frequencies obtained with a training set composed by 60 genotypes of 25 SNPs. Bold numbers indicate the best reconstruction

Table 1

Haplotype frequency

SNP

Double net

Algorithm

Empirical haplotypes

Hit
0.4750 0.4750 0.475000

2 CGTATGCTATGTZ CGGACTU CTAATCA A 0.183333 0.1833 0.1833 0.1833 0.1833 0.1833 0.1833

Ger
3CGTATGT CTAT GTU CGG GACTT CAAGT CT A 0116667 0.1167 0.1167 0.1167 0.1000 0.1000 0.109999

SPHP

fPhs

PhLD

Emp
C ACGCCCTATGTTAGATCTU CAGTGT T A 0.475000 0.4760 0.4833

0.4831

1

0.066667

0.0583

0.0583
5 C ACGCCCCATGTTAGACTT CAGGT T A 0.058333 0.0583 0.0583 0.0579 0.0500 0.0500 0.056754

4 GACGTU CCTATG GTTU CAGACTT CAAGUC A A 0.066667 0.0667 0.0667 0.0663

0.0340 0.0417 0.0417 0.039054

7CGTATGC CCATGTTZ CGGACTU CTAATC A A 0.025000 0.0250 0.0250 0.0250 0.0250 0.0250 0.018000

6 C ACGTO CCTATATU CGGACTTU CAAGT CT A 0.041667 0.0407 0.0333

0.0090 0.0167 0.0167 0.014444

9 C GTATGCTATATT CGGACTU CAAGT CT A 0.008333 0.0083 0.0083 0.0083 0.0083 0.0083 0.007566
10 C ACGCCCTATGTTAGACCCAGGTT A 0.008333 0.0083 0.0083 0.0083 0.0083 0.0083 0.0083

8 C ACGCCCTATGTTAGACTTAGGT T A 0.016667 0.0157 0.0083

where mye is the number of true haplotypes in the
sample, Mestimated iS the number of estimated hap-
lotypes, and Mpisseq is the number of true haplotypes
not identified in the sample. The value of Iy can
vary between one, when the identified haplotypes
are exactly those present in the true sample, and
zero, when none of the true haplotypes has been
identified.

As a second test, we choose a dataset available on
demand, taken from the pituitary growth hormone
(GH1) [27]. The five genes of the human growth
hormone locus reside within about 45 kilobases (kb)
on chromosome 17, and the GH1 is by far the most
thoroughly studied gene. It is unusually poly-
morphic, with 16 SNPs having been identified in a
span of 535 base-pairs. The data is taken from the
sequencing of 154 recruits of the British army. Using
this data, Horan et al. [28], empirically determined
36 haplotypes. In our experiment, we consider this
data as ground-truth. The empirical haplotype fre-
quencies exhibit considerable dispersion (see
Table 2, column Emp): two haplotypes are relatively
common with frequencies of 33% and 16%, 31 have
frequencies below 5% and 19 haplotypes have fre-
quencies less than 1%. Subsequently, Adkins [27]
compared five haplotype reconstruction algorithms
on the same dataset.

The reconstructed haplotype frequencies are
summarized in Table 2, where we reported the
results obtained by Adkins [27]. We added four
comparisons to the systems analyzed in the first
experiment (see Table 1). Concerning the haplotype
reconstruction systems in [27] in Table 2, PhANLD
stands for Phase with no linkage disequilibrium
taken into account [3], PhLD for Phase with linkage
disequilibrium [3], HPLT stands for H aplotyper [8],
PLEM stands for the partition—ligation expecta-
tion—maximization algorithm [9], and SPHP stands
for SNPHAP [10].

The statistics in terms of Ir and Iy are summarized
in Table 3, showing that all the methods have good
performances in terms of frequencies in both tests.
However our method always identifies the greatest
number of haplotypes. This results brings about the
best Iy index.

7.2. Haplotype block partitioning

Concerning the block discovery, no ‘‘formal”
ground-truth data is present in literature for the
block estimation.  Nevertheless, universally
accepted measures and algorithms exist that have
produced results that are considered as ground-
truth [29,30]. Here, for comparison, we use one
of the most well known methods to individuate
blocks: the Gabriel method [1]. It is worth noting
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that, as a drawback, the Gabriel method is scarcely
robust to reconstruction errors.

The first dataset used is taken from chromo-
some 11 on the fads 1, 2, 3, genes (chr11q12.13)
[31]. Itis valuable to note that for this test we could
not use the pituitary growth hormone (GH1) dataset
because no relevant block structure is present (see
[27]).

Pairwise LD table (LD plot) is a widely used data
structure for block discovery. The pairwise measures
D' [32](Fig. 5 a — left diagonal elements) and r?
[33](Fig. 5 a — right diagonal elements) build the LD
table. A high D' (r?) value in position m,n (or n,m)
indicates a block relation between the site m and n.

The pairwise LD plot for the dataset considered is
shown in Fig. 5 a. Using the Gabriel method, we
obtain three major blocks highlighted in the figure
with yellow squares. The first block ranges from the
first SNP to the fourth, the second consists of SNPs
from six to eight, and the last consists of the last
four SNPs. Since a LD block is a group of consecutive
highly correlated SNPs, one can intuitively be con-
vinced of the presence of the first block looking only
at the D' measure and noticing that the first four
SNPs present a high value (~ 1) among one another.

With our approach, we first calculate the Viterbi
path for each haplotype, that is the most likely
sequence of hidden state values that led to that

particular observation [11]. Subsequently, we pro-
ject all the paths over the lattice structure deter-
mined by the SNPs—Ancestral pattern plane
(Fig. 5b), calculating the number of paths that share
the same path segment as described in Section 6.
At this point, we focus our attention on the split
and join points, highlighted in Fig. 5 b with a square.
Using Eq. (23), we can easily calculate the block
boundary strength Q(k,k + 1) for each couple of
consecutive SNPs, which is higher when more
balanced intersections are present. Fig. 5 ¢ shows
the resulting ()-value: as expected, a high () value is
present in correspondence with SNPs (5,6) due to
the presence of many splits at SNP 5, and many joins
at SNP 6. The same holds for SNPs number (8,9).
Considering our look-up table of zy values, we
threshold the value of Q with o = 0.3, obtaining
the block structure reported in Fig. 5 d. Other block
discovery results are shown in Fig. 6. Here, the data
is randomly taken from the Hapmap project. In
Fig. 6 b, the Pairwise LD table is reported. The
table, built using empirical haplotypes, confirms
the block division presented in Fig. 6 a, obtained
after solving the reconstruction task with FNH-HMM
double net and calculating the block boundary
strength Q.
The fourth data set used consists of 11 SNPs taken
from the interlukin-1 cluster on human chromosome
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(a) Pairwise LD plot. The blocks are highlighted with a yellow square; (b) Viterbi paths over the ancestral

pattern. Splits/joins are indicated with a square. The arrows indicate where the contributions of the split/joins point
votes for a block boundary. In fact, as shown in Eq. (23), a join at position k increases the block presence strength between
the k — 1 th SNP and the k th SNP, while a split at k increases the block presence strength between k and k + 1; (c) the Q
plot; (d) resulting blocks for the chr11g12.13 dataset with a threshold r = 0.3. The thickness of the boundaries is

proportional to the value of the block presence strength Q).



Table 2 Haplotype frequencies. Bold numbers indicate the best reconstruction

SNP Haplotype frequency
Empirical haplotypes Algorithm Double
Emp PhNLD PhLD HPLT PLEM SPHP fPh  Ger  Hit et
16 G G G G T A T G A A G A A T 0.334 0.312 0.321 0.325 0.333 0.332 0.320 0.326 0.331 0.305
266 G G G T T A G G G A G A A T 0.162 0.166 0.162 0.166 0.181 0.171 0.168 0.1536 0.166 0.162
36 6 T T G T A G G A A G A A T 0.091 0.097 0.097 0.101 0.098 0.102 0.092 0.088 0.098 0.123
466 G T T G T A G - A A G A A T 0.052 0.055 0.055 0.049 0.047 0.050 0.059 0.059 0.055 0.040
56 6 G G T T G G G G A G A A T 0.042 0.052 0.052 0.052 0.049 0.050 0.056 0.069 0.052 0.057
66 G T T G T A G - A A G A A G 0.029 0.032 0.032 0.032 0.030 0.030 0.033 0.033 0.033 0.016
7 G G G T T A G G G T G A A T 0.026 0.032 0.032 0.032 0.028 0.029 0.033 0.036 0.029 0.039
8 GG T T G T A G G G A G A A T 0.019 0.016 0.016 0.013 0.016 0.018 0.019 0.023 0.016 0.019
966 6 G G T T A T G G A G A A T 0.019 0.013 0.013 0.013 0.011 0.011 0.013 0.013 0.013 0.016
M6 G T T GG T A G - G A G A A T 0.019 0.023 0.026 0.023 0.025 0.025 0.023 0.019 0.026 0.010
16 G G G T T G G G G A G G C T 0.016 0.016 0.016 0.016 0.014 0.014 0.013 0.016 0.013 0.010
266 G G G T T A G G A A G A A T 0.016 0.010 0.006 0.006 0.008 0.008 0.006 0.010 0.006 0.010
366 - G G T T G G G G A G A A T 0.016 0.016 0.016 0.013 0.010 0.013 0.016 0.016 0.016 0.016
66 G G G T € A G G G T G A A T 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
56 G T T G T A G G G T G A A T 0.013 0.010 0.010 0.010 0.006 0.009 0.006 0.006 0.010 0.006
6 G G G T T G G G A A G A A T 0.013 0.013 0.013 0.016 0.008 0.008 0.013 0.010 0.010 0.010
76 - G G T T A G G G A G A A T 0.013 0.013 0.013 0.013 0.011 0.011 0.010 0.013 0.010 0.013
66 G G G T T A G - G A G A A T 0.010 — 0.006 0.010 0.007 0.008 0.006 0.006 0.006 0.010
9A G G G T T A G G G A G A A T 0.010 0.013 0.013 0.010 0.005 0.010 0.010 0.013 0.010 0.010
2006 G G G G T A G - A A G A A T 0.010 — 0.003 0.010 0.006 0.005 0.003 0.003 0.003 0.003
2166 G G G T T G G G G A G A A G 0.010 0.010 0.010 0.010 0.011 0.011 0.006 0.010 0.010 0.016
226G G T T G T A T G A A G A A T 0.010 0.013 0.010 0.013 0.007 0.007 0.010 0.013 0.006 0.012
236G G G G G T A G G A A G A A T 0.006 0.016 0.013 0.006 0.006 0.008 0.010 0.010 0.010 0.010
246 G T T G T G G - A A G A A T 0.006 — — — — — — — — —
26 G T T G T A G G A A G A A G 0.003 — — — 0.004 0.004 0.006 0.006 0.003 0.010
266G G G G T T G G G G T G A A T 0.003 0.006 0.006 0.006 0.007 0.007 0.006 — 0.006 0.006
277G G G G T T A T G A A G A A T 0.003 0.003 0.003 — = = = 0.003 — =
282G G G G T T A G - A A G A A T 0.003 — — — — — 0.003 0.003 — 0.003
29A G G G T T A G G A A G A A T 0.003 — = = = = = = = =
306 - G G T T A G G A A G A A T 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
316 G G G T T G G - G A G A A T 0.003 0.010 — — — — 0.003 0.006 0.003 0.003
3266 G T T G T G G G G A G A A G 0.003 — = = 0.002 — = = = 0.003
3366 6 6 G T T A G G G A G G C T 0.003 0.003 0.003 0.003 0.004 0.004 0.003 0.003 0.003 0.010
3466 - G G T C A G G G T G A A T 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
366 6 G G G T A G G A C C A A T 0.003 — = 0.003 0.003 0.003 — = = 0.003
366 G G G T T A G G G T G A A G 0.003 — = = 0.003 0.003 0.003 — 0.003 0.003
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Table 2 (Continued)

SNP Haplotype frequency
Empirical haplotypes Algorithm Double
Emp PhNLD PhLD HPLT PLEM SPHP fPh  Ger Hit et

Incorrect haplotypes
16 - G G T T G G G G A G G C T - = = = 0.002 0.002 0.003 — 0.003 —
266 G G G T T G G - A A G A A T - = 0.006 — 0.009 0.008 — = 0.003 —
366 G 6 G T T G T - G A G A AT - — — — — 0.002 — — — —
46 - G G T T G T G A A G A A T - = = 0.003 — = = = = =
56 - 66 G T T G T G G A G A A T - — — - 0.003 0.002 — — — —
666G G G G T T G T G G A G A A T - — 0.003 — — — — — — —
76 G G G T T G T G A A G A A T - = = = = 0.004 — = 0.006 —
8A G G G T T A T G A A G A A T - — — 0.003 0.003 0.003 0.003 — 0.003 0.003
966 G G G T T A G G G C C A AT - 0.003 0.003 — — — — — — —
MMA G T T G T A G - A A G A A T - = = = 0.002 — = = = 0.003
MA G T T G T A G G G T G A A T - — — — 0.003 — — — — 0.003
26 G T T T T G G - G A G A AT - — — 0.006 0.004 — — — — —
366 G T T T T G G G A A G A A T - = = = 0.003 — = = = =
466 G G G G T A T - A A G A A T - 0.010 — — — — 0.006 — — —
56 G G G G T A T G G A G A AT - 0.006 0.006 0.006 0.008 0.008 — 0.003 0.006 0.006
66 G G G G T A T G A A G A A G - 0.006 0.006 0.006 — = = 0.010 — 0.010
766 G T T G T A T - A A G A A T - — — — — — — — — 0.006

Minor allele frequency

0.01 0.25 0.40 0.11 0.13 0.06 0.02 0.05

0.03 0.25 0.02 0.37 0.41 0.003 0.02
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Figure 6 (a) and (c) Viterbi paths over the lattice structure (top) and correspondent Q) plot (bottom). Splits/joins are

indicated with yellow rectangles; block boundaries are shown with a bar whose thickness is proportional to the ) value;
(b) and (d) pairwise LD table: D’ (left diagonal elements) and r? (right diagonal elements) values confirm the block

boundaries found with our method.

Table 3 Accuracy of inference of haplotype structure on the GHI gene promoter

Algorithm ch17-GH1 [27] Hapmap sample

Iy Ir # correct / # wrong Iy Ir
Phase v2 no LD 0.81 0.91 27/4 0.9524 0.9878
Phase v2 with LD 0.81 0.93 28/5 = =
Haplotyper 1.0 0.81 0.93 28/5 — —
PL-EM 1.0 0.82 0.92 31/9 — —
SNPHAP 1.0 0.82 0.93 30/7 0.9091 0.9878
fastPhase 0.87 0.93 31/3 0.9524 0.9874
Gerbil 0.88 0.93 30/2 0.9091 0.9832
HIT 0.84 0.94 30/5 0.9091 0.9832
FNH-HMM double net 0.88 0.90 33/6 0.9761 0.9853

# correct and # wrong stand for respectively the number of corrected and wrong haplotypes inferred.

2q12-2q14 presented in [34]. In Fig. 6 ¢, the paths
over the ancestral patterns inferred after the model
training are depicted. No splits or joins are present,
and thus only a haplotype block is present here, as
confirmed by [34] and by the LD plot shownin Fig. 6 d.

8. Conclusions

Haplotype analysis is actually used in medical genet-
ics to localize the genetic region containing susce-
ptibility genes for genetic diseases. Therefore,
haplotype frequency estimation and dissection in
the LD structure of chromosomal regions are impor-
tant tasks, since LD structures vary across the gen-
ome and among populations. For that reason, it is

important that available computational tools are
able to resolve the haplotype phase from unrelated
individual genotypes and are able to identify suita-
ble patterns of LD structures in the regions to be
studied. In this paper, we proposed a generative
framework based on hidden first-order Markov pro-
cesses able to perform haplotype reconstruction and
block discovery at the same time, using two model
inferences. The model is based on a connection
between two FNH-HMM. The model learning has
been carried out under a variational context, and
it relies essentially on two independent computa-
tions of the Baum—Welch algorithm. In this way, a
fast inference procedure is obtained that is linear in
the length of genotypes, insensible to model initi-
alization, and less prone to local minima w.r.t those
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approaches employing exact versions of the EM
algorithm for model learning. The time complexities
of the other efficient approaches given here for
comparison are O(JNL®) for HIT, O(JNL?) for fas-
tPHASE and for Gerbil complexity was not expressed
analytically by the authors. The complexity of the
other methods ranges between O(N?) and O(N®)
making it prohibitively expensive to apply them
on long haplotypes [6].

To validate the approach (1) we exhaustively
compared our method with five other state-of-
the-art systems for haplotype reconstruction in
terms of various accuracy measures and (2) we
tested the block discovery capability with a well-
known block discovery method. The proposed
method showed performances that are similar to,
and for some measures even better than, the best
known reconstruction methods. It is worth noting
that our block discovery inference takes into
account uncertainty in the haplotype reconstruction
and imputation of haplotypes is based on a small
number of core haplotypes. These features will be
further investigated to develop a unified approach
for fine linkage disequilibrium mapping of genes
involved in complex diseases.

Future efforts will also be devoted to investigat-
ing an extension of our model that considers hidden
Markov processes of order higher than one, evalu-
ating the trade-off between the quality of the
obtained results and the involved computational
complexity.
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