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Abstract: Fast geomorphic transients may involve complex scenarios of sediment transport, occurring near the bottom as bed load
(i.e., saltating, sliding, and rolling) or as suspended load in the upper portion of the flow. The two sediment transport modalities may even
coexist or alternate each other during the same event, especially when the shear stress varies considerably. Modeling these processes is
therefore a challenging task, for which the usual representation of the flow as a mixture may result in being unsatisfactory. In the present
paper, a new two-phase depth-averaged model is presented that accounts for variable sediment concentration in both bed and suspended loads.
Distinct phase velocities are considered for bed load, whereas the slip velocity between the two phases is neglected in the suspended load.
It is shown that the resulting two-phase model is hyperbolic, and the analytical expression of the eigenvalues is provided. The entrainment/
deposition of sediment between the bottom and the bed load layer is based on a modified van Rijn transport parameter, whereas for
the suspended sediment a first-order exchange law is considered. A numerical finite-volume method is used for the simulation of three dam
break experiments found in the literature, which are effectively reproduced in terms of both free surface elevation and bottom deformation,
confirming the key role played by the solid concentration variability even for two-phase models. DOI: 10.1061/(ASCE)HY.1943-7900
.0001024. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, http://
creativecommons.org/licenses/by/4.0/.
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Introduction

Morphological evolution in river, estuarine, and tidal environ-
ments involves the interplay of fluid flow, sediment transport, and
loose bed deformation. During extreme events, such as flash floods,
avalanche-induced flood waves, debris flows, or dam collapses,
the above processes may evolve with comparable time scales. The
resulting morphological evolution may lead to dramatic conse-
quences in terms of damages and loss of human lives (Brooks and
Lawrence 1999). Analysis and prediction of these fast morphologi-
cal transients are therefore mandatory for hazard assessment (Sturm
2013). The present paper aims to contribute to this field by present-
ing a two-phase depth-integrated model suitable for fast unsteady
flows, involving sediment transport and bed deformation.

During unsteady morphological processes, the sediment en-
trained from the bed is transported through bed load and suspended
load. The former occurs under moderate bottom shear stress,
whereas the latter pertains to higher bottom shear stress.

Bed load motion is strongly affected by particle-bottom and
particle-particle collisions and by the drag received by the fluid.
The suspended load is mainly characterized by the convection by
the carrying fluid, often with negligible slip velocity and particle
contact. In the presence of a strong spatial and/or temporal variabil-
ity of the bed shear stress, the two transport modalities may coexist
or alternate each other.

Experimental modeling of fast geomorphic transients encoun-
ters strong difficulties. In fact, high-resolution measurements in
both time and space of flow field, sediment transport, and bottom
deformation are tremendously expensive and beyond the capabil-
ities of most laboratories. With the growing availability of compu-
tational resources, the mathematical modeling of these processes is
becoming an increasingly interesting alternative for practitioners
and researchers.

The present study follows a deterministic approach, describing
the main features of the sediment transport in terms of time-
averaged flow properties only. This approach has the great advan-
tage that the sediment dynamics may be analyzed without a detailed
knowledge of the whole process at the price of losing some
information concerning the turbulence dynamics. Although this
approach is the most used in engineering applications, different
analyses have been alternatively developed accounting for the
turbulence effect on the sediment transport. For instance, starting
from experimental evidence and following a stochastic approach,
Papanicolaou et al. (2002a) developed a theoretical model for the
inception of sediment motion, accounting for near-bed turbulent
structures and bed microtopography. Wu and Chou (2003), incor-
porating the probabilistic features of the turbulent fluctuations and
of the bed-grain geometry, investigated the probability of rolling
and lifting for the sediment entrainment. Cheng (2006) showed that
the mobility probability of a bed particle may be either enhanced
or weakened by an increase of the shear stress fluctuation. In the
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case of low sediment entrainment, the mobility probability is in-
creased by the turbulence, whereas it is reduced by the shear stress
fluctuation if the average bed shear stress becomes relatively high.
Wong et al. (2007) designed a detailed experiment to predict the
probability density function for the particle virtual velocity and
the thickness of the active layer, showing that the statistics of tracer
displacements can be related to the macroscopic aspects of the bed
load. Furbish et al. (2012) provided a probabilistic definition of the
bed load sediment flux. Their formulation is shown to be consistent
with experimental measurements and simulations of particle
motion. Additionally, either numerical solution of the Reynolds-
averaged Navier-Stokes (e.g., Duran et al. 2012; Marsooli and
Wu 2015) equations or of the direct and large eddy simulations
(e.g., Keylock et al. 2005; Soldati and Marchioli 2012) of the
turbulent flows coupled with sediment particle motion provided
useful insights into the role of the coherent structures on erosion/
deposition dynamics.

In the following only depth-integrated models are considered
and discussed. These models do not explicitly account for the
dynamics of the very near-bed zone, i.e., the roughness layer. In
such a layer, since the flow around sediment particles is strongly
three-dimensional and influenced by wakes shed by grains, the
velocity profile can significantly deviate from the logarithmic
one (Byrd and Furbish 2000; Wohl and Thompson 2000). Con-
sidering that the mixing from wakes shed by particles induces a
change in the eddy viscosity (Lopez and Garcia 1996; Nikora and
Goring 2000; Defina and Bixio 2005). Lamb et al. (2008) as-
sumed a mixing length proportional to the roughness height and
derived a parabolic velocity profile, instead of a logarithmic one,
in the layer.

Depth-integrated models may be further distinguished between
coupled and decoupled ones. In the coupled models it is assumed
that the sediment transport and the bottom evolution develop syn-
chronously (Cao and Carling 2002). On the other hand, decoupled
models assume a time-scale hierarchy by which hydrodynamics is
usually considered to be faster than the sediment transport and the
bottom evolution.

Common examples of decoupled models are those built up by
supplementing a proper fixed-bed hydrodynamic model with a
sediment continuity equation (the so-called Exner equation). In
the simplest formulation (Graf 1998), the solid discharge is further
assumed to instantaneously adapt to the transport capacity, which is
estimated by means of empirical relationships proposed for uniform
flow conditions (Graf 1998; Wang and Wu 2005). In many real
situations this hierarchy is not acceptable, and the application of
these models is questionable. Limitations of the decoupled ap-
proach have been discussed in the literature (Cao et al. 2002;
Garegnani et al. 2011) along with the drawbacks of models based
on immediate adaptation of the solid discharge to the transport
capacity (Simpson and Castelltort 2006; Di Cristo et al. 2006;
Singh et al. 2004; Xia et al. 2010).

Among the existing coupled (i.e., nonequilibrium) morphologi-
cal models, a further distinction arises from the representation of
the fluid-sediment motion. They may be classified either as mixture
or two-phase models, which is the type used herein. To highlight
the features of two-phase models, it is useful to first discuss the
more popular mixture models. For relatively low solid concentra-
tions, the rheological behavior of the mixture may be represented
through clear-water friction law (Wu 2007; Wu and Wang 2007;
Sabbagh-Yazdi and Jamshidi 2013). As far as hyperconcentrated
mud flows are considered, non-Newtonian constitutive relations
able to describe the shear-thinning behavior of the flow are used
in the model based on full (Ancey 2012) or simplified (Di Cristo
et al. 2014b, c, 2015) wave dynamics.

The description of a stratified flow with clear water above the
mixture leads to the two-layer models, with equal (Fraccarollo and
Capart 2002) or distinct (Capart and Young 2002; Li et al. 2013)
velocities in the layers. However, within the transport layer no
distinction is made between the motion regime of sediments and
water. The interaction between mixture and clear-water layers is
expressed through an interface shear stress based on the analogy
with the multilayer shallow water models. Furthermore, most of
these models (Capart and Young 2002; Savary and Zech 2007;
Swartenbroekx et al. 2013) assume constant sediment concentra-
tion in the transport layer. These models are effective in the analysis
of fast morphological transients (Spinewine et al. 2007; Chen and
Peng 2006), but the assumption of constant concentration under
highly unsteady conditions has been recently questioned. Li et al.
(2013) suggested that sediment concentration has to be considered
as one of the unknowns of the numerical model, proposing an en-
hanced two-layer formulation through the application of the fun-
damental mass conservation law for sediment. Their numerical
tests support the conclusion that bed load concentration variability
has to be taken into account, if a detailed description of the sedi-
ment routing is sought. The mixture models lack any explicit rep-
resentation of the features of different transport regimes, i.e., bed
load and suspended load, which are comprehensively lumped with
the behavior of the mixture layer. Furthermore, in these models a
hyperbolicity loss may occur in both subcritical and supercritical
flow regimes (Savary and Zech 2007; Greco et al. 2008b; Savary
and Zech 2008).

Two-phase modeling is an effective alternative for analyzing
the morphohydrodynamics of rivers, debris flows, and snow ava-
lanches (Armanini 2013). Usually, these models are deduced by
averaging the conservation principles of mass and momentum for
the liquid-solid mixture considered as an equivalent continuous
fluid characterized by unique physical characteristics and a unique
velocity value, obtaining a phase-averaged system of equations
with an unknown variable concentration (e.g., Dewals et al. 2011;
Canelas et al. 2013). The system of partial differential equations is
hyperbolic, and it may be solved through standard finite volume
schemes (Garegnani et al. 2011; Rosatti and Begnudelli 2013).
Alternatively, Greco et al. (2012a) proposed a two-phase model that
separately considers the liquid and solid phases, accounting for the
difference between their velocities and preserving the hyperbolic
nature of the system (Evangelista et al. 2013). However, in Greco
et al. (2012a) the hypothesis of a constant bed load concentration
has been assumed and the suspended load has not been considered.
Recent research suggests that these two assumptions should be re-
considered. Indeed, the results by Li et al. (2013), even if referred to
mixture models, suggest that the hypothesis of constant bed load
concentration may represent a strong limitation. On the other hand,
Zhang et al. (2013) recommend that the simulation of both bed load
and suspended load may be required to analyze transients with a
wide range of shear stress.

In the present paper a two-phase depth-integrated model is pro-
posed, which is an extension of the preliminary version presented at
the River Flow International Conference (Di Cristo et al. 2014a).
The model accounts for both the bed and suspended load. As far as
the former is concerned, both the liquid-solid velocities difference
and the concentration variability are considered. The suspended
load is still described assuming the concentration variability, but
neglecting the slip velocity between the two phases. The entrain-
ment\deposition of sediments between the bottom and the bed load
is evaluated by a formula based on the modified van Rijn mobility
parameter, whereas a diffusive vertical flux is assumed to drive the
sediments toward the upper region of flow, where the suspended
sediment transport occurs. The model is numerically integrated
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using a finite volume method, and its performance is tested against
literature experimental test cases, reporting also the comparison
with other existing models.

The paper is structured in the following way: the proposed
model is presented in the next section. In the first subsection
the governing equations are given, whereas the closures, the model
mathematical characterization, i.e., its hyperbolic nature and a con-
cise presentation of the numerical model are reported in the last two
subsections. Then, the results of the model in reproducing exper-
imental data are presented, along with a comparison with other lit-
erature models. Finally, the conclusions are drawn.

Two-Phase Model

Governing Equations

In the proposed two-phase model the following hypotheses are
assumed:
• The liquid (ρl) and solid (ρs) densities are constant;
• The sediment is uniformly graded (with diameter d) and non-

cohesive;
• There is no inflow/outflow from sidewalls and free-surface; and
• Standing bed is saturated with a porosity p.

In the depth-integrated framework, the following shallow-water
assumptions are also considered: the vertical components of both
acceleration and velocity are neglected; the hydrostatic pressure
distribution along the vertical axis is assumed. While these condi-
tions are not strictly verified in the near field of fast geomorphic
transients (e.g., during the first instants and in the tip region of
a dam break), shallow-water depth-integrated models are widely
applied for simulating such events (e.g., Soares-Frazão et al.
2012; Li et al. 2013). In addition, it is supposed that the volume
concentration, Cs;b, along the vertical axis of the bed load region
is constant and that the suspended sediment passively follows the
motion of the fluid phase (Greco et al. 2012b).

The bed load dynamics is described considering separately the
liquid and solid phase, with distinct velocities and accounting for
the momentum exchange between them, instead of assuming an
equivalent homogeneous fluid with a unique velocity value, i.e., as
a water-sediment mixture. Similarly to most of the geophysical
flow models (e.g., Pitman and Le 2005; Pudasaini et al. 2005;
Pelanti et al. 2008), the lift and virtual (added) mass forces are ne-
glected. As far as the latter force is concerned, Pudasaini (2012) has
shown that its introduction in a two-phase model produces a strong
coupling (in both time and space) between the streamwise and
cross-stream velocity components in the differential terms. How-
ever, the inclusion of this force allows only a slight improvement
of the model performance in predicting fast processes. On the other
side, it has been shown that this additional term, modifying the dif-
ferential structure of the model, may cause a loss of hyperbolicity
and therefore the mathematical well posedness of the system equa-
tions is not guaranteed.

The governing equations, reported in the following, derive
from the mass and momentum conservation for the liquid phase
[Eqs. (1) and (4)] and solid phase, which moves as bed load
[Eqs. (2) and (5)]. Eq. (3) represents the mass conservation of
sediment moving as suspended load. Since it is assumed that
the sediment velocity is equal to the liquid one in the region where
suspended transport occurs, there is no drag between the two
phases and therefore the momentum conservation equation for
the suspended sediment is not needed. Finally, Eq. (6) is the equa-
tion for predicting bed deformation. The complete set of equations
reads

∂δl
∂t þ∇ · ðδlUlÞ − peB ¼ 0 ð1Þ

∂δs;b
∂t þ∇ · ðδs;bUsÞ − ð1 − pÞeB þ es;b−s ¼ 0 ð2Þ

∂δs;s
∂t þ ∇ · ðδs;sUlÞ − es;b−s ¼ 0 ð3Þ

∂δlUl

∂t þ∇ · ðδlUlUlÞ þ ∇
�
gh2

2

�
þ gh∇ðzBÞ þ Sl ¼ 0 ð4Þ

∂δs;bUs

∂t þ ∇ · ðδs;bUsUsÞ þ
r

rþ 1
∇
�
gδ2s;b
2Cs;b

�

þ gδs;b
r

rþ 1
∇ðzBÞ þ Ssb ¼ 0 ð5Þ

∂zB
∂t þ eB ¼ 0 ð6Þ

in which t = time; g = gravity acceleration; r ¼ ðρs − ρlÞ=ρl; and
h ¼ zw − zB, where zw and zB are the free surface and bottom
elevation, respectively. In Eqs. (1)–(5), δl denotes the liquid-phase
volume for unit bottom surface, δs;b (resp. δs;s) is the solid-phase
volume transported as bed (resp. suspended) load for unit bottom
surface so that h ¼ δl þ δs;b þ δs;s. Ul (resp. Us) is the phase-aver-
aged water (resp. solid) velocity vector, eB is the bottom erosion/
deposition rate, and es;b−s is the sediment mass exchange between
bed and suspended load. The second-order tensor UlUl (resp.
UsUs) represents the diadic product of the phase-
averaged water (resp. solid) velocity with itself. Finally, denoting
with D the stress due to drag exchanged between the two phases,
the source terms of momentum equations Sl and Ss;b are

Sl ¼
τB;l
ρl

þ D
ρl

ð7Þ

Ss;b ¼
τB;s
ρs

− D
ρs

ð8Þ

in which τB;l and τB;s are the bottom shear stresses on the liquid
and the solid phases, respectively. The drag force of the water on
the solid particles, D, is evaluated as

D ¼ ρlCD
δs;b
d

ðUl − UsÞjUl − Usj ð9Þ

where CD = bulk drag coefficient. The shear stress acting on the
solid phase τB;s is expressed as

τB;s
ρs

¼ μdgδs;b
r

rþ 1

Us

jUsj
þ αUsjUsj ð10Þ

in which μd is the dynamic friction coefficient. Eq. (10) accounts
for both frictional, expressed through Mohr-Coulomb law, and in-
terparticle collisional (Bagnold 1956) stresses. Following Seminara
et al. (2002), the shear stress on the liquid phase is evaluated by the
following relation:

τB;l ¼ ρl
Ul

C2
Ch

jUlj − τB;s þ ρlgδs;bsB ð11Þ

where sB = bottom slope. The first term is evaluated by means
of the Chezy uniform flow formula, CCh being the dimensionless
Chezy coefficient.

The bottom entrainment/deposition is expressed through the fol-
lowing formula proposed by Pontillo et al. (2010):
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eB ¼ ws
T3=2 − Cs;b

1 − p
ð12Þ

in which ws denotes the sediment settling velocity and Cs;b is the
bed load concentration. The dimensionless mobility parameter T
accounts for the excess of the mobilizing stresses onto the bottom
surface with respect to the resisting ones (van Rijn 1984). A large
number of experiments have shown that the settling velocity
reduces as the particle concentration increases. The following semi-
empirical formula (Richardson and Zaki 1954) is therefore consid-
ered to evaluate the sediment settling velocity:

ws ¼ wtð1 − Cs;bÞn ð13Þ

in which wt = terminal settling velocity of a single particle in an
indefinite fluid. According to Baldock et al. (2004), the exponent n
is about 2.5 for particles with diameter of 1 mm, whereas it in-
creases up to 5 for smaller sediments.

The mobility parameter T is herein defined as

T ¼ jτB;l þ τB;s − τc − τBj
jτc þ τBj

ð14Þ

where τc = threshold shear stress for sediment motion and jτBj ¼
μsrgδs;b is the Mohr-Coulomb stress at the bottom, with μs the
static friction coefficient. Under clear-water conditions, Eq. (12)
states that the erosion rate scales with the 3=2 power of the van
Rijn transport parameter, which is consistent with van
Rijn findings (van Rijn 1984).

The solid exchange between the bed and suspended load is mod-
eled through a first-order kinetic law (Wu et al. 2000)

es;b−s ¼ βωðC�
s;s − Cs;sÞ ð15Þ

in which Cs;s represents the depth-averaged suspended sediment
concentration, C�

s;s is the corresponding capacity value. The ex-
change is modulated by β and ω coefficients: the former relates
the depth-averaged values to the local ones; the latter expresses
the adaptation of suspended load and it is usually assumed as the
sediment settling velocity (i.e., ω ¼ ws), as it is also done herein.
The expression proposed by Armanini and Di Silvio (1988) is used
to evaluate β.

The capacity value for suspended sediment concentration is
estimated through the following formula proposed by Wu et al.
(2000) and Wu (2007):

C�
s;s ¼ 0.0000262

Cs;b
ffiffiffiffiffiffiffi
gdr

p
d

jUljðCs;bh − δs;bÞ
��

θ0
θc

− 1

� jUlj
ws

�
1.74

ð16Þ

where θ0 ¼ τ 0=ðρlgdrÞ is the Shields parameter computed through
the modulus of the shear stress τ0 at the bed without considering the
transport layer, and θc is the corresponding threshold value for the
sediment transport initiation.

Model Closures

The α and CD coefficients may be estimated from existing empiri-
cal formulas (e.g., Maude and Whitmore 1958), which however
introduce other parameters. As an alternative, in the present paper
both coefficients are evaluated based on the analysis of uniform
flow conditions. To this aim, the model is first applied to a uniform
flow characterized by a bottom slope sB. In such a condition, the
two-phase conservation Eqs. (1)–(6) reduce to the following set of
relations:

gðδl þ δs;b þ δs;sÞsB ¼ τB;l
ρl

þ D
ρl

ð17Þ

gδs;brsB ¼ τB;s
ρl

−D
ρl

ð18Þ

Cs;b ¼ T3=2 ð19Þ

βCs;s ¼ Cs;b ð20Þ

Similarly to Parker et al. (2003), the following scaling law for
the bed load volume for unit bottom area is assumed:

δs;b
d

¼ k1ðθ0 − θcÞ ð21Þ

with k1 a dimensionless coefficient. Although Eq. (21) was de-
duced only for the low Shields parameter, i.e., θ0 ≤ 0.1 (Fernandez-
Luque and Van Beek 1976), recent experiments (Lajeunesse et al.
2010) have confirmed its validity up to θ0 ≈ 0.2. In the present
analysis, Eq. (21) is therefore applied even for a higher Shields
number.

The peculiarities of the solid particles motion in the bed load,
through saltation, rolling, and sliding have been thoroughly inves-
tigated through experimental studies, which have suggested that
sediment velocity is different from that of the carrying fluid.
Several formulas have been proposed for its evaluation, witnessing
the importance of its correct computation for bed load modeling.
In particular, Meland and Norrman (1966) deduced an empirical
expression of the sediment average transport velocity in terms
of shear velocity, roughness size, and particle diameter based on
a series of experiments with glass beads rolling on a bed of homo-
genously sized particles. The dimensional nature of this formula
limits its validity to the range of the investigated experimental
conditions. Fernandez-Luque and van Beek (1976), starting from
experiments carried out with a loose bed, proposed the following
expression of the particles average transport velocity Up:

Up ¼ caðu� − 0.7u�cÞ ð22Þ

in which u� = shear velocity; u�c = corresponding value in the
Shields critical condition; and ca = dimensionless constant
approximately equal to 11.5.

A theoretical consideration about the dynamics of the bed load
sediment transport led Bridge and Dominic (1984) to deduce the
following expression for the bed grain velocity:

Ug ¼ cbðu� − u�cÞ ð23Þ

with cb ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tanμd

p
ws=u�c.

Moreover, Sekine andKikkawa (1992), presenting a deterministic-
probabilistic model to investigate the nature of the bed load motion,
proposed the following expression for the bed load layer averaged
mean velocity of saltation:

Umffiffiffiffiffiffiffi
gdr

p ¼ 8
u�
ws

�
1 − u�c

u�

�
1=2

ð24Þ

The effectiveness of the dimensionless parameters of Sekine and
Kikkawa (1992) for describing the motion of sediment particles
over transitionally rough beds has been successively confirmed
by Papanicolaou et al. (2002b) and Ramesh et al. (2011).

Seminara et al. (2002), in deriving an entrainment-based model
of sediment transport that neither satisfies nor suffers from the
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drawbacks of the Bagnold constraint, proposed a slight modification
of the Fernandez Luque and van Beek (1976) formula, which
reads

Up ¼ c 0
aðτ − τ cÞ1=2 ð25Þ

with the dimensionless coefficient c 0
a ranging between 8 and 9.

Recently Julien and Bounvilay (2013), based on a dimensional and
regression analysis carried out considering bed load particles on
smooth and rough rigid plane surfaces, proposed a simple single-
parameter relation, which expresses the bed load particle velocity in
terms of the shear velocity and of the logarithm of the Shields
parameter of the boundary roughness.

In what follows, following Seminara et al. (2002), the solid-
phase average velocity in the bed load layer is assumed to be

Usffiffiffiffiffiffiffi
gdr

p ¼ k2ðθ0 − θcÞ1=2 ð26Þ

with k2 an experimental dimensionless coefficient. By postulating
the validity of Eqs. (21) and (26), the following expression of the
bed load solid discharge is deduced:

Usδs;b
d

ffiffiffiffiffiffiffi
gdr

p ¼ k1k2

�
τ0 − τ c
ρlgdr

�
3=2

¼ k1k2ðθ0 − θcÞ3=2 ð27Þ

Eq. (27) has the same structure of the well-known Meyer-Peter
and Müller (1948) formula, which is exactly reproduced provided
that the k1k2 product is set equal to the Meyer-Peter and Müller
coefficient (KMPM). KMPM ranges from about 4, as indicated in the
reanalysis of original Meyer-Peter and Müller’s dataset described in
Wong and Parker (2006), to 12, used in the numerical simulations
reported in El Kadi Abderrezzak and Paquier (2011). The original
and most used value of 8 (Meyer-Peter and Müller 1948) is adopted
in what follows. Assuming the classical value KMPM ¼ 8, the two
empirical parameters k1 and k2 are fixed by considering the bounds
deriving by the consistency of the model, as shown in the
following.

The water velocity may be computed through Chezy’s law

Ulffiffiffiffiffiffiffi
gdr

p ¼ CChθ
1=2
0 ð28Þ

Finally, it is postulated that the shear stress acting on the liquid
phase may be represented as follows:

τB;l ¼ τ c þ c1ðτ 0 − τ cÞ ð29Þ
with c1 a nonnegative parameter smaller than unity, i.e., 0 ≤ c1 ≤ 1.
In fact, the case c1 ¼ 0 corresponds to the Bagnold’s hypothesis,
i.e., the shear between fluid and bottom reduces to the critical value
(Bagnold 1956). On the other hand, the condition c1 ¼ 1 implies
that the shear stress acting on the liquid phase equals the corre-
sponding value in absence of sediment transport, i.e., no momen-
tum is transferred to the solid phase. However—as it will be shown
later—a more restrictive upper bound may be specified for it. While
clear indications may be found in the literature for estimating the
CCh and KMPM coefficients in their well-defined variability ranges,
the dimensionless nonnegative coefficient c1 represents a free
model parameter. In the “Results” section, classical literature values
are assumed for CCh and KMPM, while the c1 coefficient is al-
lowed to vary in order to investigate its influence on the model
predictions.

Substituting the relations (21), (26), (28), and (29) into Eq. (17),
the following expression of the drag coefficient may be easily
obtained:

CD ¼ 1 − c1
k1

ρlgdr

½CChτ
1=2
0 − k2ðτ0 − τ cÞ1=2�2

ð30Þ

The substitution of Eqs. (21) and (26) into the momentum equa-
tion of the solid phase in the bed load layer, Eq. (18), gives the
following expression for α:

α ¼ ð1 − c1Þ − k1ðμd − sBÞ
ðrþ 1Þk22

ð31Þ

Expressions (30) and (31), strictly valid only in uniform flow,
are used herein also in nonuniform conditions considering the local
and instantaneous values of sB and τ 0 for a fixed value of c1. As far
as the c1 value is concerned, Eq. (31) shows that the positivity of
the α coefficient imposes the following upper bound:

c1 ≤ 1 − k1ðμd − sBÞ ð32Þ
The considered closures suggest a way to select the value for the

k1 coefficient, which has been experimentally found to vary be-
tween 0.66 (Seminara et al. 2002) and 2.51 (Lajeunesse et al.
2010). Indeed, rewriting the transport stage parameter T as

T ¼ ðθ0 − θcÞð1 − k1μsÞ
θc þ k1μsðθ0 − θcÞ

ð33Þ

and the concentration Cs;b as

Cs;b ¼
δs;b
Ksd

ð34Þ

with Ks as the ratio of the bed load layer thickness to sediment
diameter, the bottom entrainment/deposition condition (19) leads
to the following expression for Ks:

Ks ¼
k1

ð1 − k1μsÞ3=2
½θc þ k1μsðθ0 − θcÞ�3=2

ðθ0 − θcÞ1=2
ð35Þ

Moreover, accounting for Eqs. (21) and (35) may be equiva-
lently rewritten in terms of the bed load volume for unit bottom
area as follows:

Ks ¼
k3=21

ð1 − k1μsÞ3=2
½θc þ μsδs;b=d�3=2

ðδs;b=dÞ1=2
ð36Þ

Eqs. (35) or (36) indicates that the positiveness ofKs implies the
following condition on k1:

k1 <
1

μs
ð37Þ

Furthermore, for sufficiently large values of the shear stress,
i.e., ðθ0 − θcÞ ≫ θc, as those corresponding to sheet-flow regime,
Eq. (35) can be approximated as

KSF
s ≅ k5=21 μ3=2

s

ð1 − k1μsÞ3=2
ðθ0 − θcÞ ð38Þ

and therefore the bed load concentration asymptotically approaches
the value

CSF
s;b ¼

ð1 − k1μsÞ3=2
k3=21 μ3=2

s

ð39Þ

Since the asymptotic concentration Eq. (39) cannot exceed
the sediment concentration in the erodible bottom, an additional
condition for the k1 value has to be respected
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k1 ≥ 1

μs½1þ ð1 − pÞ2=3� ð40Þ

In what follows, the value of k1 is evaluated as the average
between the lower Eq. (37) and upper Eq. (40) bounds

k1 ¼
1

2μs

2þ ð1 − pÞ2=3
1þ ð1 − pÞ2=3 ð41Þ

It is easy to verify that for common values of the porosity (p)
and of the static friction coefficient (μs), Eq. (41) provides values
for the k1 coefficient within the range of empirical values men-
tioned above. Furthermore, assuming the validity of the Meyer-
Peter and Müller formula, the k2 coefficient is determined as

k2 ¼
KMPM

k1
ð42Þ

In Fig. 1, the consistency of the above set of closures is verified
by comparing the prediction of the dimensionless saltation height
provided by Eq. (35), with available experimental (Lee and Hsu
1994; Nino et al. 1994; Nino and Garcia 1998; Lee et al. 2000)
and numerical (Wiberg and Smith 1985) results. Since unfortu-
nately the considered references do not specify the values of poros-
ity and of the static friction coefficient, Eqs. (35) and (41) have
been applied considering two reasonable pairs of (μs, p), namely,
(0.5, 0.6) and (1.0, 0.4). On the other hand, accordingly with
the values provided for the dimensionless threshold shear stress in
the reference data, θc has been assumed equal to 0.03 [Fig. 1(a)]
in the comparison with data of Lee and Hsu (1994) and Wiberg and
Smith (1985), and equal to 0.06 in the comparison with data of Lee
et al. (2000), Nino and Garcia (1998) and Nino et al. (1994),
[Fig. 1(b)].

Fig. 1 shows that Eqs. (35) and (41) provide relatively accurate
predictions of the bed load layer thickness up to values of the
Shields parameter order of unity. The fairly good agreement

justifies the use of the relation (21) for the sediment volume for
unit bottom area in combination with the entrainment formulation
proposed by Pontillo et al. (2010) up to θ0 ≈ 1.

Model Properties and Numerical Method

In order to show the hyperbolic character of the presented flow
model, system Eqs. (1)–(6) is rewritten in quasi-linear form. Ac-
counting for Eqs. (34) and (36) and without considering the source
terms, it reads

C
∂W
∂t þA

∂W
∂x þB

∂W
∂y ¼ 0 ð43Þ

in which, denoting with U and V the x and y components of veloc-
ity vector for both phases, the unknowns’ vector W is

W ¼

2
66666666666666664

δl

Ul

Vl

δs;b

Us

Vs

zB

δs;s

3
77777777777777775

ð44Þ

and theC,A,B, matrices may be easily deduced from Eqs. (1)–(6),
through standard algebra.

Following Courant and Hilbert (1961), the mathematical char-
acter of system (43) is investigated by looking for the eigenvalues
of the matrix

M ¼ C−1ðAnx þ BnyÞ ð45Þ

with nx and ny the director cosines of an arbitrary direction in the
(x; y) plane of the unitary vector n. The eigenvalues read

λ1 ¼ 0 λ2,3 ¼ Ul · n λ4 ¼ Us · n

λ5,6 ¼ Ul · n�
ffiffiffiffiffi
gh

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δl þ δs;s

δl

s

λ7,8 ¼ Us · n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gdr

2ðrþ 1Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ks þ

dKs

dδs;b
δs;b

s
ð46Þ

in which the derivative of the dimensionless bed load layer thick-
ness with respect to δs;b has the following expression:

dKs

dδs;b
¼ 1

2δs;b

�
k1

1 − k1

�
3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d
δs;b

θc þ μs

s �
2μs

δs;b
d

− θc

�
ð47Þ

Accounting for (47) eigenvalues λ7,8 may be equivalently
rewritten as follows:

λ7,8 ¼ Us · n� 1

2

ffiffiffiffiffiffiffiffiffiffiffi
gdr
rþ 1

r

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k1

1 − k1

�
3=2

�
4μs

δs;b
d

þ θc

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d
δs;b

θc þ μs

svuut ð48ÞFig. 1.Comparison between predictions by Eq. (35) and literature data:
(a) θc ¼ 0.03; (b) θc ¼ 0.06
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From Eqs. (46) and (48) it follows that, independently of the
n unitary vector, the matrix M possesses only real eigenvalues.
Therefore, the present two-phase model is always hyperbolic, and
the characteristics theory allows to define the correct number of
conditions on each boundary of the computational domain.

The model represented by Eqs. (1)–(6) may be equivalently
rewritten in a compact form as follows:

∂Uc

∂t þ ∂FðUcÞ
∂x þ ∂GðUcÞ

∂y þ Nþ Sc ¼ 0 ð49Þ

in which

Uc ¼

0
BBBBBBBBBBBBBBB@

δl

δs;b

δs;s

Ulδl

Vlδl

Usδs;b

Vsδs;b

zB

1
CCCCCCCCCCCCCCCA

; N ¼

0
BBBBBBBBBBBBBBBB@

0

0

0

gðδl þ δs;b þ δs;sÞ ∂zB∂x
gðδl þ δs;b þ δs;sÞ ∂zB∂y

g r
rþ1

δs;b
∂zB∂x

g r
rþ1

δs;b
∂zB∂y

0

1
CCCCCCCCCCCCCCCCA

;

Sc ¼

0
BBBBBBBBBBBBBBB@

peB

ð1 − pÞeB − es;b−s
es;b−s
Sl;x

Sl;y

Ss;x

Ss;y

eB

1
CCCCCCCCCCCCCCCA

ð50Þ

and

F ¼

0
BBBBBBBBBBBBBBBB@

δlUl

δs;bUs

δs;sUl

δlU2
l þ g ðδlþδs;bþδs;sÞ2

2

δlUlVl

δs;bU2
s þ g r

rþ1

δ2s;b
2Cs;b

δs;bUsVs

0

1
CCCCCCCCCCCCCCCCA

;

G ¼

0
BBBBBBBBBBBBBBBB@

δlVl

δs;bVs

δs;sVl

δlUlVl

δlV2
l þ g ðδlþδs;bþδs;sÞ2

2

δs;bUsVs

δs;bV2
s þ g r

rþ1

δ2s;b
2Cs;b

0

1
CCCCCCCCCCCCCCCCA

ð51Þ

Vector N represents the nonconservative terms in the partial
differential system, arising from the bed slope source term.

The system (49) can be solved with any of the numerical
schemes commonly used for hyperbolic partial differential equa-
tions (PDEs). The finite volume solver used in (Leopardi et al.
2002; Greco et al. 2012a) has been adapted to solve the PDEs
of the two-phase model, along with an appropriate treatment of
the bed slope source term N (Valiani and Begnudelli 2006; Greco
et al. 2008a). To this aim, with reference to a structured rectangular
mesh Eq. (49) is written in the following semidiscrete conservative
form

dŪc

dt
¼ − 1

A0

�X4
k¼1

ðHk · lknkÞ − S̄c

�
ð52Þ

In Eq. (52), the overbar denotes the averaging over the computa-
tional cell of area A0; lk is the length of the kth side of the cell, nk is
the normal vector and Hk is the average value of the flux on the
same side, defined as

Hk ¼ F 0nx þG 0ny ð53Þ

being F 0 and G 0 the vectors of the numerical fluxes, modified as
follows to include the slope terms:

F 0 ¼

0
BBBBBBBBBBBBBBBB@

δlUl

δs;bUs

δs;sUl

δlU2
l þ g ðδlþδs;bþδs;sÞ

2
½ðδl þ δs;b þ δs;sÞ þ zB − ~z�
δlUlVl

δs;bU2
s þ g r

rþ1

δs;b
2Cs;b

½δs;b þ zB − ~z�
δs;bUsVs

0

1
CCCCCCCCCCCCCCCCA

G 0 ¼

0
BBBBBBBBBBBBBBBB@

δlVl

δs;bVs

δs;sVl

δlUlVl

δlV2
l þ g ðδlþδs;bþδs;sÞ

2
½ðδl þ δs;b þ δs;sÞ þ zB − ~z�
δs;bUsVs

δs;bV2
s þ g r

rþ1

δs;b
2Cs;b

½δs;b þ zB − ~z�
0

1
CCCCCCCCCCCCCCCCA

ð54Þ

~z is the bed elevation at the side of the cell opposite the one on
which flux has to be evaluated; the terms in the square bracket
are considered null if negative (Greco et al. 2008a).

Time integration of Eq. (52) is performed with a predictor-
corrector (McCormack) scheme

Ū�
c ¼ Ūt

c −Δt
A0

�X4
k¼1

ðHt
k · lknkÞ − S̄t

�

Ū��
c ¼ Ūt

c −Δt
A0

�X4
k¼1

ðH�
k · lknkÞ − S̄�

�
ŪtþΔt

c ¼ Ū�
c þ Ū��

c

2

ð55Þ
The numerical fluxes at the interfaces are computed by a three-

point parabolic interpolation of the conserved variables values.
In the predictor stage, two cells on a side of the interface and
one on the opposite side are considered, vice versa in the corrector
stage. The numerical stability of the proposed method is guaranteed
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provided that the Courant–Friedrichs–Lewy condition is satisfied
for the largest eigenvalue [Eq. (46)].

Test Cases and Results

In the next two subsections the proposed model is tested against
two laboratory experiments: a one-dimensional dam break, over a
dry erodible bed (Capart and Young 1998), and a two-dimensional
dam break, over both dry and wet bed (Soares-Frazão et al. 2012).
Finally, in the last section of this paragraph, the present model is
compared to four existing non-equilibrium models.

One-Dimensional Dam Break

The first test case is the fast geomorphic transient experimentally
investigated by Capart and Young (1998). The experiments were
carried out at National Taiwan University, and they consist of
small-scale laboratory dam break of initial water depth h0 ¼ 10 cm
over an erodible bed in a prismatic rectangular channel. Notably, a
very light sediment was used (density ρs ¼ 1,048 kgm−3) with
d ¼ 6.1 mm. Scouring propagates both upstream and downstream
of the dam, where intense erosion occurs. Apart from the near-field
evolution soon after the dam removal, the flood wave exhibits a
rather regular shape characterized by a steep sediment-laden bore,
at the front of the wave, and an enduring weak hydraulic jump at the
center of the wave.

As indicated by the experimenters, the bottom porosity p has
been fixed equal to 0.6, whereas the sediment free-fall velocity
wt in Eq. (13) is assumed equal to 0.067 m=s. The settling velocity
ws is computed through Eq. (13) at each point and time accordingly
to the actual concentration value and with the n value fixed equal to
2.5. The values of the static and dynamic friction coefficients are
μs ¼ 0.52 and μd ¼ 0.32, respectively. The dimensionless Chezy
coefficient has been evaluated by Griffiths’ (1981) formula for a
value of the h=d ratio of about 12. The threshold Shields number
was fixed at the classical value of θc ¼ 0.047 and the Meyer-Peter
and Müller coefficient (KMPM) has been assumed equal to 8. The k1
and k2 coefficients have been evaluated through Eqs. (41) and (42),
respectively, and their values are k1 ¼ 1.05 and k2 ¼ 7.62. Finally,
the upper bound value of the free parameter c1, deduced by Eq. (32)
is 0.44.

Simulations have been carried out with a grid size Δx ¼
0.010 m andΔt ¼ 1=4; 096 s. The computational domain was suf-
ficiently long to exclude any influence of the boundary conditions.
Three different values of the c1 parameter, namely c1 ¼ 0, c1 ¼ 0.2
and c1 ¼ 0.4, have been considered. In Fig. 2 two snapshots of the
experimental results from Fraccarollo and Capart (2002), corre-
sponding to t ¼ 0.4 s and t ¼ 0.5 s after dam removal, are com-
pared with the computed results. The numerical results show a
very limited sensitivity to the c1 value and moreover they indicate
that the model predictions closely agree with the main features of
the process, i.e., the celerity of the downstream tail, the free surface
profile upstream and downstream the dam, and the scour of the
bottom. The shape of the scour strongly resembles the experimental
one, with a steep adverse slope just downstream the original dam
location (x ¼ 0), followed by a nearly horizontal scoured bed. A
general slight underestimation of the maximum scour occurring
just upstream the bore is however observed at t ¼ 0.4 s. The ob-
served weak hydraulic jump is also qualitatively reproduced in the
simulations, with a bore appearing more upstream than in the ex-
periments and with a sharper front.

As far as the sediment transport reproduction is concerned,
Fig. 3(a) depicts in the space-time plane the suspended sediment
discharge values qs;s ¼ δs;sUl divided by the total solid discharge

qs;tot ¼ δs;sUl þ δs;bUs, while Fig. 3(b) reports the space-time evo-
lution of the ratio Ksd=h. Even if in a large portion of the plane the
suspended transport represents a small percentage, about 2%, of the
total solid discharge, the map shows that there are some areas in
which it increases up to 20%. The suspended solid discharge rep-
resents an appreciable contribution to the solid discharge only in a
limited portion of the (x; t) plane, while it is absent in most of the
region downstream to the original dam (i.e., x > 0), although in this
region the Rouse number is less than 1 (results not shown herein).
Such a result may be explained accounting for that, downstream the
original dam position, the bed load thickness saturates the full flow
depth [Fig. 3(b)] and therefore the solid discharge is entirely con-
veyed as bed load.

Two-Dimensional Dam Break

An example of a two-dimensional fast geomorphic transient involv-
ing a wide range of the Shields parameter values is provided by the
experiments carried out within the NSF-Pire project (Soares-Frazão
et al. 2012).

The tests concern dam break waves expanding over a flat mobile
bed, in a 3.6 m wide, 36 m long flume, whose geometry is reported
in Fig. 4. The breached dam is represented by two impervious
blocks and a 1.0 m wide gate located between the blocks. The sud-
den rise of the gate induces a flood wave expanding along both
longitudinal and transversal directions. An initial 85-mm thick
layer of coarse sand was put down upon the fixed bed, from
1 m upstream to 9 m downstream the gate. Sediments were con-
stituted of a uniformly graded sand with d ¼ 1.6110−3 m with
relative density r ¼ 1.63, with a bottom porosity p ¼ 0.42. The
sediment free-fall velocity wt is 0.18 m=s. Also in this test case
the settling velocity ws has been computed through Eq. (13) with
n ¼ 2.5 and considering the actual concentration value. The fol-
lowing values of friction coefficients have been assumed μs ¼ 0.73
and μd ¼ 0.63. The value of the k1 coefficient through Eq. (41) is
k1 ¼ 1.09. The threshold Shields parameter and the Meyer-Peter

Fig. 2. One-dimensional dry-bed test; measured and computed
free-surface and bottom profiles: (a) t ¼ 0.4 s; (b) t ¼ 0.5 s after dam
removal
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Fig. 3. Space-time maps of (a) suspended to total solid load ratio; (b) bed load thickness to flow depth ratio

Fig. 4. NSF-PIRE Benchmark; scheme of the experimental setup (reprinted from Soares-Frazão et al. 2012, © International Association for
Hydro-Environment Engineering and Research, reprinted by permission of Taylor and Francis Limited, http://www.tandfonline.com, on behalf of
International Association for Hydro-Environment Engineering and Research)
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and Müller coefficients have been fixed equal to θc ¼ 0.047 and
KMPM ¼ 8, as in the previous test, so that k2 ¼ 7.34. The dimen-
sionless Chezy coefficient has been similarly evaluated using the
Griffiths’ formula. Here the ratio h=d is about 200. The upper
bound of the c1 parameter is 0.29.

Two configurations were experimentally investigated: (1) an in-
itial water level of 47 cm in the upstream reservoir and no water
downstream (dry-bed test); (2) an initial water level of 51 cm in the
upstream reservoir and a water level of 15 cm downstream (wet-bed
test). The time evolution of the water level was measured at eight
gauges by means of ultrasonic probes (Fig. 4), whose location is
indicated in Tables 1 and 2 for dry and wet bed test, respectively.
The final topography was measured by a bottom profiler with 5 cm

resolution along y. Further details about the experimental pro-
cedure may be found in the paper by Soares-Frazão et al. (2012).

Both the dry-and wet-bed experiments have been simulated by
means of a non-uniform mesh of about 35,000 cells, with variable
size in x and y directions. The smallest cells, used to discretize
the erodible floodplain, have size Δx ¼ Δy ¼ 2.5 · 10−2 m. The
adopted time step was Δt ¼ 1=2, 048 s. Freefall has been consid-
ered at the outlet section of the flume, whereas impervious boun-
daries have been considered for the flume sidewalls.

With reference to Test Case 1 (dry-bed), Fig. 5 compares mea-
sured and computed time series of free-surface elevation at the
gauge points, obtained with three different values of the c1 param-
eter, namely, 0, 0.1 and 0.2. Measures from symmetrical gauge
points are grouped on the same plot.

An estimate of the experiment reproducibility has been provided
by Soares-Frazão et al. (2012) resulting in mean observed standard
deviation between σmean ¼ 0.006 ÷ 0.016 mwith maximum values
being between σmax ¼ 0.018 ÷ 0.032 m, depending on the consid-
ered gauge. It is noticed that in all the gauges the arrival time of the
surge caused by the dam failure is well captured, along with the
general trend of the free-surface elevation decay after the surge
transition.

The experimental and simulated final bottom topographies for
three values of the y coordinate (y ¼ 0.2 m, y ¼ 0.7 m and
y ¼ 1.45 m) are compared in Fig. 6, still considering the same
three different c1 values of Fig. 5. A slight but systematic under-
prediction of the deposition is observed in the simulated profile.
This performance appears satisfactory if the scattering between
the results of different repeated experimental runs is accounted
for. Indeed, Soares-Frazão et al. (2012) estimated mean and maxi-
mum standard deviation of σmean ¼ 0.008 m and σmax ¼ 0.029 m,
respectively, with the latter value referring to the most intensely
scoured zone. Moreover, the results depicted in both Figs. 5 and 6
confirm the limited influence of the c1 parameter on the results
quality.

Fig. 7 reports the vector plot of both water and sediment veloc-
ities at different times (t ¼ 2 s; t ¼ 5 s, t ¼ 20 s), showing the dif-
ferences between the velocity fields of the two phases. In particular,
the different alignment of the velocities vectors of the two phases is

Table 1. Gauges Locations for Test 1 Dry-Bed Test

Gauge n° x (m) y (m)

1 0.64 −0.5
2 0.64 −0.165
3 0.64 0.165
4 0.64 0.5
5 1.94 −0.99
6 1.94 −0.33
7 1.94 0.33
8 1.94 0.99

Table 2. Gauges Locations for Test 1 Wet-Bed Test

Gauge n° x (m) y (m)

1 0.64 −0.5
2 0.64 −0.165
3 0.64 0.165
4 0.64 0.5
5 2.34 −0.99
6 2.34 −0.33
7 2.34 0.33
8 2.34 0.99

Fig. 5. Two-dimensional dry-bed test; measured and computed time series of free-surface elevation: (a) gauges 1 and 4; (b) gauges 2 and 3;
(c) gauges 5 and 8; (d) gauges 6 and 7
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evident for t ¼ 5 s, after that the flood wave impacted the sidewall
and it was reflected toward the channel axis. The fluid flow is more
responsive than the sediment to the impact of the wave. As far as
the far-field t ¼ 20 s snapshot is considered, the sediment transport
has ceased in the recirculation zone past the rigid blocks. Moreover,
the symmetry of the velocity vectors respect to the longitudinal axis

confirms the ability of the adopted numerical scheme to predict
symmetric results. With reference to the same instants, the wide
range of the Shields parameter of this flow is witnessed in Fig. 8.

Finally, Fig. 9 represents the instantaneous values of Cs;b for the
same times of Fig. 7. At all times, a steep transversal gradient of
the concentration is observed in the narrow channel between the

Fig. 6. Two-dimensional dry-bed test; measured and simulated final bottom profiles: (a) y ¼ 0.2 m; (b) y ¼ 0.7 m; (c) y ¼ 1.45 m

Fig. 7. Two-dimensional dry-bed test; velocity vector plot: (a) t ¼ 2 s; (b) t ¼ 5 s; (c) t ¼ 20 s after dam removal
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Fig. 8. Two-dimensional dry-bed test; Shields parameter distribution: (a) t ¼ 2 s; (b) t ¼ 5 s; (c) t ¼ 20 s after dam removal

Fig. 9. Two-dimensional dry-bed test; bed load concentration distribution: (a) t ¼ 2 s; (b) t ¼ 5 s; (c) t ¼ 20 s after dam removal
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blocks. For t ¼ 2 s, the bulb-like flood wave exhibits a nearly
constant concentration in its body and a gradual decrease close
to the wave tip region, where the solid phase is transferred toward
the suspension. However, maximum observed Cs;s values are
smaller by more than one order of magnitude than the Cs;b ones
(not reported). The results of both Figs. 8 and 9 also show a sym-
metric behavior respect to the longitudinal axis.

With reference to Test Case 2 (wet bed), Figs. 10 and 11 report
the time series of the free-surface elevation at the different gauge
points and of the final topography for the three longitudinal sec-
tions y ¼ 0.2, 0.7 and 1.45 m, respectively. The sensitivity respect
to the c1 parameter is also represented. The results show that the
present model is able to reproduce satisfactorily even in this test the
wave propagation process (Fig. 10), independently of the c1 value.
Moreover, the computed bed profile (Fig. 11) is characterized by
bedforms in the scour hole with a comparable length than in the
experiments, whereas the remaining of the profile is less wavy
compared than the experimental one.

The vector plot of both water and sediment velocities at different
instants (t ¼ 2 s, t ¼ 5 s, t ¼ 20 s) are represented in Fig. 12. As
far as the direction of the liquid and solid velocity is concerned, the
presence of the water downstream the dam tends to dampen the
differences. On the other hand, the initial quiescent water down-
stream the dam obstacles the momentum diffusion, which leads to
a significantly different shear stress distribution with respect to the
dry-bed test case. Indeed, whereas the range of the shear stress val-
ues encountered by the flow is comparable with that of the previous
test case, the spatial distribution is characterized by a more pro-
nounced shear stress concentration in the region downstream the
corner, as shown in Fig. 13.

Along with the different shear stress distribution, the wet-bed
test case differs significantly from the dry bed one also for the
bed load concentration distribution. To enlighten such an aspect,
the Cs;b distribution is represented in Fig. 14 with reference to the
same instants considered for the previous case. At the first snapshot
(t ¼ 2 s), in fact, spatial gradients are more pronounced than in the

Fig. 10. Two-dimensional wet-bed test; measured and computed time series of free-surface elevation: (a) gauges 1 and 4; (b) gauges 2 and 3;
(c) gauges 5 and 8; (d) gauges 6 and 7

Fig. 11. Two-dimensional wet-bed test; measured and simulated final bottom profiles: (a) y ¼ 0.2 m; (b) y ¼ 0.7 m; (c) y ¼ 1.45 m
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Fig. 12. Two-dimensional wet-bed test; velocity vector plot: (a) t ¼ 2 s; (b) t ¼ 5 s; (c) t ¼ 20 s after dam removal

Fig. 13. Two-dimensional wet-bed test; Shields parameter distribution: (a) t ¼ 2 s; (b) t ¼ 5 s; (c) t ¼ 20 s after dam removal
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dry-bed test case. At t ¼ 5 s, the Cs;b distribution is characterized
by concentrations progressively reducing in the positive x direction.
The nonuniform distribution evolves in time toward a more homo-
geneous one. In the near field, however, the capability of the
present model to account for variable concentration seems funda-
mental for the bed load sediment routing.

Comparison with Models in the Literature

In this section, the results of present model are compared with those
obtained with four different models discussed in the literature
review.

The comparison concerns the main underlying assumptions of
the different models, the evaluation of their specific parameters, the
computational complexity (herein intended as the number of equa-
tions to be solved), along with the agreement with the experimental
tests considered in the previous sections.

As detailed in the “Model Closures” section, the present model
essentially contains three dimensionless parameters, i.e. CCh;
KMPM, and c1. The parameters CCh and KMPM may be evaluated
based on extensive literature indications, whereas for c1 lower and
upper bounds can be estimated. As far as the computational com-
plexity is concerned, the one-dimensional (resp. two-dimensional)
form of the proposed model needs the solution of five (resp. seven)
differential equations expressing conservation principles of mass
and momentum. Additionally, the bed evolution equation [Eq. (6)]
has to be solved, which is however computationally less expensive
than the other ones.

As far as the one-dimensional test-case is concerned, the single-
phase model of Wu and Wang (2007) and the two-phase model of
Greco et al. (2012a) have been considered for comparison. The
one-dimensional model by Wu and Wang (2007) is a single-phase
mixture model, which considers both the suspended and bed load

and accounts for variable bed load concentration. It is slightly less
computationally expensive than the presented model, since it re-
quires the solution of four differential equations, plus the bed
evolution one. The inertia of the bed load sediment is considered
through an empirical spatial lag between the actual bed load solid
transport rate and the capacity value. As a consequence, in addition
to the Manning coefficient, two empirical parameters defining the
nonequilibrium adaptation length of total load sediment transport
have to be defined. Moreover, a correction factor for the transport
stage number in the van Rijn (1984) formula (kt) is introduced.
It has been shown by the authors that while the results’ sensitivity
to the adaptation length value was limited, the correction factor
kt significantly affected the predicted erosion magnitude. The
two-phase model of Greco et al. (2012a) is constituted by four con-
servation laws plus the bed deformation equation. The suspended
sediment motion is not accounted for and the sediment concentra-
tion in the bed load is assumed to be constant. The concrete model
application needs the estimation of the Chezy coefficient and of the
bed load concentration. The latter has been assumed to be equal to
the bed concentration (Greco et al. 2012a).

Fig. 15 compares the results for the one-dimensional test of the
proposed model and of the two considered literature models.
Fig. 15 indicates an evident improvement of the present model
with respect to that by Greco et al. (2012a). In particular, the lat-
ter model fails to reproduce the observed weak hydraulic jump,
with a gradual variation of the free surface and a very different
position of the downstream waterfront. A significant underestima-
tion of the bed scour is also noted. Present results support the
consideration formulated by Li et al. (2013) that the assump-
tion of a constant bed load concentration may fail during highly
unsteady flows. Conversely, the present model performs similarly
to the mixture model by Wu and Wang (2007), both in terms of

Fig. 14. Two-dimensional wet-bed test; bed load concentration distribution: (a) t ¼ 2 s; (b) t ¼ 5 s; (c) t ¼ 20 s after dam removal
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Fig. 15. One-dimensional dry-bed test; comparison with results from previous models: bottom and free surface profile: (a) t ¼ 0.4 s; (b) t ¼ 0.5 s
after dam removal

Fig. 16. Two-dimensional dry-bed test; time series of free-surface elevation compared with results from previous models: (a) gauges 1 and 4;
(b) gauges 2 and 3; (c) gauges 5 and 8; (d) gauges 6 and 7

Fig. 17. Two-dimensional dry-bed test; final bottom profiles compared with results from previous models: (a) y ¼ 0.2 m; (b) y ¼ 0.7 m;
(c) y ¼ 1.45 m
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bottom elevation and free surface profile (Fig. 15). Although the
mixture model may appear more attractive for the lower computa-
tional complexity, the agreement in the bed erosion significantly
depends on the calibrated value of the correction factor kt.

For the two-dimensional test cases, the comparison involves the
single-phase model of Canelas et al. (2013) and the two-layer
model of Swartenbroekx et al. (2013). The mixture two-dimensional
model of Canelas et al. (2013) exhibits a much smaller computa-
tional complexity than the present one, being constituted by four
conservation type laws plus the bed evolution one. Similar to the
Wu and Wang (2007) model, a spatial lag between the actual bed
load discharge and the equilibrium value is introduced to mimic
the effects of the bed load inertia in the layer. The spatial lag is
computed through an ad hoc formula that includes three addi-
tional calibration parameters fixed through a heuristic adjustment
process. The computational complexity of the two-layer model of

Swartenbroekx et al. (2013) is slightly smaller than that of the
present model. Indeed, it is composed of six conservation equations
plus the bed evolution one. Similarly to the two-phase model of
Greco et al. (2012a, b), it does not account for the suspended load
and the sediment concentration in the bed load is assumed constant.
The sediment inertia in the bed load layer is fully described through
the balance equation for the mixture momentum in the transport
layer. The shear stresses between the layers are expressed through
two constant friction factors, which have been determined through
calibration against experimental results.

Fig. 16 (resp. Fig. 18) compares the results of the present model
for the two dimensional Test Case 1 (resp. Case 2) in terms of
free-surface elevation with those of Canelas et al. (2013) and
Swartenbroekx et al. (2013). Fig. 17 (resp. Fig. 19) is the counter-
part of Fig. 16 (resp. Fig. 18) in terms of final topography. Both
free-surface elevation history (Figs. 16 and 18) and final bottom

Fig. 18. Two-dimensional wet-bed test; time series of free-surface elevation compared with results from previous models: (a) gauges 1 and 4;
(b) gauges 2 and 3; (c) gauges 5 and 8; (d) gauges 6 and 7

Fig. 19. Two-dimensional wet-bed test; final bottom profiles compared with results from previous models: (a) y ¼ 0.2 m; (b) y ¼ 0.7 m;
(c) y ¼ 1.45 m
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topography (Figs. 17 and 19) are reproduced with an accuracy com-
parable to that of the model by Swartenbroekx et al. (2013) and
with a slight improvement with respect to the mixture model
of Canelas et al. (2013), despite the proper calibration of the three
additional parameters. However, all models exhibit a slight but
systematic under-prediction of the experimentally observed
deposition.

Conclusions

A two-phase depth-averaged model able to deal with both bed
load and suspended sediment transport has been proposed. The
mathematical model, based on mass and momentum conservation
equations for liquid and sediment phases, accounts for variable
concentration both in the bed load and in the suspended load re-
gion. The entrainment/deposition of sediments from the bed toward
the bed load layer is evaluated by a formula based on a modified
van Rijn mobility parameter, whereas for the exchange between
bed and suspended load a first-order exchange law is considered.
The adopted set of closure relations is shown to comply, under uni-
form conditions of flow, with several empirical scaling laws for
sediment transport and to allow for relatively accurate evaluation
of the bed load layer thickness up to values of the Shields parameter
order of unity. Two of the three dimensionless parameters of the
model, the Chezy and the Meyer-Peter and Müller formula coef-
ficients, may be evaluated based on extensive literature indications.
The third one, c1, is allowed to vary in a range limited by theoreti-
cally deduced lower and upper bounds.

It has been proved that the proposed model is hyperbolic and the
analytical expression of the eigenvalues has been provided. A
numerical method based on a finite-volume approach has been used
for the simulation of three experiments concerning three different
dam breaks, showing a good agreement between simulated and
experimental results. The results show that accounting for the vari-
ability concentration in the two-phase formulation leads to a neat
improvement of the model performance. Finally, for all test, it has
been demonstrated that the value of the free parameter c1 has only a
marginal influence on the results’ quality. A further confirmation of
this conclusion could be obtained through future application of the
model to a wider class of morphodynamic transients.
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