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Abstract
The results of numerical simulations are presented to illustrate the saturationmechanismof a single
toroidal number Alfvénmode, driven unstable, in a tokamak plasma, by the resonant interactionwith
energetic ions. The effects of equilibrium geometry non-uniformities andfinitemode radial width on
thewave-particle nonlinear dynamics are discussed. Saturation occurs as the fast-ion density
flattening produced by the radial flux associated to the resonant particles captured in the potential well
of theAlfvénwave extends over thewhole regionwheremode-particle power exchange can take place.
The occurrence of two different saturation regimes is shown. In the first regime, dubbed resonance
detuning, that region is limited by the resonance radial width (that is, thewidth of the regionwhere the
fast-ion resonance frequencymatches themode frequency). In the second regime, called radial
decoupling, the power exchange region is limited by themode radial width. In the former regime, the
mode saturation amplitude scales quadratically with the growth rate; in the latter, it scales linearly. The
occurrence of one or the other regime can be predicted on the basis of linear dynamics: in particular,
the radial profile of the fast-ion resonance frequency and themode structure. Here, we discuss how
such properties can depend on the considered toroidal number and compare simulation results with
the predictions obtained from a simplified nonlinear pendulummodel.

1. Introduction

Plasma physicsfinds one of itsmost relevant applications in the field of controlled thermonuclear fusion
research. A promising approach to the realisation of a fusion reactor is the so-calledmagnetic confinement, in
which a hot plasma (temperatures of the order of those characterising stars’ core) is contained bymeans of
strongmagnetic fields. Tokamak is themost advancedmagnetic-confinement concept. In order to bring plasma
to conditions inwhich fusion reactions can occur at a sufficiently large rate, several heatingmethods (based on
radio-frequencywaves and neutral beam injection) have to be added to the ohmic heating produced by the
electric currentflowing through the plasma itself. Thesemethods, as well as fusion reactions, produce energetic
particles (EPs)with velocities of the order of theAlfvén speed, the typical propagation velocity of shear Alfvén
waves (SAWs). Such particles can then easily resonate with SAWs, with their pressure gradient acting as a free-
energy source for destabilising these waves. On their turn, Alfvénic fluctuations can cause an enhanced transport
of EPs, affecting their confinement, preventing their thermalisation in the central region of the plasma and
increasing thermal and particle loads on the tokamakwall. The assessment of EP confinement properties in next
generation fusion experiments then strongly relies on understanding Alfvénmode dynamics, with regard both
to linear stability properties (whichmodes are expected to be driven unstable) and the nonlinear saturation
mechanisms (which saturation level is expected for themode amplitude andwhich effects on the EP
confinement).

In nonuniform tokamak plasmas, the SAWspectrumbecomes a continuum. Poloidal asymmetries open
‘gaps’ in such continuum, allowing forweakly damped globalmodes, such as the toroidal Alfvén eigenmode [1]
or the reversed shear Alfvén eigenmode [2], to exist. The resonant interactionwith EPs can drive thesemodes
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unstable. As the EP pressure gradient exceeds a certain threshold, even strongly damped continuumoscillations,
besides these normalmodes of the background plasma, can be driven unstable; they are called energetic particle
modes (EPM) [3]. Alvénic fluctuations of various types, excited by EPs, have been identified in several tokamak
experiments [4–9].

Linear properties of Alfvénic fluctuations driven by EPs can be investigatedwithin the theoretical framework
of the generalised fishbone-like dispersion relation [3, 10, 11]. On this basis, several successful comparison
between theoretical predictions and experimental observations, as well as numerical simulation results, have
been reported [12–20].

Concerning the nonlinear dynamics of Alfvénmodes (and its consequences on the overall performances of
tokamak plasmas), it is determined by twomain factors: the nonlinear wave-wave coupling andnonlinear wave-
particle interactions.With reference to the former factor, variouswave-wave interactions leading to the breaking
of the Alfvénic state have been analyzed in [21, 22]. Although these effects play a crucial role inmulti-scale
dynamics in burning plasmas, wewill focus, in our current work, on the nonlinear wave-particle interactions.
This issue has been first addressedwithin the ‘bump-on-tail’ paradigm, extensively developed in the 1990s by
Berk, Breizman and co-workers [23–25] for interpreting experimental observations of AE excitations by EPs and
related nonlinear processes nearmarginal stability. In this weak drive limit, Alfvénmode saturates at very low
field amplitudes, and the perturbed EPmotion is not able to sample the non-uniformities associated to the finite
width ofmode structure. The system can then be treated as a uniform one, and saturation occurs because of the
phenomenon of resonance detuning [26, 27]: the resonant EP pressure gradient is flattened, by the particle flux
associated to the perturbed EP orbits, over thewhole regionwhere themode-particle resonance condition can
be satisfied (whose radial width is smaller for lower growth rates).

Amore general treatment ofmode-particle nonlinear dynamics is represented by the ‘fishbone’ paradigm
[21, 27], which emphasises the role played bymagnetic field geometry and plasma non-uniformities in the
complex tokamak burning plasma system. In the nearmarginal stability limit (or, in the uniformplasma one),
thefishbone paradigm reduces to the bump-on-tail paradigm. For increasing growth rates (andmode
amplitudes), the radial excursion of resonant particles becomes comparable with the scale length of plasma non-
uniformities. In this limit, the bump-on-tail paradigm is no longer suited to describe the nonlinear dynamics
and thefishbone paradigmhas to be applied.Mode saturation is due to amechanism called radial decoupling
[26, 27], corresponding to theflattening process extending over thewhole radial regionwhere themode
structure is localised. Further increasing the drive (EPMregime) causes the EP contribution to become fully
nonperturbative and able to determine bothmode frequency and radial structure [8, 9, 28–30].

In a recent review paper [22], a systematic theoretical framework of EP physics is presented, including a
detailed discussion of the nonlinear wave-particle interactions betweenAlfvénmodes with EPs. In the present
paper, we investigate, bymeans of numerical simulations, the occurrence of different saturationmechanisms for
a single-toroidal-number gapmode in different EP drive regimes.

In section 2, we present an introduction to the singlemode problem. First, a short review is given of the
historical work on understanding the nonlinear wave-particle interactions in a beam-plasma systemby pioneers
in 1960s [31–34]. By introducing sources and collisions, the ‘bump-on-tail’ paradigm for Alfvénmodes
dynamics developed by Berk andBreizman[23–25] is briefly discussed. Finally, resonance detuning and radial
decoupling saturationmechanisms are examined, for a nonuniform tokamak plasma, within the ‘fishbone’
paradigm. In section 3, self-consistent simulations using an extended version of the hybrid
magnetohydrodynamics (MHD)Gyrokinetic code (XHMGC) [35, 36] are performed for a beta-inducedAlfvén
eigenmode (BAE) in a tokamak equilibriumwithmonotonic safety factor profile; here, the expression ‘beta’ (β)
refers to the ratio between the kinetic pressure of the bulk plasma and themagnetic pressure. The effects of
varying toroidal number is analysed. Finally, conclusions and discussions are presented in section 4.

2.Overview of singlemode problem

Nonlinear wave-particle interactions for a single wave in one-dimensional (1D) systemswas originally
investigated byO’Neil and co-workers in 1960s [31–33]. In 1990s, the beam-plasma nonlinear problemwas re-
considered by Berk andBreizman [23–25, 37–39] and applied to the interpretation of the dynamics of the Alfvén
eigenmodes driven by EPs nearmarginal stability. Such ‘bump-on-tail’ paradigm treated EP contribution as a
perturbative one, i.e. the structure of Alfvénic fluctuations is determined byMHDequations (no kinetic
contributions), and its width ismuch larger than the nonlinear radial excursion of resonant EP orbits. Recently,
a ‘fishbone’ paradigm [22, 27] has been introduced, which consider the response of EPs in the frame of a
nonperturbative approach, in which it canmodify the plasma dielectric response aswell asmode structure and
frequency. In this paradigm, equilibrium geometry and plasma non-uniformity play important roles and
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becomemore andmore relevant with increasing drive. In the present work, wewill showhow these effects affect
the nonlinear dynamics of themodes and their saturation amplitude.

2.1. 1D collisionless beam-plasma system
The original works on nonlinear wave-particle dynamics in 1D systems [32] studied the behaviour of a supra-
thermal electron beam interactingwith a thermal plasma in a strong axialmagnetic field. Various processes such
as Landau damping in a finite amplitudewave [31] and nonlinear wave-particle interactions [33]were
understood for thefirst timewithin the 1Dbeam-plasmamodel.

In [32] a collisionless uniform 1Dbeam-plasma system is considered, withMaxwellian bulk electrons
characterised by density ne and thermal velocity vth,much lower than the electron-beamdrifting speed vd. The
beamdistribution function is assumed to be Lorentzian, with density n nb e and velocity spreadDvb. The
resulting total electron distribution is known as ‘bump-on-tail’ distribution. Thermal ions are treated as afixed
neutralising background. In such system, a plasmawave is driven unstable. Thewave grows and saturates at a
scalar-potential amplitude of order f ~ ( )n n mv e;b e

2 3
d
2 after that, it starts oscillating [33]. The reason for this

is that, as thewave amplitude grows,more andmore resonant electrons slosh back and forth in the potential well
of thewave. Theflux associated to suchwave-trapped electronmotion yields a temporary flattening of the
velocity-space electron distribution function (with consequentmode saturation), followed by a reconstruction
of the distribution-function gradient, a newflattening, and so on (with the correspondingmode amplitude
oscillation). The oscillation frequency is related to amean value of wB, where wB is the bounce frequency of
resonant electrons in the potential well of thewave.

On longer time scales, the spread in wB values produces increasingly finer structures of the electron
distribution function around the resonance. The netmode-particle energy exchange reduces, alongwith the
mode amplitude oscillations. By this phenomenon of phasemixing, the system asymptotically reaches a steady
state [31], characterised by aflattened coarse-grain particle distribution function [40] and a constantmode
amplitude.

2.2. Berk–Breizmanmodel: bump-on-tail paradigm
In a series of papers in 1990 [23–25], Berk andBreizman reconsidered the beamplasma bump-on-tail nonlinear
problem and applied it to Alfvén Eigenmode dynamics. Their work adds, to the previous analysis by
O’Neil[31, 41], the treatment of particle interactionswith afinite-amplitude wave in the presence of sources
and collisions. Because of the associated dissipation, the system reaches saturationwhile the distribution
function still presents afinite gradient, such that the residual drive balances the background dissipation. Berk
andBreizman’s analysis relies on several assumptions: (1)mode amplitude is low and the linearmode structure
isfixed, but sampled by the perturbed particle orbits; (2)finite background dissipation is independent of the
wave amplitude; (3)wave dispersiveness is set by the background plasma and is not affected by the beam (in
bump-on-tail problem) or the EPs (in general tokamak plasma system). Under these assumptions,mode
saturation level comes out to be reducedwith respect to the dissipationless system [23, 24].

Furthermore, the formation of propagating phase–space holes and clumps can occur, giving rise to adiabatic
frequency chirping: themode adjusts it in order to adapt to the resonance frequency characterising the
instantaneous hole/clumpphase space localisation [37–39]. The ‘bump-on-tail’ paradigmhas been successful in
explaining several phenomena observed in experiments [42–46].

2.3. Resonance detuning and radial decoupling
The importance of plasma non-uniformity has been pointed out by [22, 27], in the frame of the so-called
‘fishbone’ paradigm. The basic point is that, for increasing drive and, hence,mode amplitude, particle orbits
become able to explore thefinite radial-width of the fields. At the same time, the resonance condition is satisfied,
in this limit, in awider radial region (whosewidth scales with themode growth rate). The spatial regionwhere
themode-particle power exchange can take place becomes than limited by themodewidth rather than the
resonancewidth. The consequences of this fact on the nonlinear dynamics and the saturation process of Alfvén
modes in tokamaks have been investigated numerically [26] by evolving a suited set of test particles in the fields
computed by self-consistent single toroidalmode number simulations. Provided that themode frequency
remains constant during the nonlinear evolution (conditionwell satisfied in the simulations considered in [26]),
the system exhibits two invariants of the perturbedmotion: besides themagneticmomentM, the quantity

w= -fC P nE , withω being themode frequency, fP the toroidal angularmomentum, n the toroidal number
andE the particle kinetic energy. The invariance ofM andC implies that gradients of the distribution function
along those directions do not play any role in the dynamics (they do not appear in theVlasov equation). Then,
cutting the phase space into slices orthogonal to the axesM andC, mode-particle power exchange can be
described as the combination of different-slice contributions, each of them evolving in an independent way. In
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order to explore in great detail resonant-particle behaviour, test particles are selected byfixing the values of
=M M0 and =C C0 in correspondence with a peak, in the phase space, of the linear-phasemode-particle

power transfer. For each test particle, the information related to its evolution is collected at the equatorial-plane
crossing times. Particles are referred to the coordinates Q f( )P, , withΘ being thewave-particle phase (e.g. see
figure 1). During thewhole linear phase, inwhich the field amplitude is so small that its effects on the particle
orbits is negligible, fP is almost conserved. Then, during such phase, particle trajectories in the Q f( )P, plane
essentially reduce tofixed points for =f fP P res, with fP res being the value at which the resonance condition for
the considered set of particles, w wQ = - =f( )t M C Pd d , , 0res 0 0 (with wres being the resonance frequency),
is satisfied, while they correspond to drift along theΘ axis in the positive/negative direction, for fP greater/less
than fP res. In the nonlinear phase, fP varies because of themode-particle interaction (e.g., radial ´E B drift).
Even particles that were initially resonant are brought out of resonance, getting non zero Q td d and drifting in
phase until the drift in fP is inverted. Particles that cross the =f fP P res line revert values of Q td d aswell. Thus,
their orbits are bounded and theywould properly close if thefield amplitudewere constant in time. This is true
for particles born close to the resonance, while particles bornwith fP far from the resonancemaintain drifting
orbits, as they do not cross =f fP P res. Bounded orbits and drifting ones are divided by an instantaneous
separatrix, whose fP width increases with increasingfield amplitude. The formation of such structures in the
Q f( )P, plane corresponds to a particle flux from the higher density side of the resonance to the lower density
one, and a corresponding flattening of the resonant-particle density (as well as pressure) profile. The drive is
consequently reduced. Saturation occurs when theflattening region extends by thewhole region inwhich the
mode-particle power exchange can occur. Such regionwill be limited both by the finitemodewidth and the
finite resonancewidth. This is represented infigure 2, where the radial profiles have been considered, instead of

fP profiles, taking into account that for given ( )M C,0 0 there is a one-to-one correspondence between fP and the
(equatorial-plane) radial coordinate r: =f f ( )P P r M C, ,0 0 . The resonancewidth is determined by the condition
w w g-∣ ∣  ;res L it then increases with the linear growth rate gL. Two opposite regimes are represented in
figure 2 (left) and (right), respectively. In the former (‘resonance detuning’ regime), themost stringent
constraint on power exchange is set by the resonancewidth; in the latter (‘radial decoupling’ regime), it is set by
themodewidth. The transition from the resonance detuning regime to the radial decoupling one occurs, ceteris
paribus, as larger drive, narrowermodes and/orflatter resonance frequency profiles are considered. In [26],
examples of resonance detuning as well as radial decoupling have been shown, on the basis of numerical
simulations performed by theHMGCcode [35].

In the next section, wewill show that each of the two regimes corresponds to a specific scaling of the
saturation amplitude with the linear growth rate. This correspondence has been explained in [47] and [48] on
the basis of a simple nonlinear pendulummodel. An approximate analytical solution of thatmodel connects the
radial width of the resonant particle density flatteningwith the instantaneousmode amplitude and the linear
growth rate.Wewill see how such solution allows us to predict the dependence of the saturation amplitude
observed in the different regimes.

Figure 1.Representation of thewhole test-particle sample in the plane Q f( )P, , at certain times in the linear (left) and nonlinear (right)
phase. The position of eachmarker corresponds to the last equatorial-plane crossing of a test particle. Colours (blue or green) depend
on the initialPf value of each test particle and do not changewith time. The boundary between two colours is initially fixed at

=f fP P res. The formation, in the nonlinear phase, of bounded orbits separated fromdrifting orbits by an instantaneous separatrix can
be seen.
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3. Simulations

3.1. Simulations of bump-on-tail instability
Weperform a numerical simulation of the bump-on-tail systemby the df Vlasov–Poisson code PIC1D-PETSc
[49]. The distribution function for a homogeneous electron beam-plasma system can bewritten as:

= - +
- - -

D( ) ( ) ( )
( )

f v n n1 e e , 1e b b

v
v

v v

v
1
2

2

th
2

1
2

d
2

b
2

with vth being the electron thermal velocity, vd the beam velocity andDvb the beam thermal spread. The
parameters = D =v v 1th b and vd=5.0 arefixed. The length of the system is p=L k2 with k=0.3. Periodic
boundary conditions are used.We initially perturb the distribution function by a space dependent amount

d =( ) ( ) ( ) ( )f x v kx f v, cos , 2e e

with  1 . In our simulations, time t is normalised to the inverse electron plasma frequency w-
pe

1, velocity is

normalised to the electron thermal velocity T me e and length is normalised to the electronDebye length lD.
In such system, only resonance condition w =( )v kvres plays a role. The saturation is expected by resonance
detuning.

By increasing the beamdensity nb, the growth rate increases, as well as the saturation level, as shown in
figure 3(a). Themode reaches afirst saturation, and, after that, amplitude oscillations occur. Such oscillations
are due to the particles trapped in thewave bouncing back and forth, and it has shorter period for larger
saturation amplitude. Figure 3(b) shows that the saturation amplitude scales quadratically with the linear growth

Figure 2.Model comparison between the radialmode structure (black line) and the radial resonance profile (blue line). The green
solid line indicates themode frequencyω, while dashed lines correspond to w g L. The resonance widthDrres is approximately
defined as thewidth of the regionwhere the condition w w g-∣ ∣ res L is satisfied. Frame (a) represents a situation inwhich themode
structure is larger than the resonance width; frame (b), the opposite situation.

Figure 3. Simulation of the bump-on-tail instability. Frame (a) shows the time evolution of the amplitude of electrostatic potential for
different beamdensities nb; frame (b), themode amplitude at saturation versus the linear growth rate.
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rate gL. Such scaling is also important for our later discussion concerning the two different saturation
mechanisms: namely, resonance detuning and radial decoupling.

3.2. XHMGCmodel
In the present paper, the extended version [36] of the nonlinearMHD-Gyrokinetic codeHMGC [15, 35]
(XHMGC) has been used to simulate self-consistenly the BAEmode driven by anisotropicMaxwellian fast ions.
InXHMGC, a shifted circularmagnetic flux surfaces, low-β tokamak equilibrium is adopted. Thefluid response
of the thermal background plasma is described by a set of ( )O 3 -reducedMHDequations [50] (with  being the
inverse aspect ratio). Fast-ion and thermal-ion kinetic dynamics enter suche equations via the respective
pressure tensors, which are computed by solving theVlasov equation for each species in the drift-kinetic limit,
by particle-in-cell techniques. Finite-Larmor-radius effects are ignored, whilefinite-orbit widths are taken into
account in order to retain resonant wave-particle dynamics associatedwith guiding-centermagnetic-curvature
drift in toroidal geometry. Kinetic contributions are treated in a non perturbative way: pressure-tensor terms
contribute to determine both structure and evolution of electromagnetic fields.

3.3. Test particle technique
In order to investigate in greater detail the resonant-particle behaviour, we can resort to test-particle diagnostics.
Following [26], we select the set of test particles in the followingway.

(1)We identify the coordinates, ( )r M V, ,0 0 0 , of the phase–space point where the power exchange between
particles and themode (averaged over poloidal and toroidal angle) ismaximum (here, r is the radial coordinate
of the particle gyrocenter when it crosses the equatorial plane q = 0 at its outmost position.Here,M is the
magneticmoment in unit of WTH H0,V is the parallel velocity in unit of T MH H ), andTH, WH0 andmH are the
fast-ion temperature, on-axis cyclotron frequency andmass.

(2)Weobserve that the perturbedmotion preserves a second invariant (besides themagneticmomentM),
provided that themode is characterised by a singlemode number and a constant frequency; namely, the quantity
C, defined, at the lowest order, as

q wº - + Wf( ) ( ) ( )C r M V P n m V M, , , 2 , 3H H
2

where

q y y+ -f ( ) ( ) ( )P r V m RV e R c, , 4H H 0 eq eq0

is the toroidal angularmomentum and yeq is the poloidalflux of the equilibriummagnetic field, defined by
f y fº  +  ´ fR B RB 0 0 0 eq (withf being the toroidal angle andR0 themajor radius).We can then

compute the value = ( )C C r M V, 0, ,0 0 0 0 corresponding to the coordinates identified in thefirst step.
(3)All test particles are selectedwith the same values of the conserved quantities, =M M0 and =C C0.

They are initialised at q = 0 and different values of r. The corresponding values of the parallel velocityV is
determined as = ( )V V r M C, ,0 0 .

(4) In order to analyse the formation and evolution of closed-orbit structures in the plane Q f( )P, , withΘ
being thewave phase, such set of test particles is replicated at several equispaced values of toroidal anglef,
chosen in the open inteval p[ ]0, 2 .

3.4. Simulation parameters
The simulation parameters are the same as those used in [47]. A tokamak equilibrium is considered,
characterised by aspect ratio =R a 100 and safety factor = + -( )( )q q q q r aa0 0

2, with q0=1.9 and
qa=2.3. Thermal ions are characterised byflat density and temperature radial profiles, such that their
diamagnetic effect can then be ignored. Kinetic thermal-ion compressibility effects are instead retained, and they
give raise to the formation of a kinetic thermal-ion gap in the shear-Alfvén continuum spectrum. As a
consequence, a BAEmode exists and localised around »r a 0.5, i.e. the q=2 rational surface, in our current
equilibrium.Kinetic thermal ions are characterised by an isotropicMaxwellian initial distribution function. The
fast-ion initial distribution function is instead an anisotropicMaxwellianwith a single pitch angle

a = V E mcos 2 H . In the following, wewill report the results of simulations related tomodes characterised,
respectively, by toroidal numbers n=2, 3 and 4. Different toroidal numbers correspond to different shapes of
the shear-Alfvén continuum; then, bothmode structure andmode frequency change. In principle, we could find
that, for different n, different regions of the phase space yield themost relevant contribution to the
destabilisation of themode.Moreover, as themode frequency does not change proportionally to the toroidal
numbers, the relative weight of angularmomentum and kinetic energy in theC expression changes with n. This
means that, even the same couple ( )M C,0 0 would correspond to a different radial profile of the parallel velocity
V and, then, of the resonance frequency.Wewill show that such differences affect the scaling of themode
saturation amplitude with the linear growth rate.
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3.5.Different toroidal numbern simulations
In this sectionwewill analyze the effect of increasing the toroidal number on the scaling of themode saturation
amplitude.Wewill show that both the variation of the radial profile of the resonance frequency and the
narrowing of themode radial profile play a role.

3.5.1. Overview ofmode evolution
In [47], the results of n=2 simulationswere reported. It was shown that both co-passing and counter-passing
fast ions drive themode unstable via transit resonance, with very similar real frequencies. Growth rates increase
with increasing fast-ion fraction.We start comparing the results obtained for a given n=2 simulationwith
those obtained for n=3 and n=4. In particular, we consider the case characterised by fast ion density

=n n 0.0014H i and pitch angleα such that a =cos 0.5 for co-passing fast ions, a = -cos 0.5 for counter-
passing fast ions. The other parameters are those given in section 3.4 and in [47].

The normalisedmode structure of the scalar potential and themode frequency spectrum are shown in
figure 4 for each n. The unstablemodes are all located near the shear-Alfvén continuumaccumulation point for
each n.Mode frequencies are very similar for co-passing fast ion drivenmodes and counter-passing ones for all n
values. They increase as the toroidalmode number increases. Themode structure is narrower for larger toroidal
mode number n. Infigure 5, the power exchange betweenmode and particles is shown in the velocity space
( )M V, . The power exchange is integrated over a toroidal shell centred around themode (  r0.2 0.8).
Boundaries between the passing-particle region and the trapped-particle one at r=0.2 and r=0.8 are plotted.
The power exchange is obviouslymaximum for passing particles along the pitch angle direction. No significant
dependence on the toroidal number is observed for the value ofmagneticmomentwhere the power exchange is
peaked.

Figure 6 shows the nonlinear time evolution of the scalar potential amplitude (normalised toT eH H0 , where
TH0 being the on-axis fast ion temperature and eH the charge of fast ions) at the peak of the radial structure
shown infigure 4 for each toroidal number n. Each case shows amplitude oscillations after themode reaches the
first saturation. For the considered case, all simulations show that the co-passing fast ion drivenmode reaches
higher saturation level than the one driven by counter-passing fast ions. For co-passing fast ion drivenmodes,
the larger toroidal number yields larger growth rate. The largest saturation level occurs for n=2mode, with the
n=3mode reaching close levels, though n=2mode is characterised bymuch smaller growth rate. Counter-
passing fast ion driven ones yield analogous results, apart from that related to the saturation level of the n=2
mode: in this case, the lower growth rate is not accompanied by a larger saturation level.

3.5.2. Scaling ofmode saturation amplitude with the growth rate
Let us now examine how themode saturation amplitude varies as the growth rate increases. The results obtained
at different values of n nH i or different toroidalmode numbers are reported infigure 7, formodes driven by co-
passing fast ions (left) and counter-passing ones (right). A clear transition fromquadratic to linear scaling is
observed in the counter-passing fast ion case, for all the values of the toroidalmode number n. The growth rate
value at which the transition occurs slightly increases with increasing n. At the same time, the corresponding
mode saturation amplitude decreases. The situation is less defined in the co-passing fast ion case. In particular,

Figure 4.Energy spectrum for the scalar potential, in the w( )r, plane, for the BAE driven by fast ions, as obtained fromXHMGC
simulations for different choices of the toroidalmode number n. The normalised radial structure of the dominant harmonic for the
scalar potential is also reported for each case (dashed lines). Top frames refer tomodes driven by co-passing fast ions; bottom frames,
tomodes driven by counter-passing fast ions. Here wA0 is the one-axis Alfvén speed.
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Figure 5.Mode-particle power exchange, integrated over a toroidal shell centred around themode (  r0.2 0.8), in the velocity
space ( )M V, , for the same cases shown infigure 4. The variablesM andV are reported in units of WTH H0 and T mH H . Boundaries
between the passing-particle region and the trapped-particle one at r=0.2 (solid lines) and r=0.8 (dashed lines) are also plotted.

Figure 6.Time evolution of themode amplitude ∣ ∣A , with ∣ ∣A corresponding to the radial peak, in unit of T eH H , of the dominant
harmonic of the scalar potential, for the same cases shown infigure 4.

Figure 7. Scaling of saturation amplitude of scalar potential versus normalised linear growth rate for different toroidal numbers, for
co-passing (left) and counter-passing (right) fast ions. The reference quadratic and linear gL scaling are also shown.
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no transition is observed for n=2, with themode saturation amplitude scaling linearly over thewhole
considered range of n nH i. For n=3, although a quadratic scaling can not be revealed, a deviation from the
linear scaling is observedwhenmoving from the stronger to theweaker cases. It is still true that the transition
growth rate value increases with n (for n=2 and n=3we can only set upper limits to such value, with the limit
relative to the n=2 case being surely lower than that pertaining to the n=3 case). Nothing can be said, instead,
about the variation of the transition values of themode saturation amplitude.

It has been demonstrated [26] thatmode saturation occurs as the flattening of the resonant particle
distribution function profile (which represent the free-energy source formode instability) extends over the
whole regionwhere themode-particle interaction can take place. This region is limited both by thefinite radial
structure of themode (Drmode) and thefinite radial extensionwhere the resonance condition,
w w g-∣ ( )∣ rres L, is satisfied (Drres). Saturationwill be reached as

D D D[ ] ( )r r rmin , . 5flat res mode

In [47, 48], it has been argued, on the basis of a nonlinear pendulummodel, that the radial width of the flattening
region scales as

gD ~( ) ( ) ( )r t A t , 6flat L

withA(t) being the instantaneousmode amplitude, at time t. Linearising the frequencymismatch as

w w- -( ) ( )S r r , 7res res
with wº - ¢ ( )S rres res , we get the following approximate expression for the radial width of the resonance:

gD ∣ ∣ ( )r S . 8res L

Equation (5) then yields

g g~ D[ ∣ ∣ ] ( )A S rmin , . 9sat
L L mode

Taking into account that themodewidth exhibits a negligible dependence on the growth rate, we see that the
quadratic scaling for themode saturation amplitude is obtainedwhen themost stringent constraint is
represented by the resonancewidth (resonance detuning regime); the linear scaling, when it is given by the finite
modewidth (radial decoupling regime). Transition from the former to the latter regime is expected for

g ~ D∣ ∣ ( )S r , 10L tr mode

with a saturation amplitude

~ D∣ ∣ ( )A S r . 11tr
sat

mode
2

In the present case, themode structure has been inspected infigure 4. In section 3.5.3wewill analyse the
radial structure of the resonance frequency, in order to explain the results shown infigure 7.

3.5.3. Radial resonance structure
As sketched infigure 2, we need to compare the resonancewidthwith the radialmode structure given infigure 4.
A single slice of resonant particles is chosen following the recipe delineated in section 3.3. Themode peak
locations are the same as shown infigure 4 and r0=0.48 is chosen for all the cases.Meanwhile, the power
exchange structure shown infigure 5 has certainwidth. First for each toroidal number n,M0=1.25 and
V0=0.93 are chosen for the co-passing fast ion cases andM0=1.25 and = -V 0.930 for the counter-passing
ones. The initial parallel velocity radial profilesV(r) computed from =( ) ( )C r M V C r M V, 0, , , 0, ,0 0 0 0 0 for
different toroidal numbers n are shown infigure 8(a) for co-passing fast ions and figure 8(b) for counter-passing
fast ions. The radial profile ofV(r) is steeper for lower toroidal number n for both co-passing and counter-
passing fast ions. The resonance frequency calculated for each particles is given by

w w s wº + - +[( ¯ ) ] ( )n nq m k , 12res D b

where wD is the precession frequency and wb is the transit frequency defined as

w
p
t

w
f
p

s wº º
D

- ¯ ( )
⎡
⎣⎢

⎤
⎦⎥q

2
,

2
. 13b

b
D b

In the above definition,σ is the sign of parallel velocityV, fD is the change in toroidal angle over the bounce
time tb defined as t q qº ∮ ˙db and q̄ is the safety factor integrated along the particle orbit s p qº ∮¯ ( )q q2 d .
In the present cases, the dominant bounce harmonic k for both co-passing and counter-passing fast ions is
k=1, as discussed in detail in [47]. Here, we showhow the resonance radial profile changes for different
toroidal numbers in the same equilibrium. By initialising test particles along the curvesV(r) shown infigure 8,
the corresponding resonance profiles are shown infigure 9. For passing particles, the precession frequency is so
small that its contribution to thewhole resonance frequency is in fact negligible. The red line represents the
radial profile of the transit frequency wb, the green dashed line is the profile of the termproportional to
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Figure 8.Radial profiles of the parallel velocityV for the selected slices of test particles. Frame (a) refers to co-passing fast ions; frame
(b), to counter-passing fast ions.

Figure 9.Radial profiles of different terms contributing to the resonance frequency, for co-passing (top) and counter-passing (centre)
fast ions, at different values of the toroidalmode number. Bottom frames show the resulting resonance frequency for both species. The
mode frequency is also shown in each frame (solid line).
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-( ¯ )nq m , which is the contribution of k V . Adding these two values (k=1, as stated above) gives the resonance
frequency radial profile w ( )rres . The fast-ion transit frequencymonotonically decreases along radius for both co-
passing and counter-passing fast ions. On the other hand, for the considered q profile, the term related to k V
monotonically increases from for co-passing fast ions; it decreases for counter-passing fast ions; and changes the
signwhen crossing =k 0 radial positionwhich is corresponding to the q=2 rational surface in the current
equilibrium. Thefinal resonance profiles are given infigure 9 (bottom), showing that, co-passing fast ions have
flatter resonance than counter-passing ones. For n=2 case, which is discussed in [47], co-passing fast ions have
an extremely flat profile for inner values of the radius, so that the resonancewidth ismuch larger than themode
width for all the considered growth rate. For the counter-passing fast ions, the radial resonance profile is steeper,
so that the resonancewidth for low growth rate is smaller than themodewidth. As the growth rate increases, a
transition from resonance detuning to radial decoupling is expected.

For the n=3 case, transit frequency radial profile is slightlyflattened by the fact that the resonant particle
velocity profile,V(r), isflatter. However, this is compensated by the steeper profile of the k V term. The
resonance frequency radial profile has then a larger gradient in the region around themode localisation.

Figure 10 shows the dependence of the resonance frequency steepness and themodewidth on the toroidal
number, for both co-passing and counter-passing ions. It allows us for interpreting the results shown infigure 7
and compare themwith the predictions based on the nonlinear pendulummodel. Inserting these results in
equations (10) and (11), wefind, for the transition values for growth rate andmode saturation amplitude the
dependence on the toroidal number shown infigure 11 (note that themode amplitude is determined apart from
a proportionality constant). These predictions appear to be in qualitative agreementwithmost of the simulation
results reported infigure 7. In particular, as far as the counter-passing fast ion case is concerned, the decrease of
the transitionmode saturation amplitudewith n is predicted, as well as, theweak n dependence of the transition
growth rate. The latter dependence on the positive n dependence of the steepness of the resonance frequency,
which compensate the negative dependence of themodewidth (see figure 10).

With regard to the co-passing fast ion case, figure 11 (left)predicts a positive n dependence for the transition
growth rate. This is in agreement with the fact that our simulations show the transition from the resonance
detuning regime to the radial decoupling one only for n=4, while for the lower n cases, only an upper limit to

Figure 10.Absolute value of the radial derivative of the resonance frequencymeasured in units of w aA0 andmodewidth, at different
values of the toroidal number, for co-passing and counter-passing fast ions.

Figure 11.Values of the rhs of equations (10) and (11) computed on the basis of themeasuredmodewidth and resonance frequency
radial derivative, for co-passing and counter-passing fast ions.

11

New J. Phys. 18 (2016) 085009 XWang and S Briguglio



the transition growth rate can be recovered, as a proper resonance detuning regime is not observed in the growth
rate range considered (for n=3, however, a clear deviation from the linear scaling is observed for theweaker
cases). This dependence ismotivated by the strong positive increase of the resonance frequency steepness with n,
which beats the opposite dependence of themodewidth (see figure 10 and equation (10)). Figure 11 (right)
predicts a positive dependence on the toroidalmode number for the transition saturation amplitude aswell. The
fact that no transition is observed in our simulations for the lower-n cases does not allow a comparison between
model results and simulation ones.

Note that equation (8) is a quite rough approximation for the resonance width if the growth rate is not too
small and the dependence of the resonance frequency on the radial distance from the resonant surface is not
linear. A slightly better quantitative agreement can be obtained, for the transition values of the growth rate by
computingDrres directly from the full resonance frequency profile, as

w w g-  D∣ ( )∣ ( )r r 2 . 14res res res L

Figure 12 compares the values of the resonancewidth obtained from equation (14)with themeasured values of
themodewidth at different toroidal numbers. Figure 13 reports the transition growth rate values recovered from
figure 12 and the corresponding saturationmode amplitudes, computed, consistently with equation (9),
multiplying the transition growth rate by themodewidth.We observe that, while no relevant difference is
obtained for the transition saturation amplitude, the transition growth rate for the counter-passing fast ion case
exhibits a weak positive n dependence.Moreover, for the co-passing fast ions, the transition growth rate values
result smaller than those reported infigure 11. Both these results appear to be in better agreementwith the
results reported infigure 7.

Figure 12.Resonance width computed by equation (14), comparedwith themeasuredmode radial width, at different toroidal
numbers, for co-passing (left) and counter-passing (right) fast ions.

Figure 13.Values of the transition growth ratemeasured fromfigure 12 and the corresponding value of the saturationmode
amplitude, computedmultiplying the transition growth rate by themode radial width.
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4. Summay and conclusions

In this paper, the saturationmechanism is investigated for BAEs driven unstable by anisotropic fast-ion
populations (co-passing or counter-passing ions) for different single toroidal numbers. Numerical simulations
are performed by the hybridMHD-particle codeXHMGC.

The fact that a single toroidalmode number is considered and that themode frequency does not appreciably
vary in time allows for the existence of a second constant of (the perturbed)motion, apart from themagnetic
momentM: namely, the quantity w= -fC P nE . Cutting the phase space into slices orthogonal to the axesM
andC, the dynamics of each slice is independent on that of other slices.We can then look at the evolution of that
slice (or those slices)where themode-particle power transfer ismaximum to explore the nonlinear evolution of
the system.Once determined the relevant (M,C) slice, the resonance frequency depends only on the radial
coordinate. In our case, the shape of the resonance frequency ismainly determined by the bounce (transit)
frequency for passing particles. The resonance frequency profile is steeper for the counter-passing fast ions than
for the co-passing ones due to the opposite sign of their k V terms in the resonance condition. In both cases, the
steepness increases with the toroidalmode number. Correspondingly, thewidth of the radial regionwhere the
resonance condition is satisfied decreases with n. The same happens to the radialmodewidth.

Taking into account that themode-particle power exchange can take place only in the radial regionwhere
themode amplitude is not negligible and the resonance condition is satisfied, two different saturation regimes
can be distinguished, depending on the relative importance of these two characteristic widths. In the first regime,
themost stringent constraint is given by the resonance condition (D < Dr rres mode). Saturation occurs when the
fast-ion density flattening induced by the radial flux associated to resonant particles captured in thewave
potential well extends over thewhole regionwhere the frequencymatching is satisfied. This regime is called
resonance detuning regime and is characterised by a quadratic scaling of themode saturation amplitudewith the
linear growth rate. In the second regime, called radial decoupling regime, the relevant constraint comes from the
finitemodewidth (D < Dr rmode res). Saturation is characterised by a density flattening extending over thewhole
regionwhere themode amplitude is not vanishing, and a linear scaling of such amplitudewith the growth rate.

In the case considered in this paper, the radial profile of the resonance frequency for the co-passing fast ions
isflatter than that for the counter-passing ones. This results in amuch greater resonancewidth in the former
case, such that, for low toroidalmode numbers, only the radial decoupling regime is observed in the explored
growth-rate range. The transition from the resonance detuning regime to the radial decoupling one is
appreciated, for co-passing ions, only for the larger toroidal number considered, n=4.Modes driven by
counter-passing fast ions, instead, exhibit such transition even for the lower n values.

These results and the n-dependence of the growth-rate value at which the resonance-detuning/radial-
decoupling transition occurs and the corresponding saturationmode amplitude, for both co-passing and
counter-passing fast ions, compare fairly well with the prediction based on a simplified nonlinear pendulum
model.

Note that the analysis presented in this paper does not encompass several aspects of Alfvénmode nonlinear
dynamics, able to play an important role for different equilibria, like frequency chirping, large nonlinear
modification ofmode structure and synergic interaction of different toroidal harmonics, whichwill be discussed
in later works.
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