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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

A homogenization method for periodic beam-like structures that is based on the unit cell force transmission modes is presented. 
Its main advantage is that to identify the principal vectors of the state transfer matrix corresponding to the transmission modes it 
operates directly on the sub-partitions of the unit cell stiffness matrix and allows to overcome the problems due to ill-conditioning 
of the transfer matrix. As case study, the Pratt girder is considered. Closed form solutions for the transmission modes of this girder 
are achieved and used into homogenization. Since the pure bending mode shows that the Pratt unit cell transmits two kinds of 
bending moments, one given by the axial forces and the other originated by nodal moments, the Timoshenko couple-stress beam 
is employed as substitute continuum. Finally, a validation of the proposed procedure is carried out comparing the predictions of 
the homogenized models with the results of a series of girder f.e. analyses. 
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1. Introduction 

Periodic beam-like structures offer the optimal trade-off between strength and stiffness, joined with lightness, economy 
and manufacturing times. For this reason, they are receiving growing interest from researchers and technicians of several 
engineering areas and find frequent applications in civil and industrial buildings, naval, aerospace, railways and bridge 
constructions, material design and bio-mechanics (Salmon et al. (2008); Cao et al (2007); Salehian et al (2006); Cheng et al 
(2013); Tej and Tejová (2014); Fillep et al (2014); Zhang et al (2016); El Khoury et al (2011); Syerko et al (2013); Ju et al 
(2008); Kerr (1980); Pucillo (2016); De Iorio et al (2014a - c); De Iorio et al (2017)). 
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 Modelling these structures with a 1-D homogenized continuum model is of great utility in the real problems. While 
several micropolar models have been reported for the analysis of planar lattices and periodic micro-structures (Noor (1988); 
Bazant and Christensen (1972); Kumar and McDowell (2004); Ostoja-Starzewski et al (1999); Segerstad et al (2009); 
Donescu et al (2009); Warren and Byskov (2002); Onck (2002); Liu and Su (2009); Dos Reis and Ganghoffer (2012); 
Hasanyan and Waas (2016), to cite a few), the studies on the micro-polar models for beam-like lattices have not yet achieved 
the same advances. As far as the authors are aware, only few papers have specifically addressed this topic (Noor and Nemeth 
(1980); Salehian and Inman (2010); Romanoff and Reddy (2014); Gesualdo et al (2017)). 

In this work, a method for the homogenization of periodic beam-like structures is reported. It is based on the unit cell 
state transfer matrix eigen-analysis. This technique so far has been applied mostly for the dynamic analysis of repetitive or 
periodic structures (Mead (1970); Meirowitz and Engels (1977); Zhong and Williams (1995); Langley (1996)). Only 
recently, it has also been used for the elasto-static analysis of prismatic beam-like lattices with pin-jointed bars (Stephen and 
Wang (1996); Stephen and Wang (2000); Stephen and Ghosh (2005)). Its practical implementation is problematic since the 
state transfer matrix G  is defective and ill-conditioned. To overcome ill-conditioning, in Stephen and Wang (2000) two 
approaches, the force and displacement transfer methods, are presented. By them, a better conditioning is achieved analysing 
the behaviour of a lattice of n identical cells. 

The method we propose instead operates directly on the sub-partitions of the unit cell stiffness matrix for searching the 
unit principal vectors of G and consequently avoids all the numerical drawbacks of the transfer methods till now proposed. 
For the simple case of the Pratt girder, closed form solutions for the unit cell force transmission modes are obtained and used 
to evaluate the stiffnesses of the equivalent Timoshenko micropolar beam. The accuracy of the homogenised medium in 
reproducing the behaviour of real discrete beam-like structures is finally assessed with a sensitivity analysis carried out by 
finite element models. 

Fig. 1 -  Pratt girder (a) and the corresponding unit cell (b) 

2. Pratt girder transmission modes 

The unit cell of the analysed girder is made up of two straight parallel chords rigidly connected to the webs (see Fig. 1). 
All the cell members are Bernoulli-Euler beams. The top and bottom chords have the same section whose area and second 
order central moment are denoted cA  and cI . To simplify the analysis, the girder transverse webs are assumed axially 
inextensible. This is equivalent to neglect the transverse elongation among the chords during girder deformation. The cross-
sectional area and the second order moment of the diagonal members are dA  and dI , while tI  denotes the second order 
moment of the transverse webs. To account the girder periodicity, the two vertical beams of the unit cell will have second 
order moment equal to the half part of tI . 

To identify any quantity related to the girder i-th nodal section, the sub-script i will be adopted, see Fig. 2. To distinguish 
between the joints or nodes of the same section, the superscripts t or p are used, depending on whether the top or bottom 
chord is involved. Finally, in a coherent manner, top and bottom nodes of the section i are labelled ti  or bi . 

The static and kinematical quantities of the i-th cell are schematically shown in Fig. 2. However, for our purposes, 
it is more convenient to adopt static and kinematic quantities alternative to the standard ones of  Fig. 2. More precisely, 
the deformed shape of the cell will be defined in terms of the mean axial displacement  ˆ 1/ 2 t b

j j ju u u  , the section 

rotation   /b t
j j j tu u l    , the transverse displacement jv  and, finally, the symmetric and anti-symmetric parts of the 
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section nodal rotations    ˆ 1/ 2 and 1/ 2 .t b t b
j j j j j j          

Fig. 2. Unit cell nodes numbering with girder nodal inner forces and displacements 
 
The static quantities conjugates of the previous kinematic variables are: the axial force ( ) / 2,b t

j j jn F F   the 

bending moment  b t
j j j tM F F l   generated by the anti-symmetric axial forces, the shear force t b

j j y j yV F F  , the 

resultant of the nodal moments ˆ t b
j j jm m m   and, finally, the difference between the same moments t b

j j jm m m  . 
The state vector s  of a girder nodal cross section consists of the displacements and forces vectors d  and f . Hence, 

the state vectors of the end sections of the i cell are 11 1[ ]T T T
ii i s d f  and [ ]T

i
T T

i i d fs , Fig. 2. They are related 
by the transfer matrix G : 

1 .i i G s s     

As shown in Stephen and Wang (2000), the force transmission modes of the unit cell are given by the unit principal 
vectors of the G  matrix. More in particular, the axial transmission mode is the principal vector as  generated by the unit 
eigen-vector of G  defining a rigid axial translation au . The unit eigen-vector corresponding to a transversal rigid translation 
generates instead the in plane rigid rotation principal vector and this latter gives the pure bending transmission mode bs . 
Finally, the shear transmission mode Vs  is the principal vector generated by the pure bending mode bs . Also in the simplest 
cases, these modes must be determined numerically and for this reason ill-conditioning of G  makes very problematic the 
practical implementation of the transfer methods.  

By the approach proposed in present paper the ill-conditioning problems are altogether avoided since principal vector of 
G are determined in closed form by operating directly on the unit cell stiffness matrix. If ,

TT T
e e e   s d f  is a unit eigen-

vector, the principal vector ,
TT T

p p p   s d f  of the G  matrix generated by es  is such that p p e G s s s . The displacement 

and force sub vectors of es  and ps  are thus linked through the sub-partitions ijΞ  of the stiffness matrix by the equation: 

p pll lr
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f dΞ Ξ
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    (1) 

where subscript l  and r  are used to denote the left and right side of the unit cell and the matrices ijΞ  (with , ,i j l r ) are 
the four sub-partitions of the cell stiffness matrix (see Appendix A). By adding term by term the two equations in (1) and 
recasting the result in order to have the known terms at left hand side, the next condition for the unknown displacement 
vector pd  is deducted: 
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with ll lr rl rr   A Ξ Ξ Ξ Ξ  and lr rr B Ξ Ξ . By a very similar reasoning, it can be shown also that unit eigen-
vector of G  are such that .e Ad 0  

Having determined the displacement sub-vector pd by solution of eq. (2), the corresponding force sub-vector pf

can be evaluated by substituting pd in the first equation in (1), thus obtaining:   .p ll lr p lr e   f Ξ Ξ d Ξ d  
The A  matrix has some properties that make straightforward the searching of the unit eigen and principal vectors 

of the G  matrix. Actually, rigid translations of the cell do not produce any force and moment on the cross sections. 
Then, the vector sums respectively of the first and the sixth columns and of the third and the height columns of the 
stiffness matrix are equal to the null vectors. Being the matrix symmetric, also the sums of its first and sixth rows and 
third and eight rows will give the null vectors. Therefore, the A  matrix, that is obtained by adding the four contiguous 
5×5 sub-partitions of the stiffness matrix, will systematically have the first and third columns and the first and third 
rows zero-filled. Furthermore, A  can be viewed as the stiffness matrix of the plane elastic system obtained from the 
unit cell by introducing the inner constraint conditions: 1i i d d d , thus it is symmetric and semi-positive definite. 

The principal vector .bs  of the Pratt girder that corresponds to the pure bending mode has displacement sub vector bd  
given by: 

1 / 2 [0 0 ]T
b   d     (3) 

where   is the rigid unit cell rotation and  2 6d t d c       , with ,  and 2 .c c c c d d d d t t t tE I l E I l E I l    

Moreover, the corresponding force sub-vector is: 

 [0 1 / 2 0 2 1 0]T
b c c d      f     (4) 

with 2 .c c c t cE A l l   
Concerning the shear transmission mode, the anti-symmetric part V  of the nodal rotations of the related displacement 

sub-vector Vd , being uncoupled from the other components, is easily obtained: 

 6 2 1
.

4 (2 2 ) 2
c d t d

V
c d t

    
   

  
  

 
 

    

To obtain instead the rotational components V  and ˆV  a  2 2  sub-matrix Â of A has to be inverted and right-
multiplied for the column vector formed by the second and fourth row of the known term vector of eq. (2) where ed  and ef  
are substituted by bd and bf . By this way, the following expressions of V and ˆV  are derived: 
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being 2( / )d d d d tE A l l   and      22 4 2cos 12 sin 24 24 12 24 12 sin 24 .d d d d t c d t d d tp                   
The algebraic manipulations to determine the force sub-vector Vf  are cumbersome and time-consuming. Besides, 



	 Francesco Penta  et al. / Procedia Structural Integrity 8 (2018) 399–409� 403
 Francesco Penta et al./ Structural Integrity Procedia 00 (2017) 000–000  5 

they are not necessary, since the transmitted shear force can be directly evaluated by analyzing the unit cell 
equilibrium. 

Finally, the components ad  and af  of the axial force transmission mode are:  

   2 2 2cos 2 12 cos 12 cos
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d  (6) 

  2 2 2

2 2

42 cos 24 sin2 cos 24 sin
144 72 sin,0,0,0,

sin
d d c d c d da d d c d

c ta t d d d
p pd d

u
l

l
          

    


  


 
 

 
 
 

f  (7) 

where the symbol ¿  is adopted to denote indeterminate quantities. It is noteworthy that the axial force is transmitted 
together with symmetric self-equilibrated moments applied at the nodes of each cell end-section. In addition, the unit 
cell of the Pratt girder deforms also with sectional and symmetric nodal rotations. 
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Mb /hmbˆ

mbˆ
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a) b)

 
Fig. 3. Pure bending transmission mode: a) components of the force sub-vector bf , b) unit cell deformed shape. 

 

3. Pratt girder equivalent beam 

Analysis of the components of the bf  vector given in eq. (4) reveals that two bending moments are transferred 
through the unit cell of the Pratt girders. The first one is generated by the axial forces acting on the nodal cross sections, 
the other one is due to the moments applied on the joints of the unit-cell and is induced by the bending of chords, webs 
and diagonal. For this reason, as equivalent continuum, the modified polar Timoshenko beam of Ma et al 2008 is 
adopted. The homogenized beam stiffnesses are determined by averaging over the unit cell length the cell responses 
under the load conditions defined by the force transmission principal vectors found in sec. 2. Thus, the equivalent 
axial stiffness a of the homogenized beam is: 

ˆ ˆ
ˆ

a a
a

a

n n
u u
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

    (8) 

where ˆan is the axial component of the force sub-vector af  while ˆau u   is the corresponding mean axial elongation 
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of the unit cell. 
The equivalent primary bending stiffness b  is calculated as the ratio of the primary bending moment bM  

generated by the axial forces to the mean curvature 1 / R  of the cell. This latter is given by the relative rotation 
b    of the cell end sections under bending divided by the cell length cl  (Fig. 3). Therefore, we have: 

/ .b b b cM R M l         (9) 

Secondary bending stiffness p  can be instead evaluated observing that, when the shear force is zero, the polar 
and Navier moment of the homogenized beam make work by the same generalized strain, namely the beam curvature 

/d dX . For this reason, we can evaluate the polar bending stiffness as the ratio of the symmetric moment component 
ˆ bm  of bf  and the mean cell curvature: 

ˆ ˆ / .p b b cm R m l       (10) 

Equivalent axial and bending stiffnesses obtained by eq (8) - (10) and the results of section 3 are reported in Tab. 
I. By inspection of these results it is deduced that primary bending stiffnesses depend only on the chords axial 
stiffnesses. In addition, axial elongation of the Pratt unit cell is accompanied by rotations both of its joints and end 
sections. Consequently, its equivalent axial stiffness is dependent also on the bending stiffness of the chords and 
battens. 
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Fig. 4. Shear and bending transmission mode: a) components of the force sub-vectors vf and v bf f acting on the left and right 
side of the cell, b) cell deformed shape. 

The shear principal vector Vs  is coupled with the pure bending one Vs . The shear force component V of Vs  is 
given by the condition ˆ 0c b bV l M m     that defines the in plane rotation equilibrium of the cell. We recall that the 
displacement sub-vector Vd  is defined up to axial and transversal translations û  and v̂ . In Fig. 4 the unit cell 
deformed shape due to shear and bending is sketched. In this case, the shear angle   is equal to the average nodal 
section rotation  of the cell. Bearing in mind the components of the displacement vector Vd and V bd d  defining the 
deformed configurations of the left and right sections of the cell under shear and bending, the following expression of 
 is easily obtained: 

1
2v b        
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Table I - Equivalent stiffnesses for Pratt girder 
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Hence, the equivalent shear stiffness will be: 

 
ˆ

2
2

b b
V

c v b

M mV
l


  


 


   (11) 

The eq. (8) - (11) completely define the elastic behaviour of the equivalent Timoshenko beam. The range of validity 
of these homogenized equations is analysed in the sec. 5 based on the numerical results of a sensitivity analysis. 

4. Validation analysis 

The equivalent beam model defined in Section 3, has been validated with a sensitivity analysis involving 
geometrical and mechanical parameters. The girder responses are deducted via f.e. analysis on cantilevered girders 
engendered by assembling Bernoulli-Euler beams. Unit vertical load is applied respectively at the free end and at the 
midpoint. The accuracy of the theoretical predictions has been quantified by the following dimensionless measure of 
the homogenization error: 

% 100 ,
FE

e



v

v
    

being FEv  the vector of the vertical displacements of the girder nodal sections obtained by f.e. analysis and 

hom FE  v v v  with homv  the nodal vertical displacements vector of the homogenised beam. Furthermore, to have an 
additional measure of model accuracy and to get also direct indications about the influence exerted on the model 
equilibrium shapes by the couple-stress bending stiffness, for each examined girder geometry the maximum 
displacement f  of the equivalent model is compared with that FEf  of the corresponding f.e. model and the one f̂  of 
the Timoshenko (Cauchy) beam having bending and shear stiffness equal respectively to the primary and shear 
stiffness of the couple-stress equivalent beam. 
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Since, as a first approximation, the main parameter influencing the relative importance of the two bending moments 
acting on the girder cross section is the height h of the girder, in the first set of f.e. analysis the effects of the changes 
of this parameter have been considered. Under the assumption that both chords and webs have the same cross section, 
specifically HEA100, cantilever girder f.e. models having height h=lt=300, 600 and 1200 mm, cell aspect ratios 

0.5, 1 and 2t cl l   and girder aspect ratio 6, 12, 24 and 48tL l    have been examined. Previous values of h, 
  and   as well the chords and webs cross sections properties were chosen to obtain girders geometries similar to 
those encountered in the practice of structural design. 

Table II – Pratt girders equivalent stiffnesses, deflections and homogenization errors as function of the diagonal geometry. 

  diagonal b  p  V  FEf  f  f̂  %e  

  [-] [Nmm] [Nmm] [Nmm-1]  [mm] [mm] [mm] [%] 
         

L=7200 mm 80 x 8 9,396E+13 2,702E+12 1,937E+08 9,100E-5 8,932E-5 1,013E-04 1,751 
=12 70 x 7 “ 2,619E+12 1,500E+08 9,400E-5 9,197E05 1,068E-04 2,112 

 55 x 6 “ 2,548E+12 1,035E+08 9,900E-5 9,714E05 1,176E-04 1,571 

 30 x 6 “ 2,505E+12 5,787E+07 1,130E-4 1,100E04 1,450E-04 2,021 
                   

In Fig. 5a, as an example, the deformed shapes of f.e. girders having cell-aspect ratio are compared with those of the 
corresponding equivalent beams. In Table II, for all the considered geometries, the homogenization errors, the 
equivalent stiffnesses and the deflections ˆ,   and  FEf f f  are listed. 

A second series of girder models analyse the effects of the changes of diagonal cross-sectional area on the 
equivalent model accuracy, since the girder shear stiffness is strongly influenced by this geometric parameter. For 
these analysis, more stout girders have been considered to highlight the shear properties effects in the girder response. 
For the chords of these models the standard HEA120 section has been chosen. Several back to back angles sections 
have been considered for the diagonals, while for the battens only the 80×8 back to back angles have been used. The 
f.e. results and the predictions of the homogenised model are compared in the diagram of Fig. 6b, while in Table III 
the homogenization errors and the equivalent stiffnesses are reported. In all the examined cases, the model predictions 
have resulted to be very close to the f.e. outcomes. Thus, the homogenized model is also able to predict the shear 
dominated girders responses with sufficient accuracy for practical applications. 
 

a) 
 
L=7200 mm 
=0.5 

b) 
 
L=7200 mm 
=2 

Fig. 5. Deformed shapes of Vierendeel girders for various girder heights: a) cell shape factor 0.5,c tl l   b) cell shape factor 2c tl l    
(chords and webs HEA100). 
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5. Conclusions 

The homogenization of a Pratt girder has been performed adopting a Timoshenko polar beam as substitute medium. 
The equivalent stiffnesses have been determined by a procedure based on the unit principal vectors of the state transfer 
matrix of the unit cell. These vectors have been obtained in closed form by a direct method operating on the unit cell 
stiffness matrix. While in the approaches until now proposed the polar character of the equivalent beam is deduced by 
kinematical conjectures or is inspired by the micro-structure, in the present study it is a direct consequence of the 
pattern of the inner forces acting in the lattice when the pure bending mode of the cells is active. 

A validation analysis has been carried out on the base of the results of a series of finite element models. In almost 
all the examined cases the predictions of our model are in good agreement with the numerical outcomes. 

The proposed homogenization technique is applicable in several field of structure or mechanical engineering 
interest. More specifically, it appears to be a serious candidate to analyse the buckling and post-buckling response of 
periodic beams infinitely long such as the railway track under thermal load (Pucillo (2016)) or to analyse the dynamic 
isolation of fragile goods in tall buildings (i.e. art objects, see Monaco et al (2014); Gesualdo et al (2017)). Its range 
of validity is bounded by the hypothesis of linear elasticity. Further research will thus be needed to extend the proposed 
method also in the elasto-plastic range whereas the response of the unit cell has to be analysed by approximated 
methods as those reported in Fraldi et al (2010); Fraldi et al (2014) and Cennamo et al (2017). 
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Appendix A - Pratt girder stiffness sub-matrices 
The (5x5) blocks forming the leading diagonal of the Pratt unit cell stiffness matrix are given by 
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