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Type 1 diabetes (T1D) is the result of a selective auto-
immune destruction of pancreatic islet 3-cells, occurring
in genetically predisposed subjects, possibly triggered or
accelerated by environmental agents (1). Both innate (2)
and adaptive (3) immune responses are involved in islet
inflammation in T1D. The role of environmental factors
has become increasingly relevant, as indicated by the
marked recent rise of incidence (4), impossible to explain
based on genetic changes alone. One of the environ-
mental risk factors identified by several independent
studies in man and in animal models (5) is represented
by enteroviral infections, which have been epidemio-
logically associated to T1D development (6). Entero-
viruses may contribute to the pathological events
leading to B-cell damage by several different mecha-
nisms, such as virus-induced cytolysis or islet in-
flammation leading to subclinical B-cell destruction (7).
However, it should also be taken into account that in
specific settings viral infections may also protect from
diabetes development (8).

In this issue, two closely related articles written by
Oikarinen et al. (9) and Laitinen et al. (10) provide im-
portant information on the potential roles of entero-
viruses, and more specifically of group B coxsackieviruses
(CVB), in modulating susceptibility to T1D development.
Neutralizing antibodies against CVBs have been mea-
sured in a longitudinal sample series from a large
prospective birth cohort in Finland (9) as well as cross-
sectionally in children with newly diagnosed T1D and
control subjects (10) matched according to sampling
time, gender, age, and country, recruited in Finland,
Sweden, England, France, and Greece. Results showed
that CVB B1 (CVB1) was associated with an increased
risk of B-cell autoimmunity. This risk was strongest when
infection occurred a few months before autoantibodies

appeared and it was attenuated by the presence of ma-
ternal antibodies against the virus. Two other CVB types,
B3 and B6, were associated with a reduced T1D risk.

The finding that the three serotypes identified are
closely related phylogenetically is of sure significance. As
a matter of fact, close clustering is indeed what would be
expected for serotypes that could be either causative or
protective. It has been shown that CVB1 can infect hu-
man pancreatic islets in vitro, being one of the most
cytolytic enterovirus serotypes in this model (7). In ad-
dition, insulitis and islet cell damage have been described
in infants who have died of CVB1 infection.

On the other hand, the two studies (9,10) also
revealed that infections by CVB3 and CVB6 were asso-
ciated with a decreased risk of 3-cell autoimmunity. This
phenomenon may be explained by immunological cross-
protection induced by CVB3 and CVB6 against the di-
abetogenic effect(s) of CVB1 (Fig. 1). Specifically, CVB1
infection, mediated by the expression of viral receptors,
coxsackie adenovirus receptor and decay accelerating
factor or CD55, may elicit a cell-mediated antiviral re-
sponse. The highly cytopathic properties of CVB1 may
thus lead to B-cell damage, possibly triggering or en-
hancing islet-specific autoimmune reaction. When CVB1
infection is preceded by CVB3 or CVB6 infection, this
results in protection from diabetogenic effects of CVB1,
possibly due to the development of CVB3/6-specific
T cells, which, cross-reacting with CVB1, induce pro-
tection from a subsequent CVB1 infection, thus limiting
its deleterious effects on B-cells. Cross-protection is also
supported by the increased CVB1-related risk in children
who were infected by CVB1 but not by the protective
serotypes.

As for the cellular and molecular mechanisms that
may be responsible for the “non-diabetogenic” effects of
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Figure 1—CVB3 and CVBS6 induce protection from diabetogenic CVB1 strain infection. A: CVB1 infection is mediated by the expression of
viral receptors coxsackie adenovirus receptor (CAR) and decay accelerating factor (DAF) or CD55, which establish a specific CVB tropism
for B-cells. The cell-mediated immune response to CVB1 infection and highly lytic properties of CVB1 lead to B-cell damage, possibly
triggering or enhancing islet-specific autoimmune reaction. B: Specific CVB3 or CVB6 infection, when preceding CVB1 infection, induces
protection from diabetogenic effects of CVB1. Specific immune response triggered by CVB3/6 infection, without induction of massive
B-cell damage or diabetogenic effects, leads to the development of CVB3/6-specific effector (Eff) T cells, which may cross-react with and
protect from a subsequent CVB1 infection, thus limiting its deleterious effects on B-cells.

CVB3, it is of interest that Kemball et al. (11) demon-
strated that CVB3 is able to inhibit antigen presentation
in vivo, exerting a profound and selective effect on the
major histocompatibility complex class I pathway. In
addition, Mukherjee et al. (12) showed that the 3CP*
cysteine protease of CVB3 cleaves the innate immune
adaptor molecules mitochondrial antiviral signaling pro-
tein and Toll/interleukin 1 receptor domain-containing
adaptor inducing interferon-f3 as a mechanism to escape
host immunity, thus suggesting that CVB3 has evolved
mechanisms to suppress host antiviral signal propagation
by directly cleaving two key adaptor molecules associated
with innate immune recognition.

Of note, it is now clear that some viruses can modu-
late B-cell function (13). As for CVB3, in vivo studies
performed in CBS/j mice have shown (14) that infection

with CVB3 virus (Nancy strain) does not affect glucose
tolerance, in contrast, for example, with some CVB4
strains. It should be pointed out that the two studies
(9,10) did not observe association with other recognized
“diabetes-associated” enteroviruses (e.g., CVB4, some
echoviruses) with robust in vitro and ex vivo evidence of
links to T1D or to islet autoimmunity (15,16). This may
be also due to the experimental strategy, which was
based on a seroepidemological approach with no virus
isolation or sequencing.

The overall scenario of the complex relationship be-
tween enteroviruses, the pancreatic -cell, and T1D de-
velopment (17) somehow recalls the plot of Fyodor
Dostoyevsky’s novel The Brothers Karamazov, in which,
when the father is killed, one of his three sons is formally
charged with patricide and then sentenced as guilty, since
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all of the evidence points against him. However, this was
a “judicial error,” as the killer was another son considered
physically incapable of committing a murder. Similarly,
over the years, several viruses have been blamed of being
responsible for B-cell killing; in some cases, this was
probably a judicial error. Studies like Oikarinen et al. (9)
and Laitinen et al. (10) that have been properly de-
signed and conducted should minimize the risk of judicial
error and should be encouraged, as those multicenter
initiatives like the JDRF International-funded nPOD-
Viral Work Group or the European Commission project
PEVNET in which a network of investigators with dif-
ferent expertise collaborate and develop synergies to
tackle key questions relevant to T1D pathogenesis, such
as the molecular diabetogenic characteristics of viruses
of interest and how these viruses may cause persistent
infection.
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