

Available online at www.sciencedirect.com

Procedia Engineering 25 (2011) 219 - 222

Procedia Engineering

www.elsevier.com/locate/procedia

Proc. Eurosensors XXV, September 4-7, 2011, Athens, Greece

Sensing characteristics of hematite and barium oxide doped hematite films towards ozone and nitrogen dioxide

M. Debliquy^{a,*}, C. Baroni^b, A. Boudiba^a, J.-M. Tulliani^b, M. Olivier^a, C. Zhang^{a,#}

^aService de Science des Matériaux, Faculté Polytechnique, Université de Mons, 7000 Mons, Belgium ^bMaterials Science and Chemical Engineering Department, Politecnico di Torino, Turin, Italy

Abstract

Hematite (α -Fe₂O₃) and barium oxide doped hematite (BaO-Fe₂O₃) thin films were investigated as ozone (O₃) and nitrogen dioxide (NO₂) sensing materials. Fe₂O₃ and BaO-Fe₂O₃ films were deposited by radio-frequency sputtering using pure Fe₂O₃, and 1-2% BaO doped Fe₂O₃ targets. The 700°C (1 hour) annealed films showed significant responses to O₃ at temperatures ranging from 150°C to 300°C. Although, hematite is an n-type semiconductor, the Fe₂O₃ and BaO-Fe₂O₃ films exhibit p-type behavior to O₃ and n-type behavior to NO₂ at the studied concentration ranges in this work. The response to oxidizing gases is not strictly an increase in resistance due to a conversion from n-type to p-type depending on gas concentrations. This effect is more visible with increasing Ba concentration.

© 2011 Published by Elsevier Ltd. Open access under CC BY-NC-ND license.

Keywords: iron oxide; gas sensor; sputtering; O3; NO2

1. Introduction

Gas sensors based on metal oxides are studied for many years. The main advantages of metal oxide sensors include simple construction, low cost, small size, high sensitivity and rapid response to low concentration gases [1]. The characteristics of metal oxide gas sensors are determined by the reversible interactions of the gases with the material surface. Although many wide-gap metal oxides (ZnO, WO₃, SnO₂...) were studied as sensing materials [2,3], the use of α -Fe₂O₃ based materials, especially BaO

^{*} Corresponding author. Tel.: +32-6537-4425; fax.:+32-6537-4416.

E-mail address: marc.debliquy@umons.ac.be. # chao.zhang@umons.ac.be.

doped α -Fe₂O₃ (BaO-Fe₂O₃) is seldom reported in the literature. After studies on alkaline earth oxides doped Fe₂O₃ as humidity [4] and NO₂ sensors [5] in Turin with pellets, ozone (O₃) and nitrogen dioxide (NO₂) sensing characteristics of Fe₂O₃ and BaO-Fe₂O₃ thin-films are presented in this article.

2. Experimental method

The Fe₂O₃ and BaO-Fe₂O₃ films were deposited by radio-frequency (r.f.) sputtering on commercial Al₂O₃ substrates. For this purpose, different targets were prepared. α -Fe₂O₃ powder (Aldrich > 99 %) was ball-milled with or without barium nitrate (Fluka > 99 %) used as precursor. The contents of barium nitrate were equivalent to 1 and 2 wt% of barium oxide. After drying overnight, 3 discs (pure Fe₂O₃, 1 and 2 wt % BaO-Fe₂O₃) were obtained by uniaxially pressing the mixtures and then sintered at 1000°C for 1 hour.

The Fe₂O₃ and BaO-Fe₂O₃ films were deposited on commercial Al₂O₃ substrates equipped with gold electrodes on one side and a platinum heater on the other side, in a r.f. sputtering chamber. More details about the substrates are given elsewhere [3]. The power was 200 W and the deposition pressure in the chamber was 2 Pa with a composition of 90% Ar and 10% O₂. At last, the as-sputtered films were annealed at 700°C for 1 h to get a well-crystallized film structure. The thickness of the films was 500 nm in all cases.

The electrical resistance measurement of the three sensors to O_3 and NO_2 were performed in a Teflon cell. The setup of the test system is described in a previous paper [6]. Briefly, the sensors were connected to a home-made system to measure the electrical resistance variation of the sensors in presence of different target gases. Moist air with 50% relative humidity at 20°C was used as carrier gas for O_3 and NO_2 tests. After the electrical resistance of the sensors was stable in reference air (R_{air}), diluted NO_2 and O_3 mixed with the carrier were introduced into the chamber. O_3 was produced by passing dry air through an ultraviolet lamp. NO_2 was taken from a commercial 100 ppm NO_2 bottle (balance gas is dry air). NO_x and O_3 analyzers (Thermo electron instruments, USA) were used to measure the concentrations of NO_2 and O_3 at the outlet of the Teflon cell. These measurements were carried out at different temperatures ranging from 150 to 300°C.

3. Results and discussions

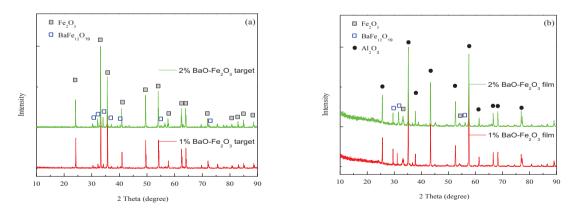


Fig 1: XRD patterns of (a) BaO-Fe₂O₃ targets and (b) annealed BaO-Fe₂O₃ films on Al₂O₃ substrates.

The sputtering targets and the annealed films were characterized by X-ray diffraction. Fig. 1 shows the presence of two phases in the targets and annealed films: Fe_2O_3 (PDF 33-0664) and $BaFe_{12}O_{19}$ (PDF 27-

The surface morphologies of the annealed film as well as the bare Al_2O_3 substrate were inspected by SEM as shown in Fig. 2. The substrate is covered by a continuous film formed by small grains (<200 nm).

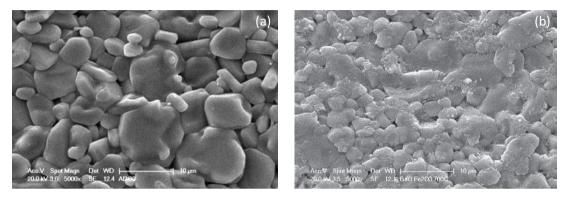


Fig. 2: SEM top-surface morphology of (a) bare Al_2O_3 plate and (b) 1% BaO- Fe₂O₃ film after the heat-treatment at 700°C for 1 h.

The sensing characteristics of the films were studied at temperatures ranging from 150 to 300°C. Fig. 3a and b show the electrical responses of the three sensors submitted to 0.15-1.25 ppm O_3 and 0.62-5.00 ppm NO₂ in moist air (50% RH) respectively. Fig. 4 shows the sensor responses of Fe₂O₃ to O₃ and NO₂ as a function of working temperature (the sensor response is defined as R_{air}/R_{O3} for O₃ injections and R_{NO2}/R_{air} for NO₂ injections). The Fe₂O₃ films showed maximum responses to O₃ at 200 and 225°C while the response to NO₂ is still increasing when reducing the temperature. However, the response time and recovery time increase dramatically at lower temperatures.

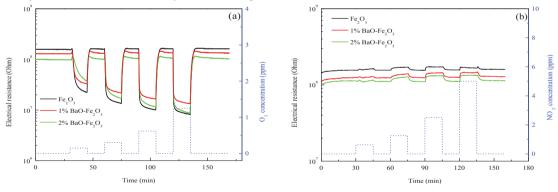
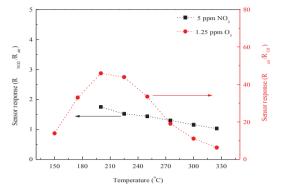



Fig. 3: Electrical response to (a) O_3 and (b) NO_2 in moist air at 275°C.

The sensors show different sensing behaviors when O_3 and NO_2 are introduced. In Fig 3(a), the electrical resistances decrease instead of increase as expected for BaO-Fe₂O₃ films (n-type semiconductors) to O_3 (an oxidizing gas). This phenomenon is due to a conversion of the semiconductors at an oxidizing atmosphere. For lower gas concentrations, low surface doping by the adsorbed gas, the semiconductor acts as an n-type, the oxidizing gas captures free electrons of semiconductor and the conductivity of semiconductor decreases. In the case of higher concentrations, higher surface doping, the

oxidizing gas captures electrons from the valence band and creates holes in semiconductor. In this case, the charge carrier increases. The material acts as a p-type semiconductor. In this regime, the resistance decreases with increasing the gas concentration. This hypothesis was supported by the response to high NO₂ concentrations (Fig. 5). As O₃ is a stronger electron acceptor than NO₂, this phenomenon takes place at lower O₃concentrations. This explains why the behaviors to O₃ and NO₂ are opposite. Moreover, this effect is more visible for the sample with higher Ba content.

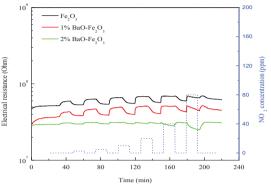


Fig. 4: Sensor response of Fe_2O_3 to NO_2 and O_3 in function of working temperature.

Fig. 5: Response of the three sensors to high concentrations (2.5-80 ppm) of NO_2 at 300°C.

4. Conclusion

This work investigated the response of Fe_2O_3 and $BaO-Fe_2O_3$ films to O_3 and NO_2 . The sensors showed a significant response to O_3 and a weak response to NO_2 in the opposite direction. The Fe_2O_3 and $BaO-Fe_2O_3$ films converted from n-type to p-type by the adsorption of strong oxidizing gases like O_3 and NO_2 at high concentrations. As O_3 is a stronger oxidizing gas, this phenomenon can happen at lower concentration than that needed for NO_2 . This effect is more visible with increasing Ba doping content.

Acknowledgements

This work was carried out in the framework of the "Cold Plasma" project of the University of Mons financially supported by the French Community of Belgium and also in the framework of the "Programme d'Excellence" Opti²mat financed by the Walloon Region of Belgium.

References

[1] Yamazoe N, Shimanoe K. New perspectives of gas sensor technology. Sens. Actuators B 2009;138:100-7.

[2] Zhang C, Debliquy M, Boudiba A, Liao H, Coddet C. Sensing properties of atmospheric plasma-sprayed WO₃ coating for subppm NO₂ detection. *Sens. Actuators B* 2010;**144**:280-8.

[3] Zhang C, Debliquy M, Liao H, Deposition and microstructure characterization of atmospheric plasma-sprayed ZnO coatings for NO2 detection. Applied Surface Science 2010; **256**:5905-10.

[4] Tulliani JM, Bonville P. Influence of the dopants on the electrical resistance of hematite-based humidity sensors. Ceramics International 2005; **31**:507-514.

[5] Tulliani JM, Lopez C, Beccaria M, Gianio M, Dessemond L. Preliminary investigations on doped iron-oxides NO_x sensors. In: Proceedings of the 10th European Interregional Conference on Ceramics (Swansea) 3-5 September 2006

[6] Zhang C, Boudiba A, Navio C, Olivier MG, Snyders R. Debliquy M. Study of selectivity of NO₂ sensors composed of WO₃ and MnO₂ thin films grown by radio frequency sputtering. Submitted to *Sens. Actuators B*.