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Abstract 

 Water oxidation catalysis is recognized as the bottleneck for the development of efficient devices based on artificial 
photosynthesis, that is the light driven water splitting into hydrogen and oxygen. A recent breakthrough in this field, is the 
development of a molecular, fast and robust water oxidation catalyst namely a fully inorganic tetranuclear ruthenium complex 
with polyoxometalate ligands. The crystal structure of [Ru4( -O)4( -OH)2(H2O)4(SiW10O36)2]10-, 1, evidences the entrapment of 
an adamantane like, tetranuclear ruthenium(IV)-oxo core, by two decatungtosilicate units. Several spectroscopic techniques 
confirm the maintenance of the structure in aqueous solution. In the presence of Ce(IV) as sacrificial electron acceptor, 1 
catalyzes water oxidation to oxygen, showing up to 500 turnovers and a turnover frequency of 0.125 s-1. The synergistic effect of 
the four ruthenium centres has a fundamental effect on such astounding performance, as confirmed by spectroscopic and 
computational characterization of five competent intermediates involved in the catalytic cycle, in strict analogy with the natural 
paradigm of the oxygen evolving centre in Photosystem II. Interestingly, 1 efficiently catalyzes water oxidation in the presence of 
photogenerated oxidants, as well; this fundamental feature is probably related to very fast hole scavenging of anionic 1 from 
cationic photogenerated oxidants, such as Ru(bpy)3

3+. Thus, 1 is an ideal candidate for the assembly of high efficient oxygen-
evolving anodes into nanostructured devices for artificial photosynthesis. 
 
 
© 2009 Published by Elsevier Ltd. 
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1. Introduction 

Artificial photosynthesis converts sunlight into chemical energy, by performing the splitting of water into 
hydrogen and oxygen,[1] and can therefore be considered as a promising route to produce renewable fuels, 
satisfying the ever increasing global energy demand. Nevertheless, the entire process has a formidable complexity, 
being constituted by the assembly of different components, in a modular approach.[2] These deal with light 
harvesting, energy transfer, electron transfer and redox catalysis. In particular, the research for redox catalysts 
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enabling water oxidation to oxygen has encountered severe difficulties due to the enormous complexity of this half 
reaction, which involves the removal of 4 protons and 4 electrons from two water molecules, with the contemporary 
formation of a new oxygen – oxygen bond. Indeed, the limited development of water oxidation catalysts is 
nowadays recognized as the bottleneck of the entire water splitting process, although some relevant results have 
been reported in the last few years.[3] Over the course of billions of years, Nature has developed and refined the 
Oxygen Evolving Centre (OEC) in Photosystem II to drive the oxidation of water in green plants at minimal energy 
cost. Crystallographic and spectroscopic studies revealed that the natural OEC is constituted by four manganese and 
one calcium atoms, connected through -oxo and -hydroxo bridges;[4-7] the ability of the OEC to catalyze water 
oxidation stems from its possibility to reach at least five oxidation states (Si, i=0-4), where the manganese core is 
consecutively oxidized by a radical cation of the chlorophyll, with the contemporary loss of 4 protons.[8] The OEC, 
in its highest oxidation state S4, is then able to oxidize water to oxygen restoring its initial state S0, in a single step 
occurring in the ms timescale.[9] It is worth to mention that the oxidative conditions where the catalysis takes place 
inflict a lethal damage to the OEC itself, which has to undergo a mechanism of self repairing every 30-60 
minutes.[10] Nevertheless, the formidable activity of the OEC (up to 400 cycles per second) has inspired the design 
and the synthesis of several artificial molecular water oxidation catalysts (WOC) with considerable activity. The 
first WOC is the ruthenium blue dimer, [(bpy)2Ru(H2O) -ORu(H2O)(bpy)2] (bpy = 2,2’-bipyridine), that was 
reported by T.J. Meyer in 1982.[11] Since than, ruthenium complexes have played the major role in water oxidation 
catalysis, and reviews on the most relevant ones were recently reported by Llobet et al.[12-13] In the last few years, 
new ruthenium species have been reported to catalyze water oxidation [14-15] although other metals have also been 
considered, leading to the development of molecular WOC based on Iridium [16] and on more abundant metals such 
as Manganese,[17] Cobalt [18] and Iron.[19] A serious limit of these molecular WOC is the stability under catalytic 
regime, since they are mainly constituted by organic ligands, which suffer from oxidative bleaching under the 
oxidative conditions required to perform water oxidation catalysis. 

In this paper we present the results achieved in the development of innovative WOC, based on transition metals 
stabilized by polyoxometalate (POM) ligands. These are polyanionic oxo-clusters, formed by the condensation of 
oxo groups and early transition metals in their highest oxidation states, such as W(VI). Being totally inorganic, these 
molecular metal oxo species display relevant robustness towards oxidative degradation, and are therefore promising 
ligands to design stable WOC.with long lasting  performance 

2. Polyoxometalates as water oxidation catalysts 

2.1 Polyoxometalates. Polyoxometalates (POMs) are molecular, polyanionic, multi-metal oxygen cluster anions, 
generally assembled from aqueous solutions of early transition metals in their highest oxidation states, depending on 
specific conditions such as pH and temperature.[20] These species display remarkable functional properties that 
depend on their elemental composition, structure, and associated counterion, fostering their application in different 
disciplines.[21] In the specific field of water oxidation catalysis, the adoption of POM based ligands guarantees the 
design of robust catalysts overcoming the problem of degradation of the ligand scaffold generally observed 
employing organic ligands, under the aggressive, oxidizing conditions required to perform water oxidation. Relevant 
examples of POM ligands are reported in figure 1.  
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Figure 1. Examples of POM based ligands. Blue atoms: tungsten; grey atoms: silicon; orange atoms: 

phosphorous; red atoms: oxygen; purple atoms: nucleophilic oxygens of the coordination site. The Greek letters 
within the formula identify specific structural isomers, for more details see references [20] and [21].  
 

Complexation of several transition metals by POM ligands is usually achieved in aqueous solution, and the 
resulting complexes show remarkable stability, especially towards oxidizing conditions, since the POM framework 
is constituted by metals in their highest oxidation states. Moreover, POMs can be conveniently embedded in suitable 
materials such as polymeric membranes[22] and chitosan nanoparticles,[23] that can further protect them under 
reaction conditions, while driving their reactivity. Thus, all these features make POMs ideal candidates to design 
structurally stable, molecular OEC. 
 

2.2 A tetraruthenium polyoxometalate as a molecular WOC. POM ligands were first considered for the 
design of molecular WOC in 2004 by Howells et al.,[24] who reported electrochemical water oxidation catalyzed by 
the species Na14[RuIII

2Zn2(H2O)2(ZnW9O34)2]; nevertheless, structural disorder of this species did not allow 
unambiguous characterization of the actual catalyst, thus hampering mechanistic studies. The first structurally 
characterized POM based WOC was the tetraruthenium {Ru4( -OH)2( -O)4(H2O)4[ -SiW10O36]}10- species, 1, 
(structure is shown in figure 2), which is readily prepared in aqueous solution by reaction of the ligand [ -
SiW10O36]8-, shown in figure 1, with suitable ruthenium precursors in aqueous solution. This catalyst was reported in 
2008 independently by two groups,[25,26] and its structure displays interesting analogies with that of the OEC in 
Photosystem II, both being constituted by four redox active transition metals connected through -oxo or -hydroxo 
bridges. A further similarity with the OEC is given by the ability of 1 to undergo consecutive one-electron 
oxidations, coupled with proton removal; these proton coupled electron transfer lead to redox potential levelling, 
which is recognized as one of the key features to achieve water oxidation at relatively low potentials.[27]  

 
 



  Andrea Sartorel et al.  /  Energy Procedia   22  ( 2012 )  78 – 87 81

Figure 2. Structure of {Ru4( -OH)2( -O)4(H2O)4[ -SiW10O36]}10-, 1, (left), and oxygen evolution profile in the 
presence of 1 and Ce(IV) as sacrificial electron acceptor (right): 4.3 mol 1, 1720 mol Ce(IV) in 10 ml H2O at 
20°C.[25] 

 
Activity of 1 in water oxidation was initially studied under dark conditions, in the presence of sacrificial electron 

acceptors such as Ce(IV),[25] or Ru(bpy)3
3+.[26] Adding an excess of Ce(IV), vigorous oxygen bubbling is 

observed from aqueous solutions of 1, with an initial turnover frequency of 0.125 cycles·s-1.[25] A second and a 
third recharges of Ce(IV) produce equivalent amounts of evolved oxygen, with 1 cycling up to 500 total turnovers 
(defined as the number of moles of oxygen per mole of catalyst). Also, the first order dependence of the oxygen 
evolving rate on the initial concentration of 1 confirms the nature of a molecular species as the actual catalyst and no 
formation of colloidal RuO2, which is known to catalyze water oxidation since late seventies of last Century.[28] 
With Ru(bpy)3

3+ as the oxidant, up to 18 turnovers are achieved, with an initial turnover frequency of 0.45-0.60 s-

1.[26]  
The mechanism of water oxidation catalyzed by 1 is still under investigation, although some insights have been 

provided by pertinent publications.[29-32] The main difficulty is related to the characterization of the competent 
intermediates, involved in the catalytic cycle. In addition, isolation of different intermediates was possible only in 
acidic solution, since the redox waves are pH-dependent, and in neutral environment they collapse into a single one, 
observed just before the discharge of water. Nevertheless, a general consensus has emerged in the possibility of 1 to 
undergo several consecutive 1 e- oxidations, coupled with proton removal, that finally lead to an active form of the 
catalyst, capable of oxidizing water and restoring the resting state of the catalyst itself; isolation of the active form of 
1 in water is hampered by its very high activity, leading to concomitant oxygen evolution. Nevertheless, the redox 
features of 1 and its ability to undergo proton coupled electron transfers leads again to a strict analogy with the 
behaviour of the OEC in Photosystem II, thus providing an outstanding proof of biomimetic catalysis, employing a 
totally inorganic species. 
 

2.3 Light driven water oxidation catalyzed by 1. In order to propose a catalyst for applications in artificial 
photosynthesis, it is important to prove its activity not only under dark conditions, but also in light driven water 
oxidation, taking advantage of a photosensitizer (P) and a sacrificial electron acceptor (SA). According to scheme 1, 
light is absorbed by P which is then promoted to its excited state, *P (eq. 1 in scheme 1). *P then releases one 
electron to the sacrificial acceptor SA, forming the oxidized form of the photosensitizer P+ (eq. 2 in scheme 1). P+ is 
then able to drive oxidation of the WOC to its active form WOC(4+), while the contemporary formed P is then ready 
to restart another cycle (eq. 3 in scheme 1). Finally, WOC(4+) is then able to oxidize water to dioxygen, (eq. 4 in 
scheme 1). 
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Scheme 1. General representation of light induced O2 generation in the presence of a photosensitizer (P), a 
sacrificial electron acceptor (SA) and a water oxidation catalyst (WOC). Please note that the active form of the 
WOC is indicated as WOC(4+), since usually four mono electronic oxidation steps are required to generate this 
species. Nevertheless, the contemporary removal of protons from the WOC may lead to a lower actual charge on 
WOC(4+). 

 
Within such scheme, several parameters may affect the yield and the efficiency of the process: (i) the ability of P 

to absorb light; (ii) the life of the excited state *P; (iii) the redox potential of the P+/P couple, which has to be high 
enough to oxidize the WOC to the active form responsible for oxygen production; (iv) the rates of reaction of *P 
with SA and of P+ with the WOC. Indeed, several competing unproductive pathways may occur, leading to 
decomposition of P and to decreased efficiency of the light driven oxygen production. In the current literature, the 
most widely explored system uses Ru(bpy)3

2+ as the photosensitizer and the persulfate anion, S2O8
2-, as the SA.[33] 

Using the Ru(bpy)3
2+ / S2O8

2- system, and 1 as the WOC, water oxidation was observed by employing visible light, 
with the catalyst 1 cycling up to 350 turnovers.[34] One of the reasons for the efficient catalysis by 1 under such 
conditions, stems from very fast reaction rates between 1 and the oxidized form of the photosensitizer, Ru(bpy)3

3+ 
(hole scavenging, eq. 3 in scheme 1). Indeed, the rate of such reaction was measured by laser flash photolysis 
experiments and follows a second order kinetic profile, with a rate constant k = 2.1·109 M-1s-1,[35] that under the 
reaction conditions implies a s timescale process (for the sake of comparison, this process usually happens in the 
ms timescale region by employing IrO2 nanoparticles as the WOC [36]). This very fast reaction rate, close to the 
diffusion controlled limit, restricts degradation of the oxidized sensitizer Ru(bpy)3

3+, which, in the absence of 
efficient hole scavenging, undergoes self bleaching upon degradation of the bpy ligands. Presumably, this fast 
process may be ascribed to the complementary charge of the anionic 1 and the cationic Ru(bpy)3

3+. 
In order to efficiently exploit solar light in water oxidation processes, it would be highly desirable to use 

photosensitizers with extended absorption in the visible region. To this aim, multi nuclear ruthenium dendrimers 
with polypyridine photosensitizers have been extensively investigated in the last few decades.[37]  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Representation of the structure of Ru{( -dpp)Ru(bpy)2}3

8+, 2, (left) and comparison among solar 
emission at the sea level (visible region, yellow area), absorption spectra of Ru(bpy)3

2+ (solid line) and 2 (dashed-
dotted line), (right). 
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This species, based on the use of 2,3-bis(2’-pyridyl)pyrazine (dpp) as bridging ligand between different metal 
centres, offer several advantages over Ru(bpy)3

2+, since they display an extended absorption towards the visible part 
of the spectrum. In particular, the chemical structure and the absorption spectra of the tetraruthenium Ru{( -
dpp)Ru(bpy)2}3

8+ photosensitizer, 2, are reported in figure 3. Moreover, the first oxidation event of 2 involves the 
simultaneous one electron oxidation of the four metal centres, and occurs at around 1.70 V vs NHE, while for 
Ru(bpy)3

2+ is at 1.26 V vs NHE. Therefore, these properties make 2 a very interesting photosensitizer for water 
oxidation applications.[38] Indeed, combining 2 with S2O8

2- as SA and 1 as the WOC lead to oxygen generation by 
using visible light (  > 550 nm).[39] After three hours of irradiation ([1] = 6·10-5 M; [2] = 10-4 M; [S2O8

2-] = 10-2 M; 
phosphate buffer 20 mM at pH 7.2, irr = 550 nm), persulfate conversion is > 90% (corresponding to 80 turnovers of 
1), accompanied by minimal decomposition of 2, estimated from UV-Vis analysis being less than 5%. In 
photoinduced water oxidation, a relevant parameter to consider is the quantum yield, defined as the number of 
molecules of produced oxygen divided by the number of photons; when S2O8

2- is used as the sacrificial electron 
acceptor, the first electron transfer from *P to S2O8

2- (eq. 2 in scheme 1) produces P+ and a radical SO4
-, and this 

latter oxidizes a second molecule of P; therefore, two photons are required to produce one molecule of oxygen, and 
the maximum value achievable for the quantum yield is 0.50. In the 1 / 2 / S2O8

2- system, the experimental value of 
the quantum yield using 550 nm light is 0.30,[39] significantly larger than the value of 0.045 reported by using 
Ru(bpy)3

2+ as the photosensitizer (with 450-520 nm light);[34], this means that 60% of the photons are actually used 
to produce oxygen. This result, together with the possibility of accessing a large fraction of the red portion of visible 
spectra, up to 700 nm, paves the way towards sustainable hydrogen economy from light driven water splitting. 

 
2.4 Nanostructured Oxygen Evolving Anodes. 
In the perspective of integrating 1 in a device for artificial photosynthesis, it is necessary to support it onto an 

electrode, performing heterogeneous water oxidation catalysis. In such a device, several requirements must be 
guaranteed, such as high surface area of the support to provide sufficient loading of the catalyst, efficient electron 
conductivity from the catalyst to the electrode, and robustness of the material to the oxidizing conditions required to 
perform water oxidation. These requirements were satisfied by anchoring 1 onto a conductive bed of multi-walled 
carbon nanotubes (MWCNT);[40] a chemical modification of the nanotubes offers indeed the possibility to 
covalently bind pendant dendrimeric chains containing ammonium groups,[41] which in a second step allow the 
support of anionic 1 by exploiting attractive electrostatic interactions (figure 4). Several spectroscopic and 
microscopic techniques confirmed loading of 1 onto the surface of the tubes mainly as molecular entities, which is 
crucial in order to exploit all the redox centres and access single-site catalysis. The hybrid material, 1-MWCNT, 
was drop casted onto Indium Tin Oxide (ITO) electrodes, evaluating by electrochemical techniques the activity of 
the resulting electrode. Indeed, the catalytic wave due to water oxidation was observed by application of an external 
bias, under dark conditions, at overpotential of ca. 0.35 Volt.[40] Bare ITO alone and ITO doped with multi-wall 
carbon nanotubes electrodes display instead very high overpotentials, confirming that water oxidation catalysis is 
carried on by the presence of 1. The turnover frequency of 1 was calculated to be up to 300 h-1 at 0.60 V 
overpotential. An analogous functionalization with cationic pendant groups was made also on amorphous carbon 
(AC), allowing preparation of the 1-AC hybrid material; nevertheless, the current observed by casting 1-AC or 1 
alone onto ITO resulted much inferior with respect to the one observed with 1-MWCNT, highlighting the important 
role of the tubes, especially related to the conductivity features of the resulting material (figure 4). Moreover, the 
current due to water oxidation was observed under consecutive voltammetric scans, indicating a good stability of the 
electrode. Recently, support of the catalyst 1 and activity of the resulting hybrid material has been achieved also by 
non covalent functionalization of nanotubes with cationic moieties, thus widening the synthetic procedures for the 
preparation of efficient anodes working at mild overpotential.[42] 
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Figure 4. Representation of the electrode from deposition of the 1-MWCNT hybrid material onto ITO (left). 

Cyclic voltammetry curves of electrodes drop casted with different materials: black curve: 1-MWCNT, green curve: 
1-AC, purple curve: 1 alone, blue curve: MWCNT, red curve: bare ITO (centre). Current transients observed after 
nine sequential scans applied to the ITO electrode with 1-MWCNT (right). Adapted from [42]. 
 

3. Conclusions and Perspectives 

The development of molecular water oxidation catalysts is a subject of current interest in the pursuit of solar light 
exploitation for production of renewable fuels. A recent breakthrough in this field is the development of transition 
metal species with totally inorganic polyoxometalate ligands. In particular, the {Ru4( -OH)2( -O)4(H2O)4[ -
SiW10O36]}10- (1) provides: 

(i) high activity in water oxidation catalysis, due to the synergistic action of four redox active metals, in analogy 
with the natural OEC in Photosystem II; 

(ii) remarkable robustness under catalytic conditions, by taking advantage of the inorganic W(VI) cage of the 
POM ligands; 

(iii) efficient interaction with ruthenium polypyridine photosensitizers, allowing light driven water oxidation with 
unprecedented quantum yields; 

(iv) possibility of support onto a conductive bed of multi walled carbon nanotubes, for the design of 
nanostructured oxygen evolving anodes. 

 
An important step forward in this field, would be the replacement of rare ruthenium with more abundant 

materials, namely first row transition metals. Recently, a tetracobalt POM based species, [Co4(H2O)2(PW9O34)2]10-, 
was reported to be an actual WOC, under dark [43] and illuminated conditions.[44] Activity of this catalyst is 
remarkable, with claimed turnover frequencies up to 8 cycles s-1 under dark conditions[43] and a quantum yield of 
0.15 using the light/Ru(bpy)3

2+/S2O8
2- system;[44] nevertheless, water oxidation by such a species was studied in 

slightly basic conditions (pH = 8), while the optimal work conditions would be neutral water. 
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