
OpenFlow in the Small

Raffaele Bolla
CNIT – Research Unit of the University of Genoa

DITEN – University of Genoa
Genoa, Italy

Chiara Lombardo
CNIT – Research Unit of the University of Genoa

DITEN – University of Genoa
Genoa, Italy

Roberto Bruschi
CNIT – Research Unit of the University of Genoa

Genoa, Italy

Fabio Podda
DITEN – University of Genoa

Genoa, Italy

Abstract— Multi-core processors for networking applications
typically combine general-purpose cores with off-loading engines,
to relieve processor cores of specialized packet processing tasks,
such as parsing, classification, and security. Unfortunately,
modern embedded operating systems still lack of an effective
support and hardware abstraction for optimally exploiting the
above mentioned aspects. Starting from these considerations, this
paper proposes a novel framework, “OpenFlow in the Small”
(OFiS), specifically designed to provide a flexible hardware
abstraction for a wide set of heterogeneous multi-core processors
with advanced network off-loading capabilities. The OFiS
framework allows SW services/applications, or only the operating
system, activating and customizing off-loading operations, and
distributing them to processor cores on a per-flow basis.

Keywords— OpenFlow, Network Programmability, Network
Processors.

I. INTRODUCTION

The evolution of network and network devices (i.e., from
routers to mobile phones and customer premises equipment)
are two of the most important aspects of the Internet as we
know it today, since they reflect the main demands and open
issues of current and upcoming network technologies and
services. Network devices are becoming smarter and even
more complex, in order to support new generation
services/applications that often rely on a strong integration
between network infrastructures and data-centers.

In the last years many ICT manufactures have evolved their
device architectures (from routers, to mobile phones and
customer premises equipment) by massively including
sophisticated multi-core processors able to run embedded
operating systems [1][2], in order to avoid the increase of their
computational capacity, as suggested by Moore’s law [3].

Achieving high processing efficiency and full flow control
with minimal intervention from processor cores, however, calls
for careful coordination among the various engines. In fact, on
the contrary of non-programmable devices (e.g., based on
ASICs), the efficiency level of these platforms heavily relies on
how effectively SW services exploit the underlying HW, and
especially the parallelism between cores and HW off-loading
functionalities. In this respect, modern embedded operating
systems (e.g., Linux) certainly guarantee a good abstraction of

the underlying HW, as shown in [4], but most of the
enhancements currently available on such OSs are not much
effective when they have to cope with data received by high
speed network interfaces. In fact, as already discussed in [5]-
[8], when the cores receive or transmit packets from/to a same
network interface, the performance level of the system
dramatically decays. Moreover, HW off-load APIs are often
proprietary and, even if providing similar functionalities, may
differ a lot according to the chip manufacturer.

 In order to improve the HW off-loading capabilities of
multi-core systems, a standard communication layer would be
required. It should be flexible enough to provide some basic
capabilities to a very wide set of devices, but also able to be
extended and improved in presence of a more sophisticated
hardware underneath. Starting from these considerations, this
paper proposes a novel framework, “OpenFlow in the Small”
(OFiS), allowing a high level customization of off-loading
operations and their distribution to processor cores on a per-
flow basis.

This approach not only provides a simple high-level
platform-independent interface to SW developers, but it also
gives the chance of optimally exploiting HW parallelism and
differentiating the operations on incoming traffic flows to
better meet the application-specific requirements and the
overall Quality of Service (QoS) level. The name of the
proposed framework is due to the core structure of its interface
towards SW services and applications, which is structured in a
similar way with respect to the OpenFlow protocol [9]: a
template for identifying the packets of a flow, and a list of
operations to be performed on all the packets matching the
template. However, differently from OpenFlow, OFiS is
devoted to managing traffic flows in a same complex chip (in
the small).

The rest of the paper is organized as follows. Section II
introduces some of the common issues in multi-core
architectures, while the description of our framework can be
found in Section III. Results are in Section IV, and conclusions
in Section V.

978-1-4673-3122-7/13/$31.00 ©2013 IEEE

IEEE ICC 2013 - Next-Generation Networking Symposium

3509

II. MAIN ISSUES IN PARALLEL PROCESSORS/CORES

From a general point of view, typical performance issues,
which may hinder parallelization gain, are raised when tasks on
different cores share some data, or when the execution of a
same task is migrated to another core. This leads to two well-
known performance issues, namely data coherence and
concurrency on shared data, which both introduce costly
overhead in accessing and in processing shared data.

Data coherence issues arise from the hierarchical structure
of memories in modern processors, which exhibit various
levels of caches for quickly accessing frequently used data with
low latencies. Depending on the processor, some of these
levels are shared among cores, others unshared. Shared data
can be kept in only one processor's cache at a time, otherwise
the core cache may drift out of synchronization (i.e., some
cores may work on data that is not up-to-date). Consequently,
whenever a core loads shared data to its local cache, all of the
other processors caching it must invalidate their cache copies.
Thus, this invalidation is very costly, since it introduces a non-
negligible memory access overhead.

Although the above topics are well addressed by modern
operating systems in a typical situation, they are still a big
concern for HW/SW designers when the task execution heavily
relies on data received by high speed I/O hardware, and
especially by network interfaces. The idea of our framework
starts exactly from these concerns: our main purpose regards
the introduction of mechanisms to optimize the internal
processing of multi-core network processors, and in particular
to reduce the amount of complex operations that CPUs have to
perform. A forwarding engine with such characteristics would
combine the flexibility typical of open platforms to the off-
loading needed to support more specific capabilities.

III. OPENFLOW IN THE SMALL

The OFiS framework has been specifically designed to
improve communication between the operating system and the
underlying HW elements. This approach not only provides a
simple high-level platform-independent interface to SW
developers, but it also gives the chance to optimally exploit the
HW parallelism, and to differentiate the operations on
incoming traffic flows. The main factor that makes OFiS
particularly interesting is its ease of implementation: the
framework described in the following is basic enough to deal
with different HW architectures, but it can be easily extended
in presence of more evolved HW enhancements, providing a
richer implementation. Moreover, as will be extensively shown
in Section IV, OFiS provides an extremely valid support to
increase the performance level obtained through a fine-grained
CPU specialization and off-loading.

A. Framework Description
OFiS allows classifying incoming traffic into flows, and

associating specific actions to them. In detail, incoming traffic
is classified through a flow table. The flow table is composed
by a number of entries with . The generic
i-th entry is a triple, composed by:

• a flow descriptor fi,

• a set of off-loading actions with ,

• a single redirection action Ri.

Note that if the flow table is empty and if there
are no off-loading actions associated to the i-th flow.

Our flow descriptor fi is a data structure coincident to the
OpenFlow definition [10], which contains a pre-defined set of
fields from packet headers at multiple layers (from layer 2 to
4). A variable-sized mask is associated to each descriptor field
to provide a more aggregated flow representation.

Actions to be performed on classified packets are organized
into two main typologies: off-loading actions and

redirection ones Ri. Both and Ri are represented by a
numerical code specifying the type of operation to be
performed, and a list of input parameters as needed. The action
type defines the number and the format of the needed input
parameters. The presence of a single redirection action is
mandatory on each entry, since it provides information on
where classified packets have to be sent. Off-loading actions
are optional, and one or more of them can be associated to the
generic i-th flow.

B. The Flow Actions
A wide set of actions to be applied to the classified flows

can be defined and implemented. However, their feasibility
strictly depends on the underlying architecture where OFiS is
applied, since, in case of HW limitations, some capabilities
may not be supported. For this reason, when the operating
system tries to add a new action to the flow table, OFiS has to
check whether it is supported and, otherwise, return an error
message (see Section III.D).

As previously sketched, actions can be divided into two
categories: redirection and off-loading. The first category
includes discarding packets and packet redirection to a CPU or
a subset of CPUs. The second one includes changing a field in
the packet header, and can involve any header field at any
level. The following list provides an example of a simple, yet
effective, set of actions that we have already made available in
our prototype implementation:

• Redirection type 1: discard the packet;

• Redirection type 2: forward packet to a subset of
CPUs;

• Redirection type 3: forward packet directly to a
network interface;

• Off-loading type 1: in IP header, modify source IP,
destination IP, ToS or TTL, respectively;

• Off-loading type 2: in TCP header, modify source or
destination port, respectively;

• Off-loading type 3: in UDP header, modify source or
destination port, respectively;

• Off-loading type 4: Add or remove a VLAN tag.
Many other action types can be obviously defined. In our

implementation, the action choice has fallen on the
manipulation of those fields that particularly suit our purposes:
varying IP addresses and TCP/UDP ports, for example, we can
perform NAT without Netfilter support, as will be shown in
Section IV.C, hence remove some overhead from the CPUs.

3510

Redirection to a subset of CPUs guarantees the efficient
exploitation of CPUs specialized in processing different traffic
flows.

C. The OFiS Fast-Path Procedure
When a packet enters the processor, a number of fields,

corresponding to the ones specified in the flow descriptor data
structure, are extracted from its headers (the “parsing”
operation with reference to Figure 1). Then, the parsed fields
must be used as a classification key to find the matching fi
descriptor, if any. If multiple matching descriptors are present,
the first one is selected. If no descriptors are matching, a
default redirection is applied (e.g., redirect to CPU 0). When a
matching fi descriptor is selected, all off-loading actions
associated to fi are sequentially applied to the packet. After all
off-loading operations have been applied, the packet
redirection Ri is finally performed.

D. Managing Flow Entries
The procedure to add or remove entries from the OFiS flow

table is very simple, as the entire framework is driven by the
local system (and not by a remote controller as in OpenFlow).
In more detail, all flow table modifications can be triggered by
the SW running on the main processor. For instance, the
procedure used for adding a new flow entry is depicted in
Figure 2. First, the module controls if there is enough room to
add a new flow to the flow table. Then, all off-loading and
redirection actions are examined to determine if they are
supported by the underlying HW. If all these sanity checks
succeed, the flow table is updated, and the engines start using
the new configuration. Otherwise, the configuration request is
aborted and an error message is reported to the user-space
processes.

IV. PERFORMANCE EVALUATION

Test results reported in this section have been collected to
evaluate the overall performance of OFiS with respect to a
reference scenario in which such enhancements are not
available. Our aim is to show how OFiS allows improving
traffic classification and redirection, and communication
between the HW and the operating system, as these aspects are
crucial for optimally exploiting parallelization in multi-core
processors.

With these aspects in mind, we decided to focus our tests
on the actions of redirection and off-loading. At this aim, we
performed a first set of measurements on a scenario in which
both IP and UDP traffic arrive to our network processor, to
show how redirection can improve the overall performance.
Then, in the second test, NAT is performed on incoming IP
traffic using Netfilter and then OFiS to compare the impact of
the two methods on the system.

Both tests have been performed on the architecture
presented in the next subsection. An Ixia Router Tester [11]
has been used to generate traffic. The packet size is fixed to 64
Bytes, while offered loads are reported in each test.

A. Benchmarking Scenario

The reference HW architecture we adopted is the XLP832
[12]: a MIPS64-Release II processor with 8 EC4400 cores. The
main characteristic of the XLP technology is represented by

specific hardware devoted to off-loading operations usually
managed by the CPU cores, called acceleration engines.
Among them, the Network Acceleration Engine (NAE) is
responsible for providing a huge part of the traffic
management: in fact, incoming traffic is first processed by this
engine, and is then directed to the CPUs only if further
processing is needed, otherwise the CPUs are completely
bypassed. Most of this process is performed by a set of micro-
core engines, which are highly-programmable MIPS64
processors with access to a shared data RAM and a Content
Addressable Memory (CAM).

In our implementation, the firmware of the micro-core
engines has been developed in order to perform the operations
in Figure 1, and to maintain a local version of the flow table.
The flow table can be easily modified using a command-line
application. To achieve maximum lookup speed, the CAM is
used for storing the flow descriptors, while the corresponding
off-loading and redirection actions are in a local RAM. For
what concerns the management of the flow table entries, a
Linux kernel module was designed to receive commands from
user-space processes, to interpret them and to check their

Figure 1. The OFiS fast path procedure.

Figure 2. The procedure to add a new flow entry.

3511

feasibility. If all these procedures succeed, the module finally
applies the changes to the off-loading hardware by updating the
flow table.

B. Redirection: UDP Test

In order to show the performance we can obtain by
adopting OFiS with respect to redirection actions, we represent
a situation in which an application has to process specific
traffic. We consider a user-level UDP server that forwards
UDP traffic to another host. IP traffic is also processed and sent
to the outer port. In detail, in order to exploit OFiS potentials,
we have bound the UDP server to a specific CPU and added a
corresponding flow entry. To show the performance
improvement obtained with this procedure, we compared it to a
reference scenario in which these capabilities are not available.
In both scenarios, the IP flow incomes at 2.8 Mpkt/s, while the
speed of the UDP one varies between 14.880 and 74.404
Kpkt/s. Throughput and average latency of the UDP flow are
measured at the varying packet rates. IP loss is also taken into
account.

Figure 3 shows the results obtained on the two scenarios in
terms of UDP traffic throughput. As we can see, in the
reference scenario we experience some loss on UDP traffic
even at the lowest rate. Such loss becomes particularly visible
when the rate overcomes 59.523 Kpkt/s. In the scenario with
OFiS, instead, throughput does not decay or just loses a
negligible percentage until 44.642 Kpkt/s. Although, for higher
rates, loss becomes more visible, the throughput degradation is
still lower than in the reference case. The IP traffic flow
transmitted during this test does not suffer any packet loss in
presence of OFiS. In the reference scenario, instead, packet
loss on IP traffic appears when the rate of UDP overcomes
59.523 Kpkt/s, and reaches 36% at 74.404 Kpkt/s. This result
proves again the performance improvements obtained through
redirection. The same considerations are still valid for latency
results in Figure 4: we can see that, for all tested UDP rates,
average latency is always lower when OFiS is introduced. This
behavior is respected even in presence of loss on UDP traffic:
as throughput falls at 44.642 Kpkt/s, latency starts to increase
in the OFiS scenario but it still grows with a visibly slower
trend with respect to the reference scenario.

C. Off-Loading: NAT Test

The following test is meant to expose the improvement in
terms of off-loading obtained using OFiS. As previously
mentioned, off-loading is absolutely a keystone towards a full
exploitation of parallel processors. The introduction of our
framework definitely represents a step forward in this direction.
With this respect, we decided to forward IP traffic and perform
source NAT on all incoming packets. In the first test scenario,
we used the most common method to manipulate traffic under
Linux, which implies the use of iptables. This well-known
user-space application is the classic way to perform firewall
operations. However, the filtering operations performed at
kernel level by Netfilter are very onerous and can heavily
increase CPU utilization. OFiS, instead, does not have such a
strong impact on the system overall performance, because it
needs no intervention from the Linux kernel. In this second
test, IP traffic has been transmitted to a subset of 8 CPUs at
various percentages of the maximum offered load, which, for 8

CPUs and in absence of operations on the incoming packets,
has been measured to be 1.4 Mpkt/s.

Figures 5 and 6 represent the test results obtained with
iptables and OFiS. While the throughput obtained with OFiS
reaches the offered load even at its maximum value, the
iptables scenario is affected by packet loss starting from 50%
of the maximum load. As a consequence, the same load is
characterized by an abrupt growth of latency, which instead is
quite constant in the OFiS scenario for the whole set of tested
traffic loads.

In order to provide a deeper analysis of the two scenarios,
profiling has been performed on the CPUs involved in traffic
forwarding. Using OProfile [13] at this purpose, we are able to
effectively evaluate the CPU utilization of each SW application
and each single kernel function. Results reported in Figures 7
and 8 show the global time allocation of the CPUs processing
traffic in case iptables or OFiS are used.

Considering Figure 7, which represents the iptables
scenario, the first aspect to be noticed is how scheduling and
Netfilter are predominant among all events: throughout all
offered loads, they account for more than 65% of the CPU
allocation. We can state that Netfilter events are the main cause
preventing the CPUs from going idle. For what concerns the
other events, which all together allocate less than 40% of the
CPU activity, we can see that they show a quite constant trend
over the offered load. Moving on to Figure 8, representing
CPU utilization when OFiS is introduced, the absence of
Netfilter is definitely the main difference with the previous
results. Scheduling is now visibly predominant throughout the
offered loads, though its impact is stronger at lower rates.

V. CONCLUSIONS

In this paper, we introduced a framework called Open Flow
in the Small (OFiS), which has been designed to optimally
exploit the HW parallelism and differentiate the operations on

Figure 3. Throughput of the UDP traffic.

Figure 4. Average latency of the UDP traffic

3512

incoming traffic flows to better meet the application-specific
requirements and improve the overall Quality of Service (QoS)
level.

It is common knowledge that concurrency on shared data
and data coherence can heavily challenge any gain introduced
by the adoption of multi-core architectures in network
processors. The proposed framework provides an extremely
valid support to increase the performance level obtained
through redirection and off-loading actions. Among its
advantages, it is worth mentioning flexibility: the framework is
particularly easy to implement even on the most general
purpose architectures, but it can also be extended without much
effort in presence of more sophisticated HW. In order to show
the advantages obtained through the introduction of OFiS, we
have presented an example of its implementation on the XLP
processor. Test results stated that both network and system
performance are visibly improved in presence of our
framework.

ACKNOWLEDGMENT

This work was supported by the ECONET integrated
project, funded by the European Commission under the 7th
framework programme, theme ICT call 5, grant agreement no.
258454, and by the GreenNet project, funded by the Italian
Ministry of University and Education under the program FIRB
“Futuro in Ricerca”.

REFERENCES
[1] Vangal, S.; Singh, A.; Howard J.; Dighe, S.; Borkar, N.; Alvandpour, A.

2007. A 5.1GHz 0.34mm2 router for network-on-chip applications.
Proc. of the IEEE Symp. on VLSI Circuits, June 2007, pp. 42–43.

[2] NetLogic MicroSystems. 2011. NetLogic Microsystems Unleashes
Groundbreaking XLP® II, the World’s Most Powerful Multi-Core
Communications Processors with Unparalleled Scalability to 640
NXCPUs™. Press Release, online,
http://www.netlogicmicro.com/News/pr/2011/11-09-07xlpII.asp

[3] Moore, S. K. 2011. Multicore CPUs: Processor Proliferation. In “Top 11
Technologies of the Decade.” IEEE Spectrum, vol. 48, no. 1, pp. 27-43,
Jan. 2011.

[4] Bolla, R. and Bruschi, R., 2007. Linux Software Router: Data Plane
Optimization and Performance Evaluation. Journal of Networks (JNW)
2, 3, Academy Publisher, 6-11.

[5] Dobrescu, M.; Argyraki, K.; Iannaccone, G.; Manesh, M.; Ratnasamy S.
2010. Controlling parallelism in a multicore software router. Proc. of the
ACM CoNext Workshop on Programmable Routers for Extensible
Services of Tomorrow (PRESTO ‘10), Nov. 2010, Philadelphia, NJ,
USA.

[6] Wu, Q.; Joy Mampilly, D.; Wolf, T. 2010. Distributed Runtime Load-
Balancing for Software Routers on Homogeneous Many-Core
Processors. Proc. of the ACM CoNext Workshop on Programmable
Routers for Extensible Services of Tomorrow (PRESTO ‘10), Nov.
2010, Philadelphia, NJ, USA.

[7] Egi, N.; Greenhalgh, A.; Handley, M.; Hoerdt, M.; Huici, F.; Mathy, L.;
Padimitriou, A. 2010. Forwarding Path Architectures for Multicore
Software Routers. Proc. of the ACM CoNext Workshop on
Programmable Routers for Extensible Services of Tomorrow (PRESTO
‘10), Nov. 2010, Philadelphia, NJ, USA.

[8] Bolla, R.; Bruschi, R. 2008. An Effective Forwarding Architecture for
SMP Linux Routers. Proc. Of the 4th Int. Telecom Networking

Workshop on QoS Multiservice IP Networks (QoS-IP 2008), Venice,
Italy, 210-216.

[9] McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson,
L.; Rexford, J.; Shenker, S.; Turner, J. 2008. OpenFlow: enabling
innovation in campus networks. SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 2, pp. 69-74, March 2008.

[10] The OpenFlow Switch Specification, version 1.1.0, URL:
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf.

[11] The Ixia XM2 router tester, URL:
http://www.ixiacom.com/products/chassis/display?skey=ch_optixia_xm
2.

[12] The Netlogic XLP processor family,
http://www.netlogicmicro.com/Products/MultiCore/index.asp.

[13] Oprofile, http://oprofile.sourceforge.net/news/.

Figure 5. Throughput during NAT test.

Figure 6. Average latency during NAT test.

Figure 7. CPU utilization of 8 CPUs using iptables.

Figure 8. CPU utilization of 8 CPUs using OFiS.

3513

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

