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Frequency map analysis of a three-dimensional particle in the core model of a high intensity linac
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We consider the dynamical properties of a particle-core model for a uniformly filled triaxial ellipsoid in
a periodic lattice of a high intensity linac. The mismatched oscillation modes are analytically computed in
the smooth approximation and are compared with the numerical results of a tracking program. The study
of the phase space in the mismatched case is performed by the frequency map analysis. In particular, we
can analyze the effect of the nonlinear resonances between the envelope modes and the single particle
sincrobetatron frequencies. A chaoticity criterion based on the frequency map analysis allows one to
compute the stability region around the beam core. An estimate of the transport and its enhancement
due to mismatch is provided by tracking orbits at the border of the stability region.
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I. INTRODUCTION

One of the big challenges of the new generation of high
power proton linacs is the control of beam losses down to a
very low percentage. These losses are associated with the
presence of a beam halo, populated by very few particles
at large distance from the average beam dimensions. It is
generally recognized that one of the main mechanisms gen-
erating beam halo is given by the nonlinear single particle
resonances driven by the space charge, with an enhance-
ment related to mismatched beam [1].

The above-mentioned effects can be better understood
considering the frequency map analysis (FMA) [2] used
for a test particle, and the beam core is assumed to follow
known dynamics (particle-core model). In a previous ar-
ticle [3] we simulated the 2D dynamics of a mismatched
beam propagating in a FODO channel. This numerical
experiment pointed out the effect of the strong resonance
n1 � n2 on the particle transport in the phase space and
the advantage of using different transverse tunes.

In a linac the particle dynamics is intrinsically 3D, being
the three tunes comparable. We assume an ellipsoidal
uniform charge distribution. Neglecting this particular case
does not correspond to a self-consistent solution of the
Poisson-Vlasov problem. In a previous article we applied
the FMA to a cylindrical symmetric ellipsoidal beam bunch
located in a solenoid focusing channel and with rf focusing
effects but without acceleration [4]. In such a case the
space charge term for a bunch with cylindrical symmetry
is calculated defining a form factor [5].

In this article we extend the FMA to a generic triax-
ial ellipsoid: the introduction of a generalized form factor
allows one to compute the envelope modes in the non-
symmetric case. In this way by using the FMA a para-
metric analysis of a magnetic lattice can be explored with
the advantages of using three different tunes [6]. The dy-
1098-4402�01�4(12)�124201(11)$15.00
namics of a 3D particle-core model was also studied in
Ref. [7] using a different approach. We work out the de-
tails of the analysis for a magnetic line which is formed by
two quadrupoles and two rf gaps according to the parame-
ters given in Table I: In the sequel we refer to this struc-
ture as the FOGODOGO cell. This cell corresponds to
the period of the ISCL superconducting linac investigated
in the Italian research program TRASCO [8], which stud-
ies the feasibility of an accelerator driven system. In the
present approach we neglect the effects of the acceleration
and consider a steady state beam at the average energy.
In Fig. 1 the longitudinal and transverse beam envelopes

TABLE I. Nominal case.

Average beam energy �b � 0.314� 50 MeV
rf frequency 352 MHz
Period length �8bl� 2.13 m
Transverse emittance �e1, e2� 3.023 3 1026 m
Normalized ebg 1 3 1026 m
Longitudinal emittance �e3� 6.81 3 1026 m
Normalized e3�360±mc2�el�bg3 1 MeV deg
Beam current 30 mA
Space charge parameter �m � 3Il�4Icg3b2� 2.13 3 1028 m
Average acceleration gradient 2.5 MV�m
Synchronous phase 240±

Transverse phase advance per period 50±

Transverse phase advance without
space charge 83±

Longitudinal phase advance per period 60±

Longitudinal phase advance without
space charge 80±

Quadrupole gradient 30 T�m
Quadrupole length 0.05 m
Focusing strength �K� 29.7 m22

Longitudinal focusing parameter �K3� 44 m22
© 2001 The American Physical Society 124201-1
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FIG. 1. (Color) Matched beam envelopes along the FOGO-
DOGO lattice.

are plotted along the period. For this linac the number
of particles per bunch is 5 3 108. The sensitivity needed
in the simulations with these parameters is related to the
acceptable losses of 1 W�m, that corresponds to relative
losses of 0.7 3 1026 per meter.

The particle distribution out of the radio frequency
quadrupole (i.e., at the linac injection) is supposed to be
almost homogeneous, except for the queue mainly due to
the Debye screen that extends approximately to 1.1 beam
envelope in the three dimensions; the population in the
queue is � 3 3 1025 of the total particles in the bunch.
In order to fulfill our requirement of 1 W�m, less than
3% of these particles, subject to nonlinear space charge
forces, should reach large amplitudes and impinge on the
beam pipe. To understand the dynamical transport at large
amplitudes due to nonlinear resonances, we focus the
FMA on the study of dynamics of particles in the queue
region.
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The FMA is performed on different plane sections of
the phase space for the 3D particle-core model and gives
a global description of the dynamics where resonant and
chaotic regions are clearly detected. In this way it is pos-
sible to see the effects of each resonance on the halo for-
mation as well as estimate a “dynamic aperture” for the
short-term stability of the test particle. Moreover, taking
advantage of the particle-core model, we can concentrate
on the dynamics of the particles in the unstable regions
with significant statistics and low computational cost.

This paper is organized as follows: In Sec. II we dis-
cuss the computation of the electric field for a general uni-
form ellipsoidal distribution introducing the generalized
form factor. In Sec. III we define the envelope and single
particle equations of the particle-core model, and we ex-
plicitly compute the envelope modes in smooth approxi-
mation. In Sec. IV we perform the FMA for the TRASCO
ISCL lattice and we compare the results of our approach
with tracking simulations of the particle-core model. In
particular, we study the possible contribution to the halo
formation of the particles in the region within 1.1 beam
envelopes.

II. ELECTRIC FIELD OF AN ELLIPSOIDAL
CHARGE DISTRIBUTION

We consider a charge distribution uniformly distributed
into a 3-axial ellipsoid of the following equation:
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According to Newton’s potential theory, the electric poten-
tial of the distribution reads
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where Q is the total charge and e0 is the vacuum dielectric constant. If �x is an internal point of the ellipsoid, the lower
integration limit x is set x � 0; otherwise, for an external point x � x� �x� where x� �x� is the positive root of the equation
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Equation (3) defines the axis of a confocal ellipsoid passing through the point �x. In the sequel we introduce the notation

âi �
q
a2
i 1 x for the axis of the confocal ellipsoid. The electric field �E is given by
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, (4)

where �i, j, k� defines any permutation of the indices �1, 2, 3�. In order to give a simpler form to the integral in Eq. (4)

we change the variable y � âi�
q
a2
i 1 l, and after some algebraic passages using the equality â2
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Eq. (4) reads

Ei �
3Qxi

4pe0â1â2â3
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where we define the following form factor:

F�p, q� �
Z 1

0

y2 dyp
�p2 1 �1 2 p2�y2� �q2 1 �1 2 q2�y2�

. (6)
As is well known, the electric field is linear inside the
ellipsoid (1). In the case of a cylindrical symmetric ellip-
soid, the form factor (6) reduces to the form factor reported
in the literature f�p� � F�p,p� [5]. Equation (5) can be
interpreted in the following way: At any external point �x,
the electric field generated by an ellipsoidal uniform charge
distribution is equivalent to the electric field generated by
a confocal uniformly charged ellipsoid passing through the
point �x. The form factor (6) is a symmetric function with
respect to the argument and satisfies the equality
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which is a consequence of the Gaussian theorem for the
electric field.

III. 3D PARTICLE-CORE MODEL

We consider a test particle of charge e and mass m
moving in the FOGODOGO cell. The particle is under
the influence of the space charge force of a 3D uniformly
charged ellipsoidal bunch. The beam is bunched by rf cavi-
ties with longitudinal electric field E0 and wave number
k � 2p�bl. In the reference frame of the laboratory the
equations of motion read
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where 9 denotes the derivative with respect to the arc length

of the reference orbit, r �
q
x2

1 1 x2
2 is the distance from

the reference orbit, b and g are the relativistic factors, and
I0�z� and I1�z� are the modified Bessel functions of order
0 and 1; K�s� and K3�s� � ekE0�s���mg3b3c2� are the
quadrupole and the longitudinal focusing strength, respec-
tively, which are periodic functions of period equal to the
cell length L. The parameter

m �
3Il

4Icg3b2 , (9)

with Ic � pe0mc3�e � 7.8MA, is the space charge pa-
rameter for a beam current I .
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Equations (8) have to be coupled with the envelope
equations to determine the functions âi�s�. We define the

edge emittances ei � 5
q

�x2
i � �x02i � 2 �xix0i�2 where � � is

the average over to the charge distribution. By a direct
calculation we have �x2

i � � a2
i �5, and the envelope equa-

tions read
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The systems (10) and (8) define the 3D particle-core
model. The uniform ellipsoidal distribution is not a
solution of the Poisson-Vlasov system because the cor-
responding stationary distribution in the phase space is
singular; nevertheless, it allows one to keep the Hamilto-
nian character of the 3D particle-core model similar to the
dynamics of the full particle system (Liouville problem).
The envelope equations have a periodic solution defining
the matched beam. Introducing the Poincaré map of sys-
tem (10), the matched solution corresponds to an elliptic
fixed point. An analytical approach to the study of an
equilibrium solution of the system (10) is possible in the
smooth approximation; i.e., one substitutes the focusing
strengths with their average values Ki � n

2
0i�L2, where

n0i �i � 1, 2, 3� are the zero current tunes. In this case the
periodic orbit reduces to a fixed point ai of the system and
it is possible to compute analytically both the envelope’s
frequencies and the corresponding eigenvectors. As a
consequence, the dependence from the relevant parameters
of the model can also be analytically studied. To compute
the envelope frequencies we need to linearize Eqs. (10)
and work out the derivative of the form factor (6): an
explicit calculation gives

≠F
≠p

� 2
1
p

���F�p, q� 1 G�p, q���� , (11)

where we introduce the function

G�p, q�

�
Z 1

0

y4 dyp
�p2 1 �1 2 p2�y2�3�q2 1 �1 2 q2�y2�

.

(12)

The function G�p, q� has some properties resulting from
Eq. (12) and the Hamiltonian character of the envelope
equations
124201-3
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�1 2 p2�G�p,q� 1 �1 2 q2�G�q,p� � 3F�p,q� 2 1 ,
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Considering Dai � ai 2 ai , which stands for the dis-
placement with respect to matched solutions and Eq. (10),
the linearized envelope equations in the smooth approxi-
mation read
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where ni are the depressed tunes. The symmetric matrix
Hij can be explicitly computed according to
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where the diagonal elements are
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The right-hand side of Eq. (14) is a negative defined matrix
that can be diagonalized to compute the eigenvectors and
the eigenvalues through Cardano’s formula. In the case
of an axially symmetric ellipsoid �ā1 � ā2� the matrix H
simplifies and it can be written as a function of the form
factor f�p� � F�p,p� [6]

H11 � H22 �
5
8

���1 2 f�p���� 2 6p2g�p� ,

H33 � 2���f�p� 2 g�p���� ,

H12 � H21 �
1
4

���1 2 g�p���� ,
(16)

H13 � H31 � H23 � H32 � pg�p� ,

where p � ā3�ā1, and we defined

g�p� � G�p,p� �
1 2 3f�p�
2�p2 2 1�

. (17)

The calculation of the eigenvalues and the eigenvectors of
Eq. (14) is explicitly performed by using the quantities
124201-4
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and the corresponding eigenvectors are
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where the mode mixing angle f is defined

f �
1
2

arctan

µ
2
p

2D
A 2 B 1 C

∂
. (21)

The eigenvalues and the eigenvectors computed in the
smooth approximation are useful for the analysis of the
Fourier spectrum of the orbits in the FOGODOGO cell.

IV. FREQUENCY MAP ANALYSIS OF
MODULATED MAPS

For a given perturbed d degrees of freedom Hamiltonian
system, the Kol’mogorov-Arnol’d-Moser theory [9] proves
the existence of invariant tori in the phase space which are
characterized by the frequencies ni �i � 1, . . . , d� associ-
ated with the quasiperiodic orbits lying on them. Therefore
a map exists from the set of invariant tori to the frequency
space, the frequency map (FM). For an almost integrable
system the FM is smooth. The theoretical results can be
extended to perturbed symplectic maps even if the dynam-
ics is externally modulated by a quasiperiodic signal. More
precisely, we consider a symplectic map

�zn11 � M ��zn; n �a� (22)

that depends periodically on the modulation frequencies
�a � �a1, . . . , as� where �z � �x1, x01, . . . , xd , x

0
d� are the

canonical variables. It can be proven that if the map M
is almost integrable there exist invariant tori in the ex-
tended phase space R2d1s associated with the frequencies
124201-4
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� �n, �a� � �n [ Rd� that satisfy a Diophantine condition [10].
Since the modulation frequencies �a are fixed, each invari-
ant torus is characterized by the �n frequencies and there
still exists a FM from the set of invariant tori into a fre-
quency space Rd . We note that the dynamics of the modu-
lated map (22) feels the effects of the nonlinear resonances
between the internal frequencies �n and the modulation fre-
quencies �a so that the density of resonances is increased
in the phase space and the chaoticity may appear due to
the phenomenon of resonances overlapping.

The basic idea of the FMA is the numerical computa-
tion of the FM in order to study its smoothness. If one
considers a uniform grid of points in a phase space section
and computes the frequencies �n associated with each orbit
passing through a grid point, one gets a picture of the FM
of the system. The smoothness property of the FM im-
plies that the grid should appear smoothly deformed in the
frequency space if the orbits belong to invariant tori. But
when the FM is extended to the resonant or chaotic regions
of the phase space the points no longer define a grid in the
frequency space. More precisely, in the case of a modu-
lated symplectic map (22) the initial points belonging to a
resonant region will be mapped on a resonant plane

�k ? �n � �h ? �a mod 1 � �k, �h� [ Zd1s, (23)

so that a resonant region in the frequency space is defined
by a local maximum of point density centered at the reso-
nant plane (23), whose amplitude is proportional to the
width of the resonance. The points corresponding to a
chaotic region will appear as a fuzzy cloud due to the
high sensitivity of the dynamics to the initial condition
and to the finite precision of the numerical computation.
As a consequence, the FMA provides information on the
location of regular, resonant, and chaotic regions in the
phase space and it can be used to study the effect of reso-
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FIG. 2. (Color) Histogram in the frequency space computed by using a grid of 5 3 103 points along the x1 axis up to an amplitude
of three beam envelope for the FOGODOGO cell; in the left-hand figure the beam is matched, whereas in the right-hand figure
the beam is 10% mismatched. The vertical lines mark the main nonlinear resonances that can be detected in the phase space in
correspondence with the local peaks of the density; �a are the envelope frequencies.
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nance overlapping on the stability of particle dynamics.
The Poincaré map of the FOGODOGO cell in the presence
of a mismatched beam is a modulated symplectic map with
�a equal to the envelope frequencies. In Fig. 2 we show the
histogram of a number of points in the frequency space
for a FM computed by using a grid of 5 3 103 points
along the x1 axis for the FOGODOGO cell in the presence
of a matched (left-hand picture) and a 10% mismatched
(right-hand picture) beam. The local peaks of the density
correspond to the main resonances, whereas sudden local
changes in the density are features of the chaotic regions.
We observe that the appearance of resonances between
the particle frequency n1 and the envelope frequencies �a
enlarges the chaotic region. The spatial step of the initial
grid defines the scale of the minimal structure of the phase
space that can be detected by the FMA.

The problem of numerically calculating the FM for a
modulated symplectic map is solved if one can identify
the particle frequencies �n in the Fourier spectrum of an
orbit. This can be performed by projecting the orbit in the
coordinate plane �xj , x0j� �j � 1, . . . , d� and looking for the
frequency corresponding to the main Fourier component;
this procedure is correct if both the nonlinear effects and
the amplitude of the external modulation do not perturb the
linear motion too much. This is the case of the Poincaré
map of the considered FOGODOGO cell in the presence
of a mismatched beam: in Fig. 3 we plot the fast-Fourier
transform (FFT) of the projection of an orbit on the �x1, x01�
coordinate plane in the case of a matched (left-hand side)
and 10% mismatched beam for a test particle near the
border of the beam core. Even if in the mismatched case
the Fourier spectrum is much richer due to the presence of
envelope frequencies �a, the particle frequency n1 is clearly
identified by the maximal amplitude in the spectrum.

The numerical computation of the FM needs an accurate
evaluation of the frequencies for a great number of points.
124201-5
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FIG. 3. (Color) FFT of the projection on the �x1, x
0
1� plane of the orbit of a test particle located at 1.1 times the beam envelope

iterated 1024 times; the left-hand figure refers to a matched case, whereas the right-hand figure refers to a 10% mismatched case.
The maximal amplitude defines the n1 particle frequency in both cases.
This task can be performed if one develops a very efficient
algorithm to compute the frequencies of a regular orbit
with a relatively small number of iterations. We used a
Hanning filter together with an interpolation algorithm on
the FFT [11]. For regular orbits (quasiperiodic orbits) this
method allows a precision proportional to 1�N4, where
N is the iteration number and has the same computational
load of the FFT [11]. The iteration number can be related
to the weakness of chaos that is detected in the phase space
by FMA.

V. NUMERICAL METHODS AND RESULTS

We integrate the particle-core equations (8) and (10)
by using a leap-frog symplectic scheme which alternates
linear transformations, kick maps for space charge, and
nonlinear rf forces. 100 kicks per period were used. The
form factor F�p, q� is computed by a linear interpolation
on a grid of points for the value of p, q. This method
allows one to increase the velocity with a relative precision
equivalent to 1025. The matched solution for the envelope
equations is calculated by a bisection method.

We checked the tracking program by comparing the re-
sults for the envelope frequencies and the particle tunes
analytically computed in the smooth approximation with
the numerical values of the actual FOGODOGO cell. In
Fig. 4 we plot the envelope frequencies ai as a function
of the space charge parameter m. We observe that the dif-
ference between the smooth approximation and the actual
lattice increases as we increase the beam intensity; this is
due to the contribution of the beam oscillations in the pres-
ence of the space charge force. Table II reports the particle
frequencies and the envelope frequencies corresponding to
the nominal case of Table I. As is generally understood,
the halo formation for a mismatched beam is mainly driven
by the resonances 2ni � aj �i, j � 1, 2, 3� [1]. In Fig. 5
we plot the ratios n1�aj and n01�aj (left-hand picture)
124201-6
and the ratios n3�aj and n03�aj (right-hand picture) for
each envelope frequency aj �j � 1, 2, 3�. If the value 1�2
is in the area between the two curves, we expect the reso-
nance to be excited in the phase space. We observe that for
high current values, the 1�2 resonance is crossed by each
particle frequency, but we also need information about the
position and the strength of the resonances in the phase
space in order to prove the presence of large chaotic re-
gions resulting from resonances overlapping in the mis-
matched cases [7].

Moreover, the above-mentioned curves do not take into
account the nonlinear effects given by rf fields. Figure 6
shows the nonlinear tune shifts along the transverse (left)
and the longitudinal (right) axis in presence or absence
of space charge effect as a function of the distance from
the beam core. We can see that only at large amplitude
(5 times the beam envelopes), where the contribution of
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FIG. 4. (Color) Comparison of the envelope frequencies com-
puted in the smooth approximation (line) and for the FOGO-
DOGO cell (dots) as a function of the space charge parame-
ter m.
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TABLE II. Frequencies and modes at m � 2.13 3 1028.

Mode Smooth approximation FOGODOGO

n01 0.2291 0.2291
n02 0.2291 0.2291
n03 0.2228 0.2228
n1 0.1386 0.1390
n2 0.1386 0.1390
n3 0.1647 0.1691
a1 0.3396 0.3498
a2 0.4200 0.4240
a3 0.3600 0.3650

the space charge force is negligible, the rf nonlinearity
introduces a small negative tune shift. As a consequence
we can disregard the effect of the rf nonlinear field on the
beam core.

When one considers a mismatched beam, a direct vi-
sualization of the phase space of the Poincaré map of the
FOGODOGO cell is not useful since the excitation of the
envelope modes continuously modulates the phase space
structure. In such cases a description of the phase space
is achieved by using the FMA. To perform the FMA we
compute the Poincaré map of the lattice at the middle of
the focusing quadrupole � �x0 � 0�; then we consider a fam-
ily of orbits whose initial conditions are distributed on a
uniform grid on a plane section of the bunch. We use
the �x1, x2� and the �x1, x3� sections and 10 000 points dis-
tributed on concentric ellipses around the beam core. We
analyze a region of the phase space covering up to 3 times
the beam envelopes. Each orbit has been iterated for 2048
periods divided into two sets of 1024 points. We sepa-
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FIG. 5. (Color) Ratio �n�aj and �n0�aj (j � 1, 2, 3) as a function of the space charge m for the transverse plane (left) and longitudinal
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rately compute the particle tunes for each set and evaluate
the norm of the difference D �n of the tunes. This difference
is used to apply a chaoticity criterion [12],

NkD �nk . 1 , (24)

to distinguish between regular and chaotic orbits. In-
deed in the case of regular orbits which have a stationary
Fourier spectrum, the accuracy of our algorithm would im-
ply NDn ø 1. On the contrary, for the chaotic orbits the
Fourier spectrum is not stationary and the criterion (24)
allows one to detect the fluctuations between the frequen-
cies of the first and the second set of iterations. The choice
(24) for the threshold in the chaoticity criterion is related
to the limited number of periods ��102� that define the
linac lattice. A weak chaotic orbit could satisfy the cri-
terion (24), but the diffusion time would be much longer
than the number of periods in the linac. Moreover, the re-
quest of very low tolerance in the losses (#1026 the total
number of particles in a bunch) can be controlled by the
density of grid points in the phase space sections. A Monte
Carlo tracking with 105 particles has not detected any orbit
that performs a fast diffusion in a regular region according
to the criterion (24) for the chosen density [12]. There-
fore we can define the border for the stable regions with
a relatively small number of points ��5000� in the initial
grid. The diffusion in the chaotic regions can be measured
by a tracking that takes advantage of the information of
the FMA.

The frequencies are also used to perform the FMA.
In Fig. 7 we plot the frequency map for the transverse
and longitudinal sections in the matched case for the
124201-7
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FIG. 6. (Color) Nonlinear tune shift in the transverse tune n1
(left) and longitudinal tune n3 (right) as a function of the distance
from the beam core. The curve with m � 0 corresponds to the
zero current machine with the nonlinear rf field.

FOGODOGO cell. The presence of low order resonances
is shown by the points on the resonant lines in the fre-
quency space: the corresponding initial conditions are
marked with different symbols in the bottom plots in order
to see where the resonances overlap in the real space. Fig-
ure 8 shows the same plots for a 10% mismatched beam
able to excite mainly the first mode given by the first eigen-
vector: namely, a1 � 1.1a01,a2 � 0.9a02,a3 � a03, with
a0i the matched solutions. The straight lines denote the
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FIG. 7. (Color) In the upper graphs we show the FMA in the sections �x1, x2� (left) and �x1, x3� (right) for the matched beam. In the
bottom graphs we plot the initial grid of points used in the FMA. The points corresponding to different resonances are indicated by
different markers to detect the resonance overlapping.
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low order resonances in the frequency space whose num-
ber is increased due to the presence of envelope frequen-
cies. Because of the resonance overlapping phenomenon
the chaotic region at the border of the beam core is clearly
enlarged. The plots of the initial conditions (bottom parts),
corresponding to resonance regions, give a picture of the
chaotic area around the beam core that allows the orbits to
diffuse up to large amplitudes.

The tracking results confirm that the resonance overlap-
ping is one of the principal causes of the reduction of the
stability region around the beam core. We compute the
dynamic aperture by evaluating the number of regular or-
bits in the initial grid of points that satisfy the criterion
(24). We consider a sequence of transverse elliptical shells
around the beam core with 100 points on each shell. In
Fig. 9 we plot the number of regular points for each shell
as a function of the initial radius R0 normalized to the beam
envelopes,

R0 �
q

�x1�a01�2 1 �x2�a02�2 . (25)

The sudden drop of the number of regular orbits defines the
dynamic aperture, which is larger in the matched case than
in the mismatched case. The FMA together with the appli-
cation of the stability criterion gives detailed information
124201-8
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on the effects of the nonlinear resonances and the exten-
sion of the chaotic regions. We make a first check of the
FMA by tracking 105 particles randomly distributed in a
transverse annulus of thickness 10% of the beam envelopes
for the mismatched case. We have defined the transverse
maximum radius as a function of the iteration number n,

R�n� � max�
q

�x1�n��a01�2 1 �x2�n��a02�2 � , (26)
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FIG. 9. (Color) Number of regular orbits on transverse shells around the beam core as a function of initial radius normalized to the
transverse beam envelope size: each shell contains 100 initial conditions. The left-hand picture refers to the matched case, whereas
the right-hand picture refers to the 10% mismatched case.
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where the “max” is taken of the point distribution. The re-
sults are reported in Fig. 10: in the left-hand part we plot
the maximum transverse amplitude after 103 iterations; it
shows a halo formation up to an amplitude of 2.5 beam
envelopes. In the right-hand part we plot the initial condi-
tions of the orbits which can contribute to halo formation
�R . 1.4� together with the initial conditions satisfying the
stability criterion (24) (black dots). The two sets of points
124201-9
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FIG. 10. (Color) In the left-hand graph, we plot the maximum transverse radius for a set of 105 orbits iterated 103 times. The initial
conditions are randomly chosen in an annulus in the plane �x1, x2� between 1 and 1.1 beam envelopes. The internal ellipse defines
the transverse border of the beam, whereas the external ellipse defines a numerical threshold (R . 1.4) to detect the chaotic particles
that can contribute to the halo formation. In the right-hand graph, we plot the initial conditions corresponding to the orbits in the
chaotic region (small red dots) together with the profile of the beam (blue line) and the threshold ellipse R . 1.4. We plot with
different markers the orbits that satisfy R . 2 (yellow dots) to show that they are spread out in the unstable region due to the chaotic
character of the dynamics. In the right-hand graph, we also plot the points satisfying the stability criterion (24) (black dots) which
do not overlap with the unstable region.
definitely do not overlap: this fact proves that the FMA is
able to detect the stable regular regions. We also compute
R�n� on a population of 5 3 104 particles randomly dis-
tributed on five ellipsoidal shells of thickness 0.02 times
the beam envelope in each direction; we consider 500 it-
erations for each orbit. In Fig. 11 we plot R�n� for each
shell of initial conditions. Two different effects can be ob-
served: in the case of regular orbits a small increase of the
R value is given by the smear of the orbits; in the case of
chaotic orbits, R becomes a stepwise function due to the
presence of partial topological barriers in the phase space,
at the borders of fast diffusion regions. In the matched
case we see the effect of chaoticity in the last two external
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FIG. 11. (Color) Maximum transverse radius [see Eq. (26)] for different shells of initial conditions around the beam core, as a
function of the period number: matched case (left-hand plot) and mismatched case (right-hand plot).
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shells. This shows the existence of a transverse regular re-
gion of order 1.08a01 around the beam core.

In the mismatched case (10% of the quadrupole mode),
R reaches large values (�2 beam envelopes) after a few
hundred iterations in the second shell (between 1.02 and
1.04 beam envelopes). These results show that the mis-
match of the beam drastically reduces the stable region
around the beam core and enhances the halo formation
phenomenon. This effect can be explained by the reso-
nance overlapping in the phase space detected by the FMA.
In Fig. 12, in order to identify the most unstable regions
around the beam core, we plot the initial conditions cor-
responding to the maximum value of R�n� for n # 500.
124201-10
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FIG. 12. (Color) Initial conditions for the matched (left) and the mismatched (right) case correspond to a maximum transverse radius
R at a certain iteration number n. Different markers refer to initial conditions into different shells.
The isolated points correspond to regular orbits, whereas
the cluster of points indicates the presence of chaotic re-
gions where R has a sensitive dependence on the initial
conditions. We note that the location of the most unstable
regions can be far from the sections �x1, x2� and �x1, x3�
used in the FMA. This gives the warning that two plane
sections could not be enough for an exhaustive representa-
tion of the phase space in a 3D particle in core model.

We compare the dynamic aperture of the stability crite-
rion in the transverse section (see Fig. 9) with the dynamic
aperture of the tracking results shown in Fig. 11. The FMA
estimate is slightly optimistic in the matched case since we
consider the �x1, x2� plane section only, and we neglect the
longitudinal-transverse coupling. Conversely in the mis-
matched case, the FMA estimate of the dynamic aperture
is in accordance with the 3D tracking results since the main
coupling through the envelopes frequencies is included.

VI. CONCLUSION

The FMA turns out to be a powerful tool to study the
phase space of the 3D particle-core model in the mis-
matched case. The resonances excited in phase space are
clearly detected and their extension can be measured. Even
if we limit the analysis to the plane sections of the phase
space, the FMA can be used to get information on the
global behavior of the 3D dynamics. A single chaotic-
ity criterion allows one to distinguish between chaotic and
regular regions; the diffusion in phase space can be accu-
rately measured by using a tracking code for the orbits in
the chaotic region.
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