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Abstract: If H is a subgroup of an abelian group G and ϕ ∈ End(G), H is called ϕ-inert (and ϕ is H-inertial)
if ϕ(H) ∩ H has �nite index in the image ϕ(H). The notion of ϕ-inert subgroup arose and was investigated
in a relevant way in the study of the so called intrinsic entropy of an endomorphism ϕ, while inertial endo-
morphisms (these are endomorphisms that are H-inertial for every subgroup H) were intensively studied by
Rinauro and the �rst named author.
A subgroup H of an abelian group G is said to be fully inert if it is ϕ-inert for every ϕ ∈ End(G). This prop-
erty, inspired by the “dual" notion of inertial endomorphism, has been deeply investigated for many di�erent
types of groups G. It has been proved that in some cases all fully inert subgroups of an abelian group G are
commensurable with a fully invariant subgroup of G (e.g., when G is free or a direct sum of cyclic p-groups).
One can strengthen the notion of fully inert subgroup by de�ning H to be uniformly fully inert if there exists
a positive integer n such that |(H + ϕH)/H| ≤ n for every ϕ ∈ End(G). The aim of this paper is to study the
uniformly fully inert subgroups of abelian groups. A natural question arising in this investigation is whether
such a subgroup is commensurable with a fully invariant subgroup. This paper provides a positive answer to
this question for groups belonging to several classes of abelian groups.

Keywords: fully invariant subgroup, ϕ-inert subgroup, fully inert subgroup, uniformly fully inert subgroup,
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1 Introduction
Unless otherwise stated, all groups considered in this paper are assumed to be abelian. For unexplained
notions and notation we refer to the recent monograph by Laszlo Fuchs [21].

1.1 Levels of invariance in the lattice of subgroups

If ϕ is an endomorphism of a group G and H a subgroup of G, then H is said to be ϕ-invariant if ϕH ≤ H. A
subgroup F of a group G is fully invariant if it is ϕ-invariant for every endomorphism ϕ of G. Fully invariant
subgroups have been an important tool in the theory of abelian groups; they form a complete sublattice of
the lattice L(G) of all subgroups of G, which is denoted by Inv(G).
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It may happen that the group G has only the two trivial fully invariant subgroups (this occurs precisely
when G is a simplemodule over the ring End(G)). Thismakes it natural to replace the somewhat too restrictive
relation of invariance of a subgroupwith respect to an endomorphism by aweaker conditionwhich is trivially
satis�ed also by all �nite subgroups and all subgroups of �nite index.

De�nition 1.1. Let ϕ be an endomorphism and H a subgroup of a group G. Then H is called ϕ-inert if ϕ(H)∩H
has �nite index in ϕ(H)

In the above situation, one can also say that ϕ is H-inertial. Note that H is ϕ-inert precisely when (H +ϕH)/H
is �nite.

Asking a subgroupH to beϕ-inert for all endomorphismsϕ, one obtains the followingnotion, introduced
in [17].

De�nition 1.2. [17] A subgroup H of a group G is fully inert if H is ϕ-inert for every endomorphism ϕ of G.

We recall that the notion of ϕ-inert subgroup was strongly motivated by the study of the dynamical prop-
erties of the endomorphism ϕ in [17], while fully inert subgroups provide a generalization of fully invariant
subgroups.

Exchanging the quanti�er, one can say that an endomorphism ϕ of the group G such that H is ϕ-inert for
each subgroup H of G is an inertial endomorphism. Inertial endomorphisms are investigated in [10] and [11].

A short digression to the non-commutative setting is now in order, showing the parallel development of
similar notions in the non-commutative and in the abelian setting. It is worthwhile observing that the notion
of inertial automorphisms was introduced in [9] and inspired by a well-known notion in the context of non-
commutative groups. Namely, a subgroup H of a group G is called inert if the index |H : Hg ∩ H| is �nite for
all g ∈ G (where Hg = g−1Hg). Clearly this is equivalent to |Hg : Hg ∩ H| being �nite for all g ∈ G, since
|Hg : H ∩ Hg| = |H : Hg−1 ∩ H|.

Inert subgroups seem to have been introduced in 1993 in papers of Belyaev as a tool in the investigation
of in�nite simple groups (see [2]). Clearly normal subgroups and �nite subgroups are inert. All subgroups of
an abelian group are trivially inert. On the other hand, a subgroup H of a non-commutative group G which is
fully inert (as in De�nition 1.2) is actually inert.

The following notion plays a crucial role in both the non-commutative and the abelian settings.

De�nition 1.3. Two subgroups H and K of a group G are called commensurable (in symbols, H ∼ K) if H ∩ K
has �nite index both in H and in K.

In this terminology, a subgroup H is inert if it is commensurable with all its conjugates Hg with g ∈ G. Since
commensurability is an equivalence relation in the lattice of subgroups, a subgroup H of Gwhich is commen-
surable with a normal subgroup of G must be inert in Belyaev’s terminology (see [8] for details and proofs;
see also Proposition 2.1 for a sharper result).

According to [8], a subgroup H of a group G is said to be uniformly inert if there is n ∈ N such that
|H : Hg ∩ H| ≤ n for each g ∈ G. In these terms, Bergman and Lenstra proved the following

Theorem 1.4. [3, Theorem 3] A subgroup of a group is uniformly inert if and only if it is commensurable with a
normal subgroup of the group.

P.Neumannpointed out that the alternating group on countablymany objects has an abelian subgroupwhich
is inert but not uniformly inert (see details in [8]). Moreover, there exist also soluble �nitely generated groups
with subgroupswhich are inert but not uniformly inert (see Remark 2.15 below). Groups inwhich all subgroup
are uniformly inert have been studied in [4].
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Coming back to abelian groups and their endomorphisms, we note that the relevant novelty in the point
of view adopted in [17] is the binary relation imposed by De�nition 1.1 between a single pair of a subgroup and
an endomorphism. This has the advantage of allowing one to extend this binary relation to arbitrary pairs of
a family of subgroups and a family of endomorphisms.

1.2 Uniformly fully inert subgroups

The possibility of distinguishing “uniformly” inert subgroups was only quite recently pointed out in [8], in
accordance with the following de�nition.

De�nition 1.5. A subgroup H of a group G is uniformly fully inert if there exists a positive integer n such that
|ϕH/(H ∩ϕH)| ≤ n for every endomorphism ϕ of G. The least common multiple of the numbers |ϕH/(H ∩ϕH)|
when ϕ ranges over all endomorphisms of G is called the inertial bound of H in G and is denoted by ib(H).

In analogy to De�nition 1.5, onemay call ϕ ∈ End(G) uniformly inertial if there exists a positive integer n such
that |ϕH/(H ∩ ϕH)| ≤ n for every H ∈ L(G).

The following conjecture for uniformly fully inert subgroups is naturally suggested by Theorem 1.4.

Conjecture 1.6. [8, Conjecture 5.2] Every uniformly fully inert subgroup of a group G is commensurable with a
fully invariant subgroup.

In order to support the conjecture, we recall that in Corollary 1.9 of [8] it is proved that a subgroup H of a
group G is commensurable with a characteristic subgroup of G if and only if there is an n ∈ N such that
|γH/(H ∩ γH)| ≤ n for each automorphism γ of G.

The two families of fully inert subgroups and uniformly fully inert subgroups of G are denoted, respec-
tively, by I(G) and Iu(G). According to [17], a subgroup commensurable with a fully inert subgroup is also
fully inert, so, in particular, a subgroup H commensurable with a fully invariant subgroup is fully inert. In
[8, p. 7] it is stated that such a subgroup H is even uniformly fully inert. For the sake of completeness, in
Proposition 2.1 below we give a detailed proof of this fact. If we denote by Inṽ (G) the set of subgroups of G
which are commensurable with fully invariant subgroups, then the following is a chain of sublattices of the
whole lattice L(G) of subgroups of G (see [8, Proposition 1.11] and the text in front of the proposition):

Inv(G) ⊆ Inṽ (G) ⊆ Iu(G) ⊆ I(G) ⊆ L(G). (*)

Conjecture 1.6 amounts to state that the following equality holds:

Inṽ (G) = Iu(G).

Let us mention that the above chain (*) may collapse for some groups G, i.e., Inv(G) = L(G). This occurs,
for example, for those groups G such that End(G) ∼= Z; these groups are necessarily torsion-free, and it is
known that they can have arbitrarily large cardinality (see [21, Chapter 12, Theorem 4.9]). A torsion example
is furnished by the Prüfer group Z(p∞), whose endomorphism ring is Jp, the ring of the p-adic integers.

All notions introduced above can be extended verbatim from the category Mod(Z) of abelian groups to
the categoryMod(Jp) of Jp-modules. So many questions regarding the above chain (*) can be formulated for
Jp-modules, Conjecture 1.6 included.

The study of the interrelations between the lattices in the chain (*) takes a big portion of [8, Section 5],
and several papers have been devoted recently to investigate, in particular, when the equality Inṽ (G) = I(G),
or the strict inclusion Inṽ (G) ( I(G), hold.

On the one hand, examples of fully inert subgroups which fail to be commensurable with fully invariant
subgroups of a given group G cannot be found in case G is a free group, or a direct sum of cyclic p-groups, or,
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passing to Jp-modules, in case of a torsion-free Jp-module which is either free or complete. In other words,
the equality Inṽ (G) = I(G) holds for these groups. Thus, a fortiori, the equality Inṽ (G) = Iu(G) holds as well.
These facts are the main results in the three papers [19], [24] and [25], respectively.

On the other hand, an example of a separable p-group G which admits a subgroup H ∈ I(G) \ Inṽ (G) is
provided in [24]. Furthermore, an example of a torsion-free Jp-module A admitting a submodule K ∈ I(A) \
Inṽ (A) is provided in [25]. A careful analysis of the above examples shows that the subgroup H and the
submodule K are not even uniformly fully inert (see Section 6). Therefore we have the more precise strict
inclusions Iu(G) ( I(G) and Iu(A) ( I(A). Thus, given an arbitrary abelian group G and an arbitrary Jp-
module A, it is natural to ask what can be said about the inclusions

Inṽ (G) ⊆ Iu(G) and Inṽ (A) ⊆ Iu(A).

No examples are up to now available ensuring the strict inclusions, thus providing further support to Conjec-
ture 1.6.

The strict inclusion Inṽ (G) ( I(G) is provided also bydivisible groupsGwhose torsion-free rank rk0(G) is
�nite and non-zero. Moreover, Inṽ (G) ( I(G) is proved by a recent result by Chekhlov [6], who characterized
the completely decomposable groups G of �nite rank satisfying this strict inclusion (see §3.2 formore details).

Themaingoal of this paper is to study theuniformly fully inert subgroupsof abeliangroups and topresent
old and new results related to Conjecture 1.6.

In Section 2 we present some preliminary basic results and introduce the fully invariant hull and the fully
invariant core of a subgroup, which are useful tools in our investigation.

In Section 3we consider the chain (*) for divisible groups and completely decomposable groups recalling
some known facts from [8] and [6, 7], respectively.

In Section 4 we introduce three classes of groups which are of interest for our conjecture. The �rst one
is the class of Orsatti groups, which are the groups compact in the natural topology and whose structure
was determined by Orsatti in [28]. The Orsatti groups are algebraically compact groups satisfying certain
�niteness conditions. The second class consists of groups with �nite ranks, i.e., groups of �nite torsion-free
rank and �nite p-ranks for all primes p. The third larger class contains the Orsatti groups and the groups with
�nite ranks and consists of the narrow groups G, de�ned by the property that G/nG is �nite for all positive
integers n (De�nition 4.1). These groups have been characterized in several ways in [17, Theorem 3.3], where
it was proved that the adjoint algebraic entropy of any endomorphism of a narrow group is zero (see [17,
Proposition 3.7]). The narrow groups are exactly the totally bounded groups in the natural topology.

In Section 5 we prove that our Conjecture 1.6 holds for groups with �nite ranks (see Proposition 5.4) and
for Orsatti groups (see Theorem 5.8).

As mentioned above, in Section 6 we give detailed proofs of the facts that the examples for the strict
inclusions Inṽ (G) ( I(G), for G a p-group, and Inṽ (A) ( I(A), for A a Jp-module, are not even uniformly
fully inert.

Section 7 summarizes the state of art concerned with the conjecture and collects some open questions
related to this conjecture.

Finally, we remark that many of the notions that we introduce in this paper, as well as some statements
and proofs, can be carried out in the non-abelian context, see Remark 2.15 for more details.

Notation and terminology

For an abelian group G we denote by d(G) the maximal divisible subgroup, by t(G) the maximal torsion sub-
group, by tp(G) the p-primary component of t(G). The order of an element g ∈ G is denoted by o(g). We follow
[21, Chapter 3, Section 4] in de�ning the rank rk(G) of a group G as the cardinal number of a maximal linearly
independent system containing only elements of in�nite and prime power orders. The cardinality of the sub-
set of elements of in�nite order is denoted by rk0(G) and is called the torsion-free rank, while the cardinality
of the subset of elements of order a power of the prime p is denoted by rkp(G) and is called the p-rank of G.
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It is well known that rk0(G) = dimQ(G⊗Q) and that rkp(G) is the dimension of the socle G[p] of tp(G) as
vector space over Z/pZ. We will say that G is a group with �nite ranks when rk0(G) < ∞ and rkp(G) < ∞ hold
for all primes p (obviously, this does not imply rk(G) < ∞).

If G =
⊕

i Gi is a direct sum, for each i we will denote by πi the projection πi : G → Gi.

2 Preliminary results
We start this section by proving the fact mentioned in the Introduction, namely that a subgroup commen-
surable with a fully invariant subgroup is uniformly fully inert; we will freely use the following well-known
facts holding for a group G: if G1 ≤ G2 ≤ G with

∣∣∣ G2
G1

∣∣∣ < ∞, then for any X ≤ G and any ϕ ∈ End(G), both
∣∣∣ϕ(G2)
ϕ(G1)

∣∣∣
and

∣∣∣ G2∩X
G1∩X

∣∣∣ divide ∣∣∣ G2
G1

∣∣∣.
Proposition 2.1. Let H ∼ K be commensurable subgroups of a group G and ϕ ∈ End(G).
(a) if H is ϕ-inert, then K is ϕ-inert;
(b) if H is fully inert in G, then K is fully inert;
(c) if H is uniformly fully inert in G, then K is uniformly fully inert, and the inertial bound ib(K) divides

ib(H) · |H/(H ∩ K)| · |K/(H ∩ K)|.

Proof. Consider the chain

ϕ(K) ≥ ϕ(K) ∩ ϕ(H) ≥ ϕ(K) ∩ ϕ(H) ∩ H ≥ ϕ(H) ∩ ϕ(K) ∩ H ∩ K. (2.1)

We have that the �rst factor ϕ(K)
ϕ(K)∩ϕ(H) of (2.1) has order which divides | K

H∩K | since it is an epic image of ϕ(K)
ϕ(K∩H)

which in turn has order dividing | K
H∩K |.

The second factor group ϕ(K) ∩ ϕ(H)
ϕ(K) ∩ ϕ(H)∩H of (2.1) has order dividing | ϕ(H)

H∩ϕ(H) | (intersect both numerator and
denominator of ϕ(H)

ϕ(H)∩H by ϕ(K)).

Similarly, the third factor ϕ(K)∩ϕ(H) ∩ H
ϕ(H)∩ϕ(K) ∩ H∩K has order dividing | H

K∩H | (intersect both numerator and denom-
inator by ϕ(H) ∩ ϕ(K)). Thus∣∣∣∣ ϕ(K)

ϕ(H) ∩ ϕ(K) ∩ H ∩ K

∣∣∣∣ divides ∣∣∣∣ ϕ(H)
ϕ(H) ∩ H

∣∣∣∣ · ∣∣∣∣ H
H ∩ K

∣∣∣∣ · ∣∣∣∣ K
H ∩ K

∣∣∣∣ .
On the other hand

ϕ(K) ≥ ϕ(K) ∩ K ≥ ϕ(H) ∩ ϕ(K) ∩ H ∩ K,

so that ∣∣∣∣ ϕ(K)
ϕ(K) ∩ K

∣∣∣∣ divides ∣∣∣∣ ϕ(K)
ϕ(H) ∩ ϕ(K) ∩ H ∩ K

∣∣∣∣
This proves that ∣∣∣∣ ϕ(K)

ϕ(K) ∩ K

∣∣∣∣ divides ∣∣∣∣ ϕ(H)
ϕ(H) ∩ H

∣∣∣∣ · ∣∣∣∣ H
H ∩ K

∣∣∣∣ · ∣∣∣∣ K
H ∩ K

∣∣∣∣ . (2.2)

Obviously, (2.2) implies (a) and (c). It only remains to note that (b) follows from (a).

From item (c) of Proposition 2.1 we immediately derive the following

Corollary 2.2. A subgroup commensurable with a fully invariant subgroup of a group G is uniformly fully inert,
that is, Inṽ (G) ⊆ Iu(G).
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2.1 Uniformly fully inert subgroups of �nite direct sums

Let us see how the study of (uniformly) fully inert subgroups of �nite direct sums can be reduced to box-like
subgroups. Recall that a subgroup H of an arbitrary direct sum G =

⊕
i∈I Gi is called box-like if it is of the

form H =
⊕

i∈I Hi with Hi ≤ Gi for each i ∈ I.
In general, we denote G(i) =

⊕
j≠i Gj for each i ∈ I. Then, for any H ≤ G, πi(H) = (H + G(i)) ∩ Gi is the

image of the canonical projection of H in Gi. Moreover Hi = H ∩ Gi = H ∩ πi(H). It follows that any subgroup
H is sandwiched between two box-like subgroups:

H� =
⊕
i∈I

Hi ≤ H ≤
⊕
i∈I

πi(H) = H�. (�)

Using this notation, we have the following lemmas. We omit the easy proof of the �rst one, since it is similar
to the proof of Lemma 2.4, which is in turn inspired by [16, Lemma 4.1] concerning fully inert subgroups of
divisible groups.

Lemma 2.3. For a subgroup H of a direct sum G =
⊕

i∈I Gi the following are equivalent:
(1) H is a box-like subgroup;
(2) H� = H;
(2′) H = H�;
(3) H is πi-invariant for all projections πi.

Lemma 2.4. For a subgroup H of a �nite direct sum G = G1 ⊕ · · ·⊕ Gn the following are equivalent:
(1) H is commensurable with some box-like subgroup;
(2) |H�/H�| is �nite;
(3) H is πi-inert for all projections πi.

Proof. If (1) holds andH ∼ K = K� where K is box-like, then K is πi-invariant by Lemma 2.3. ThenH is πi-inert
by Proposition 2.1 and (3) holds.

Let us assume that (3) holds. We have

Hi = H ∩ Gi = H ∩ πi(H) ≤ πi(H)

where |πi(H)/(H ∩ πi(H))| = |πi(H)/Hi| = mi is �nite. Therefore,

H�
H�

=
⊕n

i=1 πi(H)⊕n
i=1 Hi

'
n⊕
i=1

πi(H)
Hi

has order bounded by m1 · . . . · mn. So that (2) holds.
Finally (2) implies (1), by (�).

An immediate consequence is the following

Corollary 2.5. Let H be a subgroup of a �nite direct sum G = G1 ⊕ · · · ⊕ Gn. If H is uniformly fully inert in G
with inertial bound m, then |H�/H�| ≤ mn so that both H� and H� are uniformly fully inert and commensurable
with H.

Proof. SinceH satis�es item (3) in Lemma 2.4, arguing as in the proof of that lemmawe get that |H�/H�| ≤ mn.
Now Corollary 2.2 applies.

The next result is inspired by [17, Proposition 4.2].

Proposition 2.6. Let H = H1⊕· · ·⊕Hn be a box-like subgroup of a group G = G1⊕· · ·⊕Gn. Then H is uniformly
fully inert in G if and only if there is a positive integer r such that for each pair of indices i, j ∈ {1, . . . , n} and
every homomorphism ϕij : Gi → Gj the following inequality holds:

|(ϕij(Hi) + Hj)/Hj| ≤ r.
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In particular, under such a condition, for each i the subgroup Hi is uniformly fully inert in Gi and ib(Hi) divides
ib(H) .

Proof. We may assume n > 1 and point out that -with some harmless abuse of notation- each ϕ ∈ End(G)
can be written as

ϕ =
n∑

i,j=1
ϕij

where each ϕi,j : Gi → Gj is a restriction of ϕ. Then for each ϕi,j ∈ Hom(Gi , Gj) we have

ϕij(Hi) + Hj
Hj

'
(ϕij(Hi) + Hj)⊕ H(j)

Hj ⊕ H(j)
'
ϕij(Hi) + H

H ≤ ϕ(H) + HH

where H(j) =
⊕

i≠j Hi. Conversely, for each ϕ ∈ End(G) in the above notation we have

ϕ(H) + H
H =

∑
i,j ϕij(H) + H

H =
n∑

i,j=1

ϕij(Hi) + H
H

where the last group is an epic image of
n⊕

i,j=1

ϕij(Hi) + Hj
Hj

.

Therefore we have for each i, j:

∣∣∣ϕij(Hi) + HjHj

∣∣∣ ≤ ∣∣∣ϕ(H) + HH

∣∣∣ ≤ n∏
i,j=1

∣∣∣ϕij(Hi) + HjHj

∣∣∣.
The proof follows now easily. In particular, the last statement follows from the fact that

∣∣∣ϕij(Hi)+HH

∣∣∣ divides∣∣∣ϕ(H)+HH

∣∣∣.
Corollary 2.7. Let G = G1 ⊕ G2 be a group and H be a uniformly fully inert subgroup of G with inertial bound
n. Then:
(a) H ∩ G2 is a uniformly fully inert subgroup of G2 with inertial bound at most n;
(b) if ψ : G → G1 is a homomorphism such that ψ(H) is in�nite, then H ∩ G1 is in�nite as well.

Proof. Part (a) follows from Corollary 2.5 and Proposition 2.6. Concerning (b), assume, by way of contradic-
tion, that H ∩G1 is �nite. Thus, H ∩ψ(H) ≤ H ∩G1 is �nite as well, and since ψ(H) is in�nite, we deduce that
ψ(H)/(H ∩ ψ(H)) is in�nite, a contradiction.

The next result considers the case when G is the direct sum of two fully invariant subgroups; it will be the
main tool in the proof of Theorem 5.7.

Proposition 2.8. Let G = G1 ⊕ G2 be a group which is the direct sum of two fully invariant subgroups. If H is
a uniformly fully inert subgroup of G with inertial bound ib(H) = n, and Hi (i = 1, 2) are the projections of H in
Gi, then
(1) the subgroups Hi are uniformly fully inert with inertial bounds ib(Hi) dividing n;
(2) if furthermore n · idG2 ∈ End(G2) is an automorphism of G2, then:

(2a)H = H1 ⊕ H2;
(2b)H2 is a fully invariant subgroup of G2;
(2c) H ∈ Inṽ (G) if and only if H1 ∈ Inṽ (G1);
(2d)H ∈ Inv(G) if and only if H1 ∈ Inv(G1).

Proof. (1) follows from Proposition 2.6.
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(2a) Let πi : G → Gi (i = 1, 2) be the projections, so that Hi = πi(H). In order to to prove that H = H1⊕H2,
it su�ces to prove that H ≥ π2(H). Pick h = h1 + h2 ∈ H ≤ H1 ⊕ H2, where hi = πi(h). To prove that h2 ∈ H,
let ξ ∈ End(G2) be the inverse of n · idG2 ∈ End(G2); extend ξ to an endomorphism α of G by sending G1 to
zero. As h2 = nα(h) ∈ nα(H) ⊆ H, we are done.

(2b) Since n·idG2 is invertible in End(G2) and it belongs to the center of that ring, the fact that nϕ(H2) ≤ H2
for every endomorphism ϕ of G2 implies that H2 is a fully invariant subgroup of G2.

(2c) Assume that H1 ∈ Inṽ (G1), so there exists a fully invariant subgroup L ≤ G1 such that H1 ∼ L (H is
commensurable with L). By our assumption on G and items (2a) and (2b), it follows that the subgroup L⊕H2
of G is fully invariant. Since obviously H = H1 ⊕ H2 ∼ L ⊕ H2, we are done.

(2d) Argue similarly to (2c).

2.2 The fully invariant hull and the fully invariant core

Every subgroup H of a group G is sandwiched between the minimal fully invariant subgroup H* of G con-
taining it, and the maximal fully invariant subgroup H* contained in it. Here H* is the intersection of all fully
invariant subgroups containing H and H* is the sum of all fully invariant subgroups contained in H. The
subgroups H* and H* are called the fully invariant hull and the fully invariant core of H, respectively.

It seems to be quite natural to consider the subgroups H* and H* as candidates for a test of whether H
is commensurable with some fully invariant subgroup, i.e., H ∈ Inṽ (G). Indeed, the conditions H*/H �nite
or H/H* �nite are su�cient to ensure that H ∈ Inṽ (G). Thus it is natural to consider the two families of
subgroups of G:

Inv*(G) = {H ∈ L(G) : |H*/H| < ∞} and Inv*(G) = {H ∈ L(G) : |H/H*| < ∞}.

Lemma 2.9. The sets Inv*(G) and Inv*(G) are sublattices of Inṽ (G) containing Inv(G), hence

Inv(G) ⊆ Inv*(G) ⊆ Inṽ (G) and Inv(G) ⊆ Inv*(G) ⊆ Inṽ (G).

Proof. The inclusions Inv(G) ⊆ Inv*(G) and Inv(G) ⊆ Inv*(G) are obvious. Note that, if H if a subgroup of a
group G with either |H/H*| < ∞ or |H*/H| < ∞, then H ∈ Inṽ (G). Furthermore, if H, K ∈ Inv*(G), then we
have:

|(H ∩ K)/(H* ∩ K*)| = |(H ∩ K)/(H ∩ K*)| · |(H ∩ K*)/(H* ∩ K*)| ≤ |K/K*| · |H/H*| < ∞

and, dually, writing + in place of ∩ we have

|(H + K)/(H* + K*)| = |(H + K)/(H + K*)| · |(H + K*)/(H* + K*)| ≤ |K/K*| · |H/H*| < ∞.

So Inv*(G) is a sublattice of Inṽ (G). The proof that Inv*(G) is a sublattice of Inṽ (G) is obtained in the same
way as above, by writing H*, K* in place of H, K and H, K in place of H*, K*.

The next lemma will be used in the sequel (see Lemma 5.1).

Lemma 2.10. If H is a uniformly fully inert subgroup of the group G with inertial bound ib(H) = n, then

nH* ≤ H* ≤ H ≤ H*.

Hence, both H*/H and H/H* are bounded by n.

Proof. For each ϕ ∈ End(G), all subgroups ϕH have order dividing n modulo H, hence H*/H is bounded by
n and consequently nH* ≤ H. Also nH* is fully invariant and nH* ≤ H, hence nH* ≤ H*. Thus nH* ≤ H and
nH ≤ H*, so also H/H* is bounded by n.

Two natural questions concerning the sublattices Inv*(G) and Inv*(G) related to the sublattice Iu(G) arise.

Question 2.11. Let H be a subgroup of a group G.
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(I) Does H ∈ Iu(G) imply H ∈ Inv*(G), i.e., |H*/H| < ∞?
(II) Does H ∈ Iu(G) imply H ∈ Inv*(G), i.e., |H*/H| < ∞?

Similar questions can be posed replacing Iu(G) by Inv˜(G) and I(G). Our interest in these question stems
from the simple observation that a positive answer to any of these two items would imply that H ∈ Inṽ (G),
according to Lemma 2.9, i.e., our main conjecture is “locally" solved, as far as the speci�c subgroup H is
concerned. In case the answer is positive for all subgroups H of G, then G satis�es our main conjecture.

We will see in Section 5 that the answer to Question 2.11 is positive for some subgroups H of G for a large
classe of abelian groups G. In particular, it is true for all subgroups of torsion-free groups G of �nite rank.
However, in general the answer is in the negative, as the next examples show.

The �rst (easier) example shows that Inv*(G) ≠ Inv˜(G) ≠ Inv*(G).

Example 2.12. Let G =
⊕∞

i=0〈ei〉 with o(ei) = p for all i.
(a) if H = 〈e1〉, then H* = 0, so that H ∼ H*. On the other hand, H* = G, so that H*/H is in�nite. Therefore,

H ∈ Inv*(G), but H ∉ Inv*(G).
(b) if H =

⊕∞
i=1〈ei〉, then H* = G and H* = 0. Therefore, H ∼ H* while H/H* = H is in�nite, i.e., H ∈ Inv*(G),

but H ∈ ̸ Inv*(G).

According to Lemma 2.9, Inv*(G) ∪ Inv*(G) ⊆ Inṽ (G). The next example shows that this inclusion is
proper as well.

Example 2.13. Let
G =

⊕
i≥0
〈ei〉 ⊕

⊕
j≥0
〈fj〉 '

⊕
ℵ0

Z(p)⊕
⊕
ℵ0

Z(p2),

where o(ei) = p and o(fj) = p2 for each i, j ∈ N. Then the subgroup

H =
⊕
i≥1
〈ei〉 ⊕ 〈f1〉 ⊕

⊕
j≥2
〈pfj〉

is commensurable with the socle
G[p] =

⊕
i≥0
〈ei〉 ⊕

⊕
j≥0
〈pfj〉

of G which is a fully invariant subgroup of G. Therefore, H ∈ Inṽ (G), so H is uniformly fully inert in G, by
Corollary 2.2.

We show now that H* = G and H* = 0, so that both H*/H = G/H and H/H* = H are in�nite, i.e., the
uniformly fully inert subgroup H simultaneously fails to satisfy both (I) and (II) in Question 2.11. To see that
H* = G note that f1 can be sent by appropriate endomorphisms of G to any other element of G; so H* = G. To
check that H* = 0 assume, by way of contradiction, that 0 ≠ x ∈ H*. If x has order p2, it generates a cyclic
summand, so it can be sent to e0 ∉ H (or to f0 ∈ ̸ H) by an appropriate endomorphism of G, contradicting
the full invariance of H* and the inclusion H* ≤ H. If x has order p, either it has height 0, in which case it
generates a cyclic summand, so it can be sent to e0 ∉ H, or x = py. In the latter case y generates a cyclic
summand and can be sent to f0 by an appropriate endomorphism ϕ of G. Hence, ϕ(x) = ϕ(py) = pf0 ∈ ̸ H,
again a contradiction.

As mentioned above, the subgroup H in Example 2.13 is commensurable with a fully invariant subgroup
of G (namely, G[p]). More precisely, it was proved in [24] that every fully inert subgroup of a direct sum of
cyclic p-groups has this property. Actually, the proof of this fact in [24] produces in the general case a fully
invariant commensurable subgroup smaller than H* or H*. Another similar example is given in [24, Example
3.11].

Let us see now a further example which has an impact in the non-abelian context.
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Example 2.14. Let G =
⊕

i∈Z〈ai〉with 〈ai〉 ' Z(p2) and H = 〈a0〉 ⊕
⊕

i≠0,1〈pai〉. Then clearly H is commen-
surable with G[p] = pG =

⊕
i∈Z〈pai〉 the socle of G. Let ϕ be the automorphism of G such that ϕ(ai) = ai+1

for each i (Bernoulli shift). Then, for all j, we have aj = ϕj(a0) ∈ ϕj(H) ≤ H* hence H* = G.
Therefore, H*/H is in�nite and the same occurs to H/H*. In fact, since ϕ is invertible, we must have H* =

ϕj(H*) for all j and clearly ϕj(H*) ≤ ϕj(H). The elements in ϕj(H) have (j + 1)-component equal 0. Thus
H* ≤

⋂
j ϕ

j(H) = {0} so that H/H* is in�nite.
Finally, the subgroup G− =

⊕
−i∈N〈ai〉 is ϕ-inert but not uniformly fully inert, as

|ϕn(G−)/ϕn(G−) ∩ G−| = |ϕn(G−)/G−| = pn

for each n ∈ N.

Remark 2.15. Turning back to the non-abelian context, we note that De�nitions 1.1, 1.2, 1.3, 1.5, Proposition
2.1, Lemmas 2.3, 2.4 and Corollary 2.5 can be easily formulated or carried out in this general context.
(a) In the language of non-commutative groups, the argument of Example 2.14 proves exactly that in the

wreath product Z(p2) oZ ' Go 〈ϕ〉 a subgroupmay be commensurable with a normal subgroup even if
it is not commensurable neither with its normal closure nor with its normal core. Moreover, the subgroup
G− is inert inG (inBelyaev’s terminology) but not uniformly inert (for a similar example see also [5],where
a quotient of this group is considered).

(b) The paper [4] provides an example of a nilpotent p-group G with the property that each subgroup of G
is commensurable with a normal subgroup even if there are subgroups H of G which do not have the
property that |H : HG| is �nite and also subgroups H which do not have the property that |HG : H| is
�nite. Here, as usual, HG (resp. HG) denotes the normal core (resp. normal closure) of H in G.

3 Known facts for divisible groups and completely decomposable
groups

3.1 The chain (*) for divisible groups

We consider now the chain (*) of sublattices of L(G) when G is a divisible group. Fully inert subgroups of di-
visible group have been studied in [16] and somemore details have been furnished in [8]. From [8, Proposition
5.6] and [16, Theorem 4.9] we get the following

Example 3.1. For the torsion-free divisible group of �nite rankQn the following holds:

{{0},Qn} = Inv(Qn) = Inv∼(Qn) = Iu(Qn) ( I(Qn)

and I(Qn) consists of the homogeneous completely decomposable groups of rank n, i.e., of those subgroups
of the form H1 ⊕ . . . ⊕ Hn, where the Hi’s are all isomorphic to a �xed subgroup ofQ.

More generally, for divisible groups the picture is the following.

Theorem 3.2. [8, Theorem 5.13, Corollary 5.14] Let D be a divisible group. Then Inv∼(D) = Inv∼(t(D))∪{D} =
Iu(D). Furthermore, Iu(D) = I(D) if and only if either r0(D) = 0, or r0(D) = ∞.

In other words, for a divisible group D the following are equivalent:

0 < r0(D) < ∞ ⇔ Inṽ (D) ( I(D) ⇔ Iu(D) ( I(D)

and in all cases Inv∼(D) = Iu(D), thus supporting Conjecture 1.6.
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3.2 The chain (*) for completely decomposable groups

A completely decomposable group is a torsion-free group which is isomorphic to a direct sum of rational
groups, i.e., of subgroups of the rational groupQ. We refer to [21, Chapter 12, Section 1] for the basic notions
of characteristic and type and for their properties, and for the fundamental fact proved by Baer that the types
are in bijection with the isomorphism classes of the rational groups, thus providing their classi�cation.

Here we recall just few things. A characteristic is a sequence of non-negative integers or symbols ∞ in-
dexed by the prime numbers

χ = (h2, h3, . . . , hp , . . .).

Two characteristics are declared equivalent if they have the same ∞’s and �nitely many di�erences in the
other entries. A type is the equivalence class of a characteristic with respect to this equivalence relation (our
notation is slightly di�erent from that in [21], where di�erent brackets are used):

t = [χ] = [h2, h3, . . . , hp , . . .].

Given two characteristics χ1 = (kp)p and χ2 = (hp)p and the two corresponding types t1 and t2, their products
are de�ned by

χ1 · χ2 = (k2 + h2, k3 + h3, . . . , kp + hp , . . .)

t1 · t2 = [k2 + h2, k3 + h3, . . . , kp + hp , . . .]

where∞+n = ∞and∞+∞ = ∞. The inequality χ1 ≥ χ2 is de�ned pointwise; accordingly, t1 ≥ t2 for the types
means that the same inequality holds for two suitable characteristics representing them.With these orders the
characteristics form a complete distributive lattice, while the types form a non-complete distributive lattice
(e.g., the sequence of types tn = [n, n, . . . , n, . . .] (n ≥ 1) has no supremum).

If t1 ≥ t2 and χ1 ≥ χ2 represent these types, the colon of the two types is given by

t1 : t2 = [k2 − h2, k3 − h3, . . . , kp − hp , . . .]

where ∞ − n = ∞ and∞ −∞ = ∞.
The type t = [h2, h3, . . . , hp , . . .] is idempotent if, for every p, either hp = 0 or hp = ∞. The reduced type

t0 of the type t is obtained from t replacing all the hp’s di�erent from∞ by 0; obviously t0 = t : t.
If G is a torsion-free group, the characteristic (or height sequence) of an element a ∈ G is the sequence

of the p-heights of a:
χ(a) = (h2(a), h3(a), . . . , hp(a), . . .)

where hp(a) is the maximal k ∈ N such that a ∈ pkG, if such a k does exist, or ∞ otherwise. The type t(a) of
a is the type represented by χ(a).

The type t(A) of a rational group A is, by de�nition, the type t(a) of any 0 ≠ a ∈ A. If A ≤ B are rational
groups, then t(A) ≤ t(B) and t0(A) ≤ t0(B).

Given two rational groups A and B,Hom(A, B) is naturally isomorphic to a rational group and t(A) � t(B)
implies Hom(A, B) = 0, while t(A) ≤ t(B) implies t(Hom(A, B)) = t(A) : t(B).

For every rational group A of type t, the endomorphism ring Hom(A, A) is isomorphic to A0, the rational
group of reduced type t0, andHom(A0, A)) ∼= A. From this fact it is easy to deduce the behavior of the chain (*)
for rational groups. We include detailed proofs as a prelude to the next results on completely decomposable
groups. In particular, Proposition 3.3 should be compared with Corollary 3.5.

Proposition 3.3. Let H be a non-zero subgroup of a rational group G. Then
(1) H ∈ I(G), i.e., all non-zero subgroups are fully inert in G;
(2) H ∈ Inv(G) if and only if t0(G) = t0(H), i.e., pG = G implies pH = H;
(3) Inv(G) = Inṽ (G) = Iu(G);
(4) Inv(G) = I(G) if and only if pG ≠ G for all p, i.e., the type t(G) contains no∞’s.
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Proof. Recall that an endomorphism ϕ of G is induced by the multiplication by a rational number m/n with
(m, n) = 1, where n is a product of primes p such that G = pG, since Hom(G, G) ∼= G0 as rings.

(1) Let ϕ : G → G be as above. Then (H + ϕH)/H ∼= (nH + mH)/nH; being m, n coprime, H = nH + mH,
therefore (H + ϕH)/H ∼= H/nH, which is �nite.

(2) First we note that t0(G) = t0(H) precisely when pG = G implies pH = H, as the inequality t0(H) ≤ t0(G)
is always true.

If t0(H) ≠ t0(G), i.e., pG = G and pH < H for some prime p, then the endomorphismϕ of G induced by the
multiplication by 1/p does not satisfy ϕH ≤ H, so H is not fully invariant. Conversely, assume that pH = H
for all p such that pG = G and let ϕ : G → G be as above. The equality nH = H clearly implies that ϕH ≤ H,
so H is fully invariant.

(3) Assume thatH ∈ Iu(G). According to (2), to prove thatH ∈ Inv(G) we have to check that t0(G) = t0(H).
Assume for a contradiction that pG = G and pH < H for some prime p. Then the endomorphism ψn of G
induced by the multiplication by 1/pn satis�es (H + ψnH)/H ∼= H/pnH, whose cardinality tends to ∞.

(4) From (1) and (2) we get that Inv(G) = I(G) if and only, for every non-zero subgroup H of G, pG = G
implies pH = H. But if pG = G, G certainly contains subgroups H such that pH < H, so pG ≠ G for all p.

In the sequel we address the class of completely decomposable groups. For general information on these
groups we refer to [21, Chapter 12, Section 3].

The following theorem concerning the chain (*) for completely decomposable groups of �nite rank com-
bines results from three papers, namely [6–8] (note, that (1)⇒ (3) is trivial, while (3)⇒ (4) holds according to
Proposition 2.1). First, Chekhlov [6, Theorem 2] established the equivalence of (2) and (3). This triggered the
equivalence (2)⇔ (3)⇔ (4) proved in [8, Theorem 5.10]. Recently, Chekhlov [7, Theorem 1] proved that the
conditions (2) and (3) are equivalent to (1).

Theorem 3.4. For a completely decomposable group of �nite rank G = G1 ⊕ . . . ⊕ Gn, where Gi has rank 1 for
each i = 1, . . . , n, the following are equivalent:
1. each fully inert subgroup H of G has �nite index in its fully invariant hull H*, i.e., I(G) = Inv*(G);
2. t(Gi) contains no∞ for each i, and two types t(Gi) and t(Gj) are either equal or incomparable;
3. I(G) = Inṽ (G), i.e., every fully inert subgroup is commensurable with a fully invariant subgroup;
4. I(G) = Iu(G), i.e., every fully inert subgroup is uniformly fully inert.

It follows from this theorem that a uniformly fully inert subgroup H of a completely decomposable groups of
�nite rank has �nite index in its fully invariant hull H*. In Corollary 5.3 we will obtain the notably stronger
result that this holds for an arbitrary torsion-free group of �nite rank.

Let us recall also the concluding result for homogeneous completely decomposable groups G = A1⊕ . . .⊕
An of �nite rank, de�ned by the property that the subgroups Ai are all isomorphic; their common type is then
the type t(G) of G.

Corollary 3.5. [6, Corollary 3] Let G be a homogeneous completely decomposable group of �nite rank. Then:
1. a fully inert subgroup H of G is commensurable with a fully invariant subgroup of G if and only if pH = H

for every prime p such that pG = G;
2. every fully inert subgroup of G is commensurable with a fully invariant subgroup of G if and only if pG ≠ G

for every prime p, i.e., t(G) contains no∞.

Note that Corollary 3.5 extendsProposition 3.3 for homogeneous completely decomposable groups from rank 1
to arbitrary �nite rank.While (1) is an immediate corollary of the equivalence of Theorem3.4, item (2) provides
something that goes beyond that result, as one �nds a complete description of the family Inṽ (G).

Recently Chekhlov extended in [7] Theorem 3.4 to completely decomposable groups of arbitrary rank, but
with only a �nite number of homogeneous components (i.e., the maximal homogeneous summands). First
he showed that it is enough to consider reduced completely decomposable groups, and for these groups he
proved the following
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Theorem 3.6. [7, Theorem 2] Assume that G = G1 ⊕ . . . ⊕ Gn is a reduced completely decomposable group,
where Gi is a homogenous component for each i = 1, . . . , n. Then the following are equivalent:
1. I(G) = Inv∼(G), i.e. every fully inert subgroup of G is commensurable with a fully invariant subgroup;
2. if a homogeneous component Gi has �nite rank, then:

(a) t(Gi) contains no∞;
(b) if t(Gi) < t(Gj) for some j, then rk0(Gj) ≥ ℵ0;
(c) under the hypothesis of (b), if there are no types t(Gk) between t(Gi) and t(Gj), the type t(Gj) : t(Gi) is

idempotent.

We conjecture that one may add to the equivalent conditions of Theorem 3.6 also the equality I(G) = Iu(G),
i.e., every fully inert subgroup is uniformly fully inert (see Question 7.4 at the end of the paper).

4 Orsatti groups, groups with �nite ranks and narrow groups
In this section we introduce three classes of abelian groups which are strictly related to each other, namely,
the Orsatti groups introduced in [28], the narrow groups de�ned in [15], and the groups with �nite ranks
already de�ned in the Introduction.

In the sequelwemakeuse of a functorial topology, the so callednatural topology, orZ-topology, according
to some authors (see for more details and background [21, 27]). It is de�ned as follows: for an abelian group
G the natural topology topology νG has as basic neighborhoods of 0 the subgroups nG = {ng | g ∈ G},
running n over the set of all positive integers. Clearly, νG is Hausdor� precisely when the �rst Ulm subgroup
G1 =

⋂
n>0 nG of G is trivial. It is easy to see that this is equivalent to asking G to be residually �nite [14].

Orsatti investigated in [28] the class of abelian groups G such that (G, νG) is compact. These groups are
named Orsatti groups in [12, 20], where the class of these groups is denoted by O. The description of Orsatti
groups G, obtained in [28], is as follows:

G =
∏
p
Jkpp ⊕ Fp ,

where Jp denotes the compact group of p-adic integers, kp ∈ N and Fp is a �nite abelian p-group. In other
words, G is a direct product of �nitely generated Jp-modules, for p ∈ P. It is immediate to verify that an
Orsatti group G satis�es the property that G/nG is �nite for every integer n. The Orsatti groups have also
the following remarkable property established in [28] under the assumption of the Generalized Continuum
Hypothesis: they are precisely the abelian groups G that admit a unique compact group topology, namely νG.
Since νG is functorial, every ϕ ∈ End(G) is automatically continuous.

Inspired by Orsatti’s de�nition of the class O, one can consider the class of abelian groups G satisfying
the property that G/nG is �nite for every integer n; in topological terms, (G, νG) is totally bounded. It is well
known that for residually �nite groups this amounts to say that the completion of (G, νG) is compact. These
groups are named according to the following

De�nition 4.1. [15] An abelian group G is said to be narrow whenever G/nG is �nite for every natural number
n > 0. We denote byN the class of all narrow groups.

The classN of narrow groups was introduced in [15] as an example of a large class of abelian groups G such
that every endomorphismofG has adjoint algebraic entropy zero, andwas alsohighlighted in [14]. The adjoint
algebraic entropy is the natural dual of the algebraic entropy for endomorphisms of abelian groups, deeply
investigated in [13, 18] (see also the survey [23]). In [15] the following characterizations of narrow groups are
presented, involving the family C(G) of all subgroups of �nite index of G.

Theorem 4.2. [15, Theorem 3.3] For an abelian group G the following conditions are equivalent:
(a) G is narrow;
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(b) G/pG is �nite for every prime number p;
(c) the family C(G) is countable;
(d) |C(G)| < 2ℵ0 ;
(e) C(G) contains a countable decreasing co�nal chain;
(f) the natural topology νG of G coincides with the pro�nite topology of G.

In the next theorem we provide some more properties of the narrow groups. In particular, it gives various
reduction to relevant classes of groups, as reduced groups, torsion and torsion-free groups.

Theorem 4.3. The following facts hold for the classN of narrow groups.
(a) N is closed under taking quotients, pure subgroups and extensions.
(b) N contains the class of divisible groups and the class of Orsatti groups; moreover G ∈ N if and only if

G/d(G) ∈ N.
(c) G ∈ N if and only if G/G1 ∈ N.
(d) G ∈ N if and only if both t(G) and G/t(G) belong toN.
(e) If G is a reduced torsion group, then G ∈ N if and only if rp(G) < ∞ for all primes p, equivalently, all

p-primary components are �nite.
(f) N contains the groups with �nite ranks;
(g) If G is a reduced torsion-free group, then G ∈ N if and only if it is a pure subgroup of a compact group of

the form
∏
p J

kp
p , where the kp’s are non-negative integers.

Proof. (a) Assume G ∈ N, H ≤ G and n ∈ Z. Then (G/H)/n(G/H) ∼= G/(nG + H), which is an epic image of
G/nG, so it is �nite, hence G/H ∈ N.

If H is pure in G, then H/nH = H/(H ∩ nG) ∼= (H + nG)/nG, which is �nite as a subgroup of G/nG, hence
also H ∈ N.

Finally, consider the exact sequence 0 → A → B → B/A → 0, where A, B/A ∈ N. It gives rise the exact
sequence

0→ (A + nB)/nB → B/nB → B/(A + nB)→ 0,

where (A + nB)/nB ∼= A/(A ∩ nB) is �nite, as an epic image of A/nA, and B/(A + nB) ∼= (B/A)/n(B/A) is also
�nite. Hence also B ∈ N.

(b) IfD is a divisible group, thenD = nD for all n ∈ Z, hence triviallyD ∈ N. Thismakes the �nal assertion
obvious, as the class N is closed under taking �nite direct sums and quotients, according to item (a). To see
that an Orsatti group belong toN it is enough to consider the local case, which immediately follows from the
fact that Jp/pkJp is �nite for all k ≥ 0.

(c) is trivial in view of (a), as G/nG ∼= (G/G1)/(nG/G1) for all n ∈ Z.
(d) follows from item (a), taking into account that t(G) is pure in G.
(e) Write G =

⊕
tp(G), the primary decomposition of G. For each n ∈ Z, G/nG is a quotient of a direct

sum of �nitely many tp(G)’s. Thus, using (a), we deduce that G ∈ N if and only if tp(G) ∈ N for all primes p.
So we can assume that G is a reduced p-group for some prime p. Pick a basic subgroup B of G. If G ∈ N, then
G/pG ∼= B/pB is �nite, henceforth B, as a direct sum of cyclic p-groups, must be �nite, and consequently
G = B is �nite. The converse is trivial.

(f) Making use of item (d), we can consider separately the cases when G is torsion-free and when G is
torsion. Moreover, since the class of groups of �nite rank is closed under taking subgroups, we can assume,
in view of (b), that the group G is reduced. If G is a torsion-free group of �nte rank, then the fact that G ∈ N

(i.e., G/nG is �nite for each n > 0) is proved in [1, Theorem 0.1]. The torsion case follows directly from item
(e), since a reduced p-group of �nite rank is �nite.

(g) Suppose thatG ∈ N is a reduced torsion-free group. Thus (G, νG) is aHausdor� totally bounded group.
Then its completion K is a compact group. Moreover, for every n > 0 the closure of the νG-open subgroup nG
coincides with nK (the density of nG in nK is obvious, so it su�ces to note that nK is compact, hence closed,
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as a continuous image of the compact group K under the multiplication by n). Since nG is closed in G, one
has nG = G ∩ nG = G ∩ nK, this proves that G is a pure subgroup of K.

Since, by the de�nition of completion, the group K has as basic neighbourhoods of 0 the �nite-index
subgroups nK = nG, this implies that (K, νK) is compact. Now Orsatti’s theorem [28] applies to provide a
topological isomorphism of K with a group of the form

∏
p J

kp
p , where the kp’s are non-negative integers.

Conversely, a pure subgroup of a group of this form belongs toN, by items (a) and (b).

Item (g) of the above theorem shows that if a torsion-free reduced group G belongs to N, then |G| ≤ 2ℵ0 . On
the other hand, all non-trivial groups of the form G =

∏
p J

kp
p obviously belong to N and are torsion-free,

reduced and of size 2ℵ0 .
The classN of narrow groups is not closed under taking arbitrary subgroups; for instance, Jp ∈ N, but a

free subgroup of Jp of in�nite rank does not belong toN (obviously, a free abelian group belongs toN if and
only if has �nite rank). The next corollary determines the hereditary core of N, namely, the largest subclass
ofN closed under taking arbitrary subgroups.

Corollary 4.4. All subgroups of a group G belong toN if and only if G is a group with �nite ranks.

Proof. By the de�nition of rank, it is obvious that the class of groups with �nite ranks is closed under taking
subgroups, and item (b) in Theorem4.3 ensures that these groups are narrow. So, assuming that all subgroups
of a group G belong toN, we must prove that rk0(G) and rkp(G) are �nite for all primes p. The divisible part
d(G) is a group with �nite ranks, otherwise it contains either a free group of in�nite rank, or an elementary
p-group of in�nite dimension, which fail to be narrow. Hence we can assume that G is reduced. By item (d),
it is enough to separately check t(G) ∈ N and G/t(G) ∈ N. Item (e) gives the conclusion for t(G), while if G is
torsion-free it must have �nite rank, by the same argument used for divisible groups.

We denote the subclass ofN consisting of the groupswith �nite ranks byFR. We have seen that the following
inclusion holds:

FR ∪ O ⊆ N.

Note that a countable group G belongs to O if and only it is �nite, since the in�nite compact groups have
size at least 2ℵ0 . Hence, the above inclusion is strict, witnessed by the group

⊕
ℵ0 Q (or any other countably

in�nite divisible group of in�nite torsion-free rank). The intersection FR ∩O consists of the �nite groups.

5 Positive answers to Conjecture 1.6
In this section we prove that Conjecture 1.6 holds for groups with �nite ranks and for Orsatti groups, i.e., for
groups in the class FR∪O considered above.We start with a result regarding uniformly fully inert subgroups
which are narrow.

Lemma 5.1. Let H be a uniformly fully inert subgroup of the group G.
1. if H ∈ N, then H/H* is �nite;
2. if furthermore H* is torsion-free and H has �nite rank, then also H*/H is �nite.
In both cases, H is commensurable with a fully invariant subgroup of G.

Proof. 1. If H has inertial bound n, then the quotient H/H* is bounded by n by Lemma 2.10. As bounded
quotients of narrow groups are �nite, H/H* is �nite.

2. By Lemma 2.10, the quotient H*/H is bounded by n, and nH*, as a subgroup of H, has also �nite rank.
Since H* ∼= nH*, H* has �nite rank, so it is narrow. By the same argument as above, H*/H is �nite.
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Remark 5.2. It is not possible to eliminate the hypothesis that H* is torsion-free in item (2) of Lemma 5.1.
This is witnessed by G = Z ⊕

⊕
i≥0〈ei〉 with o(ei) = p for all i. Indeed, if H = Z, then H* = G and H* = pG,

hence H*/H ∼=
⊕

i≥0〈ei〉 is in�nite.

From Lemma 5.1 we immediately derive the following

Corollary 5.3. If H is a uniformly fully inert subgroup of �nite rank of a torsion-free group G, then both H/H*
and H*/H are �nite. Consequently, H is commensurable with a fully invariant subgroup of G.

Lemma 5.1 enables us to prove Conjecture 1.6 for arbitrary groupswith �nite ranks; note that this fact provides
an immediate proof of the implication (3)→ (1) in [8, Theorem 5.13].

Proposition 5.4. If G ∈ FR, then Inṽ (G) = Iu(G) = Inv*(G).

Proof. Let H be a uniformly fully inert subgroup of G ∈ FR. Then H ∈ FR as well, according to Corollary
4.4. Now Lemma 5.1 implies that H/H* is �nite, i.e., H ∈ Inv*(G). By Lemma 2.9, this proves that Inṽ (G) =
Iu(G) = Inv*(G).

The next example shows the existence of a torsion-free group G of in�nite rank with Inṽ (G) = Iu(G) that is
neither free nor divisible.

Example 5.5. For the group Jp of the p-adic integers it follows that

Inv(Jp) = Inṽ (Jp) = Iu(Jp). (5.1)

Proof. As fully invariant subgroups of Jp are ideals of the ring Jp, it follows that Inv(Jp) = {0}∪{pnJp | n ≥ 0}.
Let now H be a non-zero uniformly fully inert subgroup of Jp. Since H*/H is bounded, by Lemma 2.10, and
H* = pkJp for some k ≥ 0, it follows that pnJp ≤ H for some n ≥ 0. But the only subgroups between pkJp
and pnJp are of the form pmJp for some k ≤ m ≤ n, as Jp/pnJp is a �nite p-group. So we have proved that
Inv(Jp) = Iu(Jp).

For a discussion on the issue of whether one can add to the chain of equalities (5.1) also I(Jp), see Questions
7.8 and 7.9.

The preceding Example 5.5 is the starting point to prove the following results concerning local Orsatti
groups. By a local Orsatti groupwemean an Orsatti group which is a (�nitely generated) Jp-module for some
p.

Proposition 5.6. If G is a local Orsatti group, then every uniformly fully inert subgroup is either �nite or of �nite
index, therefore Inṽ (G) = Iu(G).

Proof. First we prove the claim in the torsion-free case. In [24] it is proved that a non-zero submodule H of a
free Jp-module A of �nite rank r belongs to I(G) if and only if H has �nite index in A. Here we must assume
that H is just a non-zero subgroup, and not a submodule, of the free Jp-module A, but we have the stronger
assumption that H is uniformly fully inert; we want to prove that still H has �nite index in A. The case r = 1
is covered by Example 5.5. Let A =

⊕
1≤i≤r Ai, where r > 1 and Ai ∼= Jp for all i. Let πi : A → Ai ≤ A be the

canonical projections.
Now we prove that H ∩ Ai ≠ 0 for all i. This is ensured, by Corollary 2.7(b) applied to ψ = πi, for all i

with πi(H) ≠ 0 (as πi(H) ≠ 0 implies that πi(H) is in�nite, since Ai ∼= Jp is torsion-free). Since H ≠ {0}, there
exists an index j such that πj(H) ≠ 0. For every index i �x an isomorphism ϕi : Aj → Ai; then ψi = ϕi · πj
is a homomorphism A → Ai such that πi(H) ≠ 0, so πi(H) is in�nite, hence Lemma 2.7(b) can be applied for
ψ = ψi to entail H ∩ Ai ≠ 0.

From Corollary 2.7(a) and Example 5.5 we derive that H ∩ Ai = pniAi, with ni > 0 for all i ≤ r, so H ≥⊕
1≤i≤r p

niAi. The last group is of �nite index in A, so such is H.
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Let now G = A ⊕ F be a local Orsatti group, where A is as above and F is a �nite p-group, and let H be
a non-zero uniformly fully inert subgroup of G. If H ∩ A = 0, then H embeds in F, so it is �nite. Otherwise,
H ∩ A ≠ 0 has �nite index in A, by Corollary 2.7 (a) and what proved above, therefore G/H, as an epic image
of (A/A ∩H)⊕ (F/F ∩H), is �nite. Thus we conclude that H is either �nite, or of �nite index in G, as desired,
hence Inṽ (G) = Iu(G).

We are now in the position to prove the main result of this section.

Theorem 5.7. Auniformly fully inert subgroupH of anOrsatti group G =
∏
p Gp, where Gp is a �nitely generated

Jp-module, is commensurable with a fully invariant subgroup of G.

Proof. Let n be the inertial bound of H and P1 = {p ∈ P : p|n}, P2 = {p ∈ P : p| ̸ n}. Let us set

G1 =
∏
p∈P1

Gp and G2 =
∏
p∈P2

Gp .

Then G = G1⊕ G2 and each Gi is a fully invariant subgroup of G. Since n is invertible modulo p ∈ P2, we can
apply Proposition 2.8 and derive, using its notation, that H = H1 ⊕ H2 with H2 a fully invariant subgroup of
G2. In order to conclude that H ∈ Inṽ (G), according to item (2c) in Proposition 2.8, it is su�cient to check
that H1 ∈ Inṽ (G1).

For every p ∈ P1, let πp : G → Gp be the projection. Applying again Proposition 2.8 to the subgroup H1
of G1, we deduce that each πp(H1) is a uniformly fully inert subgroup of Gp for all p ∈ P1. By Proposition 5.6,
we know that πp(H) is either �nite, or of �nite index in Gp. The hypothesis that H is uniformly fully inert in
G, by using the projections πp : G → Gp (p ∈ P1), yields:⊕

p∈P1

nπp(H1) ≤ H1 ≤
⊕
p∈P1

πp(H1).

Being P1 a �nite set, we obtain that H1 ∈ Inṽ (G1).

6 When Iu(G) ( I(G): fully inert but not uniformly fully inert
subgroups

The goal of this section is to prove that the examples of p-group G and torsion-free Jp-module X, exhibited in
[24] and [25] respectively, which demonstrate the strict inclusions

Inṽ (G) ( I(G) and Inṽ (X) ( I(X),

also provide the proof of the sharper strict inclusions

Iu (̃G) ( I(G) and Iu (̃X) ( I(X).

Hence these two examples do not disprove our Conjecture 1.6.

Recall that a basic subgroup B of a p-group G is called semi-standard if B =
⊕

n≥1 Bn, with Bn either zero
or isomorphic to the direct sum of fn copies of Z(pn) for some positive integers fn. The integers fn coincide
with the so-called Ulm-Kaplansky invariants (of �nite index) of B, and the direct summands Bn are called the
homogeneous components of B.

In [24, Theorem 4.2] it is proved that, given a reduced separable p-group G of cardinality 2ℵ0 with semi-
standard basic subgroup B, and with endomorphism ring End(G) = Jp · 1G ⊕ Es(G), where Es(G) is the two-
sided ideal of the small endomorphisms (see [21, Chapter 7, Section 3] for its de�nition), the socle B[p] of the
basic subgroup B is in�nite and fully inert, but it fails to be commensurable with a fully invariant subgroup
of G. The crucial point in the proof is that B is countable and any fully invariant non-trivial subgroup of G has
cardinality 2ℵ0 .
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Thus the proper inclusion Inṽ (G) ( I(G) is proved for such a group G, and it is natural to ask whether
the subgroup B[p] belongs to Iu(G), i.e., whether it is uniformly fully inert. In order to prove that this fails to
be true, we need the following lemma.

Lemma 6.1. Let G be an unbounded p-group with a basic subgroup B such that rk(G/B) ≥ rk(B), and let
B =

⊕
m Bm be the direct decomposition of B into homogeneous components. Then, for every integer n ≥ 1, there

exists an endomorphism ϕ of G such that its restriction to B1⊕ · · ·⊕Bn is injective, and ϕ(B1⊕ · · ·⊕Bn)∩B = 0.

Proof. Since G/B ∼=
⊕

α Z(p
∞) and rk(G/B) ≥ rk(B), there exists a subgroup H/B of G/B such that H/B ∼= B.

Let
B =

⊕
i∈I
〈bi〉 and H/B =

⊕
i∈I
〈hi + B〉,

with 〈bi〉 ∼= 〈hi + B〉 for all i ∈ I. If the common order of bi and hi + B is pmi (mi ≥ 1), then pmihi ∈ B ∩ pmiG =
pmiB, by the purity of B in G; hence there exist elements yi ∈ B such that pmi (hi − yi) = 0 for all i ∈ I. Set
xi = hi − yi; then

o(xi) = pmi . (6.1)

Indeed, obviously, pmi xi = 0. If pdxi = 0 for some 0 ≤ d < mi, then pdhi = pdyi ∈ B implies d = 0, as
o(hi + B) = pmi in H/B. This proves (6.1).

With L = 〈xi : i ∈ I〉 =
∑

i〈xi〉 we claim that

B ∩ L = {0} (6.2)

and the elements xi (i ∈ I) are independent, i.e.,

L =
⊕
i∈I
〈xi〉. (6.3)

Indeed, if
∑

i∈F aixi ∈ B, where F is a �nite subset of I and ai ∈ Z for all i ∈ F, then∑
i∈F

aihi =
∑
i∈F

aiyi ∈ B (6.4)

implies that
∑

i∈F ai(hi + B) = 0, hence pmi divides ai for all i ∈ F, therefore aixi = 0, in view of (6.1). This
proves both (6.2) and (6.3).

Note that (6.3) obviously provides an isomorphism

η : B → L (6.5)

by sending the generators bi of B to the corresponding generators xi of L. Moreover, η(B) = L trivially meets
B in view of (6.2).

To conclude, extend the restriction

ξ := η �B1⊕···⊕Bn : B1 ⊕ · · ·⊕ Bn → G

of the isomorphism (6.5) to an endomorphism ϕ of Gmaking use of the well-known fact that B1 ⊕ · · ·⊕ Bn is
a direct summand of G, so ξ can be extended by sending to 0 a complement of B1 ⊕ · · · ⊕ Bn. Then ϕ is the
desired endomorphism, as ϕ �B1⊕···⊕Bn= ξ is injective and ϕ(B) ≤ L trivially meets B.

We can now prove that in Theorem 4.2 in [24] the socle B[p] of the basic subgroup B is not uniformly fully
inert.

Proposition 6.2. Let G be an uncountable reduced separable p-group G with semi-standard basic subgroup
B, and with endomorphism ring End(G) = Jp · 1G ⊕ Es(G). Then the socle B[p] of B is fully inert in G, but it is
not uniformly fully inert.
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Proof. The subgroup B[p] is fully inert, by [24, Theorem 4.2].
To prove that B[p] /∈ Iu(G) we must show that for every k ∈ N there exists an endomorphism ϕ of G,

dependingon k, such that |(B[p]+ϕ(B[p]))/B[p]| ≥ k. Choose apositive integerN such that |(B1⊕· · ·⊕Bn)[p]| ≥
k. Since B is countable, one has

|G| = |G/B| = rk(G/B) > |B| ≥ rk(B).

Therefore, Lemma 6.1 apples to produce an endomorphism ϕ of G such that its restriction to B1 ⊕ · · ·⊕ Bn is
injective, and ϕ(B1 ⊕ · · · ⊕ Bn) ∩ B = 0. Then ϕ satis�es the desired inequality |(B[p] + ϕ(B[p]))/B[p]| ≥ k,
since ϕ(B1 ⊕ · · ·⊕ Bn)[p] ∼= (B1 ⊕ · · ·⊕ Bn)[p] and ϕ(B1 ⊕ · · ·⊕ Bn)[p] ∩ B[p] = 0.

The p-groups satisfying the requirements of Proposition 6.2 are the so-called Pierce-like groups; they were
�rst constructed in [29, Theorem 15.4]. The natural problem arises: does the equality Inṽ (G) = Iu(G) hold
true for the p-group G in Proposition 6.2?

We pass now to torsion-free Jp-modules. It is well known that the non-zero fully invariant submodules of
a torsion-free reduced Jp-moduleM are the obvious ones, that is, those of the form pkM for somenon-negative
k (see [26, Exercise 72(b)]).

In [25] it is proved that there exists a torsion-free Jp-module X containing a fully inert submoduleHwhich
is non-commensurable with pkX, for all non-negative k. The Jp-module X, furnished by a realization theorem
of commutative rings as endomorphism rings of Jp-modules (see [22, Theorem 4.1]), has its endomorphism
ring satisfying End(X) = Jp · 1X ⊕ E0(X), where E0(X) is the two-sided ideal of the endomorphisms with �nite
rank image. The required submodule H is any H ≤ X such that pX < H and both X/H and H/pX are in�nite.
Thus the proper inclusion Inṽ (X) ( I(X) is proved for such a Jp-module X.

We prove that the submodule H does not belong to Iu(X).

Proposition 6.3. Let X be a reduced torsion-free Jp-module with endomorphism ring End(X) = Jp ·1X⊕E0(X).
If a submodule H of X satis�es pX < H < X and both X/H, H/pX are in�nite, then H is is not uniformly fully
inert.

Proof. In order to prove that H /∈ Iu(X), it is enough to �nd for every k ∈ N an endomorphism ϕk of X, such
that

|(H + ϕkH)/H| ≥ k. (6.6)

Fix a k ∈ N and let π : X → X/pX be the canonical homomorphism. The subspace π(H) = H/pX of
the vector space X/pX splits, let X/pX = H/pX ⊕ K/pX, where K is a Jp-submodule of X containing pX. Our
hypotheses on H imply that both H/pX and K/pX are in�nite-dimensional. Let

H = {hi : i ∈ N} and K = {ki : i ∈ N}

be two sequences in H and K, respectively, such that the sets {π(hi)}i∈N and {π(kj)}j∈N are linearly indepen-
dent in the vector spaces H/pX and K/pX.

Choose n ∈ Nwith pn+1 ≥ k and letH0 be the Jp-submodule of X generated by h0, h1, . . . hn. By the choice
ofH, the submodule H0 is pure and free, so H0 = h0Jp⊕ · · ·⊕hnJp. As Jp, hence H0 as well, is pure-injective,
this yields that H0 is a direct summand of X. Therefore, the map sending h0, h1, . . . , hn, respectively, to the
elements k0, k1, . . . , kn of K can be extended to an endomorphism ϕk of X sending the complement of H0 to
zero. By the choice ofK,

(H + ϕkH)/H ∼= ((H + ϕkH)/pX)/(H/pX)

has cardinality pn+1 ≥ k. This proves that ϕk satis�es (6.6).

The next consequence of Proposition 6.3 shows that also for the module X, which provides an example for
the strict inequality Inṽ (X) ( I(X), the equality Inṽ (X) = Iu(X) of Conjecture 1.6 holds true.
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Theorem 6.4. Let X be the Jp-module of Proposition 6.3. Then any non-zero uniformly fully inert submodule K
of X is commensurable with a submodule of the form pkX for some non-negative k. Therefore Inṽ (X) = Iu(X).

Proof. Let us note that we can replace K, if necessary, by a subgroup of K which is commensurable with K.
Since K is uniformly fully inert the quotient K*/K is bounded, hence, for a suitable m > 0,

pmK* ≤ K* < K < K*.

In [25] it is proved that every non-zero fully invariant submodule of X is of the form pkX for some k ≥ 0, hence
there exist a minimal positive integer s and a maximal r > s such that

psX < K < prX.

Let d := r − s. If d = 1, then we intend to apply Proposition 6.3 to deduce that K ∈ Inṽ (X). To this end we
note that K is a uniformly fully inert submodule of prX as well since every endomorphism of prX (uniquely)
extends to an endomorphism of X. Hence, Proposition 6.3 applied to pr+1X < K < prX implies that either
prX/K or K/pr+1X are �nite, hence K ∈ Inṽ (prX). As prX is fully invariant in X, this yields K ∈ Inṽ (X) as
well.

Now assume d > 1 and the assertion true for all submodules K of X with

pvX < K < puX for some naturals u < v with v − u < d.

Using the fact that we can replace K by a subgroup of it which is commensurable with K, we can assume,
without loss of generality, that (K + pr+1X)/pr+1X is in�nite. Indeed, let K1 := K ∩ pr+1X and assume that
(K + pr+1X)/pr+1X ∼= K/K1 is �nite. Then K1 ∼ K and psX < K1 < pr+1X. As s − (r + 1) < d, K1 ∈ Inṽ (X), by
our inductive hypothesis. Hence, K ∈ Inṽ (X) as well.

From now on we assume that (K + pr+1X)/pr+1X is in�nite.
Let us see that if prX/(K + pr+1X) is �nite, then K ∈ Inv (̃X). Indeed, in such a case prX = pr+1X + K + F

for some �nitely generated subgroup F of X. Multiplying s − r − 1 times by p and replacing one gets prX =
psX + K + F = K + F, as K ≥ psX. Since F is �nitely generated, we deduce that prX/K, being isomorphic (as an
abelian group) to a quotient of F, is countable. As prX/K is a �nitely generated Jp-module and |Jp| = c, this
yields that prX/K is �nite. This implies that K ∈ Inṽ (X).

Fromnow onwe assume that prX/(K+pr+1X) is in�nite andwe shall see that this leads to a contradiction
with our assumption that K is uniformly fully inert. Our next step is adapting the proof of Proposition 6.3 to
obtain, for each positive integer n, an endomorphism ϕ of X such that |(K + ϕK)/K| ≥ n. To this end choose
elements prx1, . . . , prxn ∈ K which are independent modulo pr+1K, using the fact that (K + pr+1X)/pr+1X is
in�nite. The elements x1, . . . , xn generate a direct summand H of X. Now use the fact that prX/(K + pr+1X) is
in�nite, so there exist independent elements

pry1 + pr+1X, . . . , pryn + pr+1X ∈ prX/pr+1X

in the complement of (K + pr+1X)/pr+1X. The assignment which sends each element xi to yi, for 1 ≤ i ≤ n,
can be extended to an endomorphism ϕ of X which sends the complement of H to zero; then the desired
inequality |(K + ϕK)/K| ≥ n holds.

7 Conclusion
In this section we summarize the results concerning Conjecture 1.6 on uniformly fully inert subgroups ob-
tained up to now, and we list a series of open questions.

7.1 The state of art

For several classes of groups G the equality Inṽ (G) = I(G) holds, hence, a fortiori, also the equality Inṽ (G) =
Iu(G) of Conjecture 1.6 holds. The list of these classes includes:
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– free groups (see [19]);
– direct sums of cyclic p-groups (see [24]);
– divisible groups D such that r0(D) is either zero or ∞ (see Theorem 3.2);
– completely decomposable groups of �nite rank G such that their rank one summands have types which

are either equal or incomparable and contain no ∞’s (see Theorem 3.4).

Furthermore, for divisible groups and completely decomposable groups of �nite rank not satisfying the con-
ditions above, we know that the equality of Conjecture 1.6 still holds.

On the other hand, the known examples of groups G such that the strict inequality Inṽ (G) ( I(G) holds,
do not furnish counter-example to Conjecture 1.6 (see Section 6).

Finally, there are groups G for whichwe only know that the equality of Conjecture 1.6 holds. These groups
are:
– the torsion-free groups of �nite rank (see Proposition 5.4);
– the Orsatti groups (see Theorem 5.6).

7.2 Open questions

For further investigation of Conjecture 1.6 we propose the following questions.

The �rst series of questions concerns Theorem 5.7 asserting that an Orsatti group G satis�es our main
conjecture, i.e., every uniformly fully inert subgroup of G is commensurable with a fully invariant subgroup.

Question 7.1. Can Theorem 5.7 be extended to the groups of the form G = JNp ? What about arbitrary in�nite
powers Jκp?

Question 7.2. Can Theorem 5.7 be extended to splitting Jp-modules?

Question 7.3. Can we extend Theorem 5.7 from Orsatti groups to arbitrary algebraically compact groups, or,
more generally, to cotorsion groups, which have a decomposition as direct products of p-primary components ?

The next question concerns the class of completely decomposable groups. A positive answer was conjectured
after Theorem 3.6.

Question 7.4. Are the equivalent conditions of Theorem 3.6 equivalent also to the equality I(G) = Iu(G), i.e.,
every fully inert subgroup is uniformly fully inert?

The following question was posed after Proposition 6.2.

Question 7.5. Does the equality Inṽ (G) = Iu(G) hold true for the p-group G in Proposition 6.2?

It is probably hopeless to prove Conjecture 1.6 for all abelian groups. A more reasonable strategy is to test
various reasonably chosen classes of groups.

Question 7.6. Is Conjecture 1.6 true for
(a) all completely decomposable abelian groups?
(b) all torsion-free abelian groups?
(c) all torsion abelian groups?
(d) all splitting abelian groups?
(e) all narrow groups?

To answer (c) it su�ces to consider the problem for all p-groups, when p ranges over all primes.
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Question 7.7. Is the analogue of Conjecture 1.6 true for Jp-modules?

Our next question is related to the equality Inv(Jp) = Inṽ (Jp) = Iu(Jp) established in Example 5.5.

Question 7.8. Determine the fully inert subgroups of Jp. In particular, is I(Jp) equal to Inv(Jp), or do there exist
fully inert non-trivial subgroups H of Jp distinct from pkJp for any k?

Note that if H is a fully inert non-trivial subgroup of Jp, then Jp/H is torsion, since H*/H is torsion and H* =
pkJp for some k. This motivates the question of whether the converse is true.

Question 7.9. Is every subgroup H of Jp such that Jp/H is torsion necessarily fully inert?
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