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Abstract
In the last decades researchers investigated the possibility of extending the information 
collected in sampling units during a field survey to wider geographical areas through the 
use of remotely sensed images. One of the most widely adopted approaches is based on 
the non-parametric k-Nearest Neighbors (k-NN) algorithm. This contribution describes the 
software K-NN FOREST we developed to provide a complete tool for the implementation 
of the k-NN technique to generate spatially explicit estimations (maps) of a response 
variable acquired in the field by sampling units through the use of remotely sensed data or 
other ancillary variables. K-NN FOREST is designed to guide the user through a graphic 
user interface in the different phases of the process. K-NN FOREST is freely available for 
download and it is designed to run under Windows environment in conjunction with the 
GIS software IDRISI.
Keywords: Environmental Inventory and Mapping, Prediction, Remote Sensing, k-Nearest 
Neighbors.

Introduction
Managing natural resources requires a large amount of georeferenced information [Corona 
et al., 2011]. The acquisition of thematic information regarding biophysical attributes of 
terrestrial ecosystems is traditionally based on two distinct approaches: inventorying or 
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mapping [Corona, 2010].
A given geographical area may be divided in a finite number of geographical units of finite 
dimension constituting a statistical population of N units. The investigated variable is called 
response variable Y.
Inventories investigate the response variable in a small number (n) of units extracted in 
the form of a sample from the population N. Then, the information from the sample is 
inferred to the population through the use of estimators. The result of an inventory is an 
estimation of a given statistical parameter of the response variable Y. In contrast, maps 
investigate all units of the population and can thus be considered similar to a geographical 
census. Inventories are mainly carried out on the basis of field work while thematic maps 
are usually based mainly on the classification of remotely sensed images acquired by aerial 
or satellite platforms.
In the last decades researchers investigated the possibility of extending the information 
collected in the field by the n sampling units during an environmental (e.g. forest) inventory 
to the remaining N-n geographical units through the use of remotely sensed images. This 
approach can be interpreted as a bridging tool to move from inventories to mapping. For 
such a purpose the geographic units N are usually the pixels of remotely sensed digital 
images.
A vast literature exists describing different approaches developed on the basis of several 
types of remotely sensed data, using different algorithms and with the intent of estimating 
a number of different response variables measured in the field.
All studies underline the need for the existence of significant relationships between the 
variables Xi acquired by remote sensing (called feature space variables or covariate 
variables) and the response variable of interest Y [McRoberts and Tomppo, 2007]. Similar 
approaches may be based on the thematic information contained in digital maps instead 
of, or together with, remotely sensed images; in these cases the covariate variables are 
sometimes called ancillary variables.
Some of the most promising results for this purpose were achieved by the k-Nearest 
Neighbors (k-NN) method. In 2006 and 2007 two workshops were organized to discuss 
methods and approaches for k-NN predictions: proceedings are available on line at http://
knn.gis.umn.edu. From those discussions it was clear that a major limitation to the practical 
application of k-NN methods for supporting environmental management and strategic 
planning lied in the unavailability of a specific scientific software.
As a matter of fact, the k-NN technique is well known and is implemented in most 
commercial statistical packages such as SPSS [SPSS, 2007] and in Geographic Information 
Systems such as IDRISI [Clark Labs, 2012]. In the case of statistical software packages 
such as SPSS, however, the application of the k-NN in a geographic environment is 
difficult because input geocoded images cannot be directly handled. In the case of GIS, 
such as IDRISI, the k-NN is instead mainly implemented to solve classification problems 
of a qualitative response variables, i.e. typically to derive classified maps on the basis of 
remotely sensed images.
Source codes implementing the general k-NN algorithm are also available on-line and 
distributed within open-source frameworks in C++ [Gulli, 2012], in Java [Ferreira, 2012; 
Thisara, 2012], in Visual Basic [Lammertsma, 2004] and even on the basis of Excel 
[Teknomo, 2012]. More advanced and complete suites for the use of k-NN method exist 
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too. Li [2003] developed a suite in C code for microarray and proteomic applications. 
Weka-knn is instead an implementation of the k-NN algorithm in Weka, a collection of 
machine learning algorithms for data mining tasks [Hall et al., 2009]. Tilburg Memory Based 
Learner (TiMBL) is an open source software package implementing several memory-based 
learning algorithms, including k-NN [Daelemans et al., 2010]. A special mention should be 
given to yaImpute, an R package for nearest neighbor search and imputation which offers 
a number of different tools facilitating the comparison among different nearest neighbor 
search algorithms and subsequent imputation techniques [Crookston and Finley, 2008].
A brief review indicates that, after two decades of scientific experiments, the k-NN method 
is ready to become an advanced tool for supporting the operational work of environmental 
resource managers and planners, who need practical and easy to use software [McRoberts 
et al., 2011]. In spite of this none of the currently available k-NN software applications 
have at the same time the characteristics of completeness and usage easiness granted by an 
intuitive graphic user interface (GUI).
This contribution describes the software K-NN FOREST that was recently developed by 
our research group. This is a complete tool which implements the k-NN technique to create 
the spatially explicit predictions (maps) of a response variable acquired in field sampling 
units through the use of remotely sensed or ancillary data. The software is designed to 
run under Windows environment. It has a complete GUI to guide the user in the different 
phases of the procedure. K-NN FOREST is based on the use of some modules from the 
IDRISI GIS software, both software packages must be installed on the same PC. All data 
required for using the software must be available in standard GIS formats. K-NN FOREST 
is provided free of charge for non-profit utilization together with a manual and a tutorial 
with sample data.

The k-NN algorithm
The first original extensive tests of the k-NN algorithm for predicting environmental 
reference variables on the basis of remote sensing feature space variables were probably 
developed within the Finnish National Forest Inventory [Tomppo, 1991; Tokola et al., 
1996]. Here we refer to the algorithm configuration implemented in K-NN FOREST. The 
unknown value of the response variable Yt for each target geographical unit t (i.e. a pixel 
or a group of pixels like that obtained by image segmentation) can be predicted using the 
values Yi of the same variable measured in the field in locations corresponding to the k 
nearest neighbor units:
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where the weight W is inversely proportional to the distance between the units t and i 
measured in the multidimensional feature space created on the basis of the feature space 
variables.
The multidimensional distance can be calculated by several measures.
The simplest is the Euclidean Distance (ED) calculated as:



Chirici et al.   K-NN FOREST

436

ED Xr Xtj j

j

m
2

1

= -
=

^ h/

where m is the number of feature space variables, Xrj is the value of j-th feature space 
variable in one of the n geographic units (pixels or group of pixels) where the response 
variable is available and Xtj is the value of j-th feature space variable in one of the N-n target 
geographic units (pixels or group of pixels) where the response variable is not available.
To take into account the multicollinearity of feature space variables two modifications 
of the Euclidean distance are implemented in K-NN FOREST: the Mahalanobis distance 
(MD) and the fuzzy distance (FD). 
The Mahalanobis Distance (MD) considers the variance–covariance matrix of the feature 
space variables, C [Richards, 1993]. MD between reference and target pixels is computed 
as:

MD Xr Xt C Xr Xt1= - --l^ ^h h

where Xr and Xt are the n-dimensional feature space vectors of the reference and target 
pixels, respectively, and C can be derived from the reference data set.
As can be easily understood, neither ED or MD emphasizes the relationship of the feature 
space variables to the response variable. In order to perform this task, modified forms of 
multidimensional distances have been proposed aiming at giving preferential consideration 
to the most informative feature space variables [Holmström et al., 2001; Maselli et al., 
2005].
The distance weighted with fuzzy weights or Fuzzy Distance (FD) is a modification of 
MD where the variance–covariance matrix is computed via a fuzzy approach. The fuzzy 
variance–covariance matrix C* is obtained by weighting the reference pixels through a 
fuzzy membership function that gives preferential consideration to the reference pixels 
having values of the response variable close to the mean [Maselli, 2001]. This is obtained 
deriving the membership grade of each reference pixel i, Fgi, from the Gaussian probability 
density function of the response variable, through [Anderson, 1984]:
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where: Yi is the value of the response variable at reference pixel i; μ is the mean value of the 
response variable; σ2 is the variance of the response variable.
This modification results in a reduction of the variance–covariances for the feature space 
variables most correlated with the response variable, and thus most informative [Wang, 
1990; Maselli, 2001]. Consequently these variables become the most important in the 
calculation of FD between reference and target pixels through:

FD Xr Xt C Xr Xt* 1= - --l^ ^h h
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Validation of k-NN predictions
Several approaches can be used to assess the accuracy of k-NN predictions, but they are all 
based on the comparison between the response variable measured in the field and the k-NN 
predictions. These approaches can differ for two possible reasons: i) the accuracy may be 
computed on the same dataset used to derive the predictions or on an independent dataset, 
and ii) the validation may be performed at pixel level or for regions made of aggregated 
pixels.
Since external datasets for validation are not always easily available, bootstrapping 
techniques are often applied in which the observations from a subset of the reference set are 
used to calculate predictions for the other subset [McRoberts, 2008]. Accuracy is assessed 
by comparing the observations and predictions for the second subset. The leave-one-out 
(LOO) technique is a special case of bootstrapping in which a prediction is iteratively 
calculated for each individual element of the reference set using the remaining reference 
set observations [Lachenbruch and Mickey, 1986]. When dealing with continuous variables 
accuracy is assessed by comparing the observations and predictions for all reference set 
elements using the Root Mean Squared Errors or an error similar measure [Franco-Lopez 
et al., 2001].

K-NN FOREST
The K-NN FOREST software is intended to be used in conjunction with the IDRISI GIS 
software [Clark Labs, 2012]. The user should therefore first prepare all input datasets within 
the IDRISI environment before starting to use K-NN FOREST. The implementation of the 
k-NN prediction procedure may be subdivided in four phases.

Data preparation
This part of the work must be accomplished before using K-NN FOREST in order to 
have input datasets ready for the process. Four input datasets can be used, two of them 
are optional. The first is the set of feature space variables that are usually constituted of 
the different bands of a multispectral remotely sensed image. All the bands in IDRISI file 
format must be geographically coregistered with the same number of rows and columns. 
The software accepts a maximum of 256 input feature space variables.
The second dataset is the response variable in IDRISI raster format which must have the 
same geographic extent and geometric resolution of the feature space variables files. The 
response variable is usually constituted of the rasterized sampling units that are acquired 
and georeferenced in the field by means of a GPS. The response variable file must be 
accurately coregistered with the feature space variables.
Third, optionally one ancillary variable may be used: again it must be in the IDRISI raster 
format, and it must have the same geographic characteristics of the feature space variables. 
The ancillary variable (for example a Digital Elevation Model, DEM, see below) may be 
used to restrict the selection of the k nearest sampling units.
Finally, the k-NN prediction may be limited to a subset (defined as target set) of the 
geographic area represented by the feature space variables. For this reason the user may 
optionally consider a target boolean raster file where the pixels excluded from the target 
set are identified. This target file must also have the same geographic characteristics of the 
feature space variables.
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Feature space creation
K-NN FOREST first requires a few general information which serve to save the project 
coherently with the IDRISI project structure. The user is then asked for the files to be used 
as input feature space variables, the response variable file, the statistical parameters to be 
extracted from the feature space variables for each sampling unit of the response variables, 
and, optionally, the ancillary file (Fig. 1). For each sampling unit of the response variable file 
the software extracts the selected statistics from the feature space variables and, optionally, 
from the ancillary file. This information is stored in a database in DBF format having a 
number of records equal to the number of sampling units in the response variable file and 
the fields filled with the response variable, the statistical parameters extracted from the 
feature space variables and, optionally, the statistical parameter extracted from the ancillary 
file.

Figure 1 - The graphic user interface of K-NN FOREST in the input data phase, with the 
IDRISI software environment on the background.

k-NN optimization
On the basis of the database created in the previous phase K-NN FOREST estimates the 
response variable for all sampling units through a leave-one-out (LOO) cross validation 
procedure; the user may set the type of the multidimensional distance (ED, MD or FD) and 
the maximum number of k to be considered. For each value of k from 1 to the maximum 
value set by the user the software calculates the Spearman coefficient of correlation (r) 
and the Root Mean Square Error (RMSE) of the predictions comparing the k-NN outputs 
obtained by LOO to the observed values of the response variable.
The software also includes two optional possibilities for restricting the searching of the k 
units. The first is based on a geographic distance (or horizontal reference area). The user 
may set a maximum search distance, within which the software will search for the nearest 
k units. The second option is based on searching the k units within a thematic distance 
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measured on the basis of the ancillary variable. For example using a DEM as ancillary 
variable it is possible to restrict the search for the nearest k units within a defined vertical 
distance [Katila and Tomppo, 2001]. 
The output of each K-NN FOREST optimization phase is an ASCII file reporting the 
Spearman correlation coefficient and the RMSE determined by the LOO cross validation 
procedure for each k value set by the user. In general the accuracy of the k-NN predictions 
increases with increasing k values. On the basis of this optimization phase, the user has to 
decide the best configuration of k-NN in terms of feature space variables to be used, type 
of feature space distance, k value, inclusion of an ancillary variable or a geographic search 
criterion. These settings are critical since different k-NN configurations may led to very 
different results in terms of prediction accuracy [Chirici et al., 2008].

k-NN prediction
The user is finally asked to run K-NN FOREST with the optimal configuration empirically 
defined in the previous phase. K-NN FOREST performs the prediction of the response 
variable for each pixel of the target set. The output is a raster image in IDRISI file format.
The accuracy of the k-NN predictions can be calculated at pixel level or for larger 
aggregated areas on the basis of a number of different methodologies provided by standard 
GIS environments [Kim and Tomppo, 2006; Chirici et al., 2008].

Conclusions
In this paper we presented the software called K-NN FOREST, which is implemented 
under Windows environment developed for the spatial prediction of a quantitative response 
variable on the basis of a set of feature space variables. The software is based on the 
non-parametric k-NN algorithm and it is specifically designed to spatialize the variables 
observed in field sampling units over a large territory through the use of multispectral 
remotely sensed images and ancillary data.
The software is driven through a GUI which guides the user through the different phases of 
the method, from input data formatting, to algorithm optimization by LOO cross validation, 
and to final spatial prediction of the response variable. The software K-NN FOREST was 
extensively tested in several research applications [Chirici et al., 2008; Chirici et al., 2010; 
Lasserre et al., 2011; Mattioli et al., 2012] and it is now freely distributed on-line.
Private or public stakeholders involved in environmental monitoring and assessment may 
benefit of this software to derive spatial predictions of environmental attributes useful for 
quantifying the conditions and trends of environmental resources [Corona, 2010]. 
K-NN FOREST users should be conscious of the theoretical framework consolidated in 
recent literature concerning the use of the k-NN algorithm for predicting and mapping 
environmental response variables. Before deciding to use K-NN FOREST preliminary 
tests should be carried out for ascertaining the validity of the assumptions underlying 
this technique [McRoberts, 2009; Baffetta et al., 2011]. For example, the feature space 
variables are usually derived from remotely sensed acquisitions while the response variable 
is collected in field sampling units georeferended through GPS. The two datasets must 
be coregistered with an error that should be lower than the geometric resolution of the 
analysis, usually coincident with the pixel dimension of the feature space variables. Halme 
and Tomppo [2001] demonstrated that this prerequisite is essential for obtaining accurate 
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predictions of the response variable.
Finally, the results obtained with k-NN can be reported together with model based 
[Magnussen et al., 2009] or design based [Baffetta et al., 2009] estimates of the uncertainty 
contained in pixel-level or spatially aggregated k-NN predictions.
We distinctively hope that K-NN FOREST will help reducing the distance between forest 
mapping and inventorying enabling more close cooperation among specialists of different 
disciplines. More broadly, the software should promote the operational use of the k-NN 
method by environmental researchers, technicians, professionals and managers who may 
not have specific programming skills.
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