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Abstract 

The authors here propose, for the first time, an automatic analog interface for differential capacitance estimation, able to reveal 
and quantify both low and high (full-range) capacitive variations. The working principle is based on a modified De-Sauty AC 
bridge configuration where two differential capacitances and two resistances are employed, one of which is implemented by a 
Voltage Controlled Resistor (VCR). Through a suitable feedback loop, a very accurate estimation over the complete range of the 
differential capacitance variation is possible, while the bridge allows a continuous differential capacitance evaluation without the 
need of knowing the accurate value of the sensor baseline and/or its variation range. A general but very simple formula, 
considering both the “autobalancing” and the “out-of-equilibrium” ranges, is also given. Theoretical, experimental and simulated 
results are in a very good agreement. Sensitivity and resolution values, typical of sensors and their interfaces, have been 
determined in a practical case, showing satisfactory values. 
© 2016 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing committee of the 30th Eurosensors Conference. 
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1. Introduction 

In the last years, some research studies on commercial capacitive transducers have been proposed, especially in 
capacitive displacement applications. A differential capacitive sensor is a particular kind of capacitive sensors 
having the sensing element formed by two plates and a common mobile one, in the middle (see Fig. 1). 
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Fig. 1. Differential capacitive sensor structure. 

Defining x as a dimensionless variable, related to the sensor measurand variations x the two relative capacitors 
change their values in a complementary way under an external stimulus [1] and the x can be expressed as: 
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 Differential capacitive sensors find applications in accelerometers, position or rotation detection, force, etc. [2-4]. 
In the literature, a differential capacitive sensing is performed in different ways: capacitance-to-frequency 
conversion, capacitance-to-phase conversion, switched-capacitor A/D technique, etc. [5-7]. Bridge-based front-ends 
are typically employed in those applications where the sensing element shows reduced variations with respect to its 
baseline. Some recent works on resistive sensors [8-10] have demonstrated that high sensitivity and other features of 
the classical Wheatstone bridge can be improved by using an “autobalancing” architecture. 

2. The proposed interface 

The novelty of our work consists in the employing a capacitance-to-voltage conversion in continuous time, using 
a particular impedance bridge (Fig. 1), whose left branch is formed by the differential capacitive sensor (C1, C2) and 
the right one by a fixed resistance (R) and a Voltage Controlled Resistor (VCR), as shown in  Fig. 2 (a). 

The feedback loop through a tuning of the VCR allows to handle the bridge  
output voltage: in fact, in the autobalancing range, the VCR changes its value according to the capacitive variation. 
The VCR is implemented by means of AD633 component, connected in a Zhong configuration [11] as in Fig. 2 (b): 
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being “10” expressed in Volt. 
 

  

Fig. 2. (a) the proposed interface; (b)Voltage Controlled Resistance implementation by means of the commercial components AD633. 
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This architecture allows the accurate estimation of the measurand variable x, according to the following general 
formula, valid for the full range of  x variation (±100 %):  
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  where: 20 is expressed in Volt, Vsin,pp is the peak-to-peak value of the supply sinusoidal voltage, ΔVpp the 
differential amplifier output and Vctrl  the voltage to be applied to VCR.  

3. Results 

Simulated results in the whole capacitance range (starting position C1= C2=200 pF, with  ±100% of variation), in 
the concrete case of a displacement/position sensor are shown in Fig. 3(a):  according to (3) inside the autobalancing 
range, the bridge is in equilibrium and ΔVpp is zero (in this case, Vctrl  changes its value) while in “out-of-range” Vctrl 
is saturated (at ± 9.65 V) and ΔVpp is not zero.  

Fig. 3(b) shows the absolute error (defined as in [12]) between theory and simulation vs. x: it is lower than 0.07 V 
in the worst case.  

Experimental tests have been conducted on a discrete element board, demonstrating the circuit capability to 
follow the capacitive sensor variations in a full estimation range, as shown in Fig. 4(a). In fact, the percentage 
relative error, defined as in [12], is lower than 0.45 %, see Fig. 4(b). 

We have considered a possible plates distance variation Δd starting from an initial distance of d0 = 1 mm. The 
sensitivity trend as a function of Δd is shown in Fig. 5(a): sensitivity values tens of V/ m. Having evaluated about 
170 μV of output voltage noise, resolution in terms of distance variation is in the range 4.2-14.2 nm, i.e., at 
capacitive level in the range 0.28-0.84 fF (that is about one hundred of dB). 

 

  

Fig. 3. (a) voltage vs x%: simulated results; (b) absolute error (theoretical vs. simulated) in “autobalancing” interval and “out-of-range” vs. x%. 

   

Fig. 4. (a) Vctrl behaviour vs x: theoretical and experimental results; (b) percentage relative error  vs. x: theoretical vs. experimental results. 
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Fig. 5. (a) sensitivity vs. Δd;  (b) resolution vs. Δd. 

4. Conclusions 

We have developed a novel automatic bridge-based circuit performing a fully-range differential capacitive sensor 
evaluation through a suitable modification of the classical De-Sauty bridge. Simulated and experimental results have 
confirmed theoretical expectations which allow the capacitance estimation in its the full variations range with good 
accuracy, making the proposed interface solution suitable for several capacitive sensor application.. 
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