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ABSTRACT: 
 
In recent years the technological evolution of terrestrial, aerial and satellite surveying, has considerably increased the measurement 
accuracy and, consequently, the quality of the derived information. At the same time, the smaller and smaller limitations on data 
storage devices, in terms of capacity and cost, has allowed the storage and the elaboration of a bigger number of instrumental 
observations. 
 
A significant example is the terrain height surveyed by LIDAR (LIght Detection And Ranging) technology where several height 
measurements for each square meter of land can be obtained. 
The availability of such a large quantity of observations is an essential requisite for an in-depth knowledge of the phenomena under 
study. But, at the same time, the most common Geographical Information Systems (GISs) show latency in visualizing and analyzing 
these kind of data. 
 
This problem becomes more evident in case of Internet GIS. These systems are based on the very frequent flow of geographical 
information over the internet and, for this reason, the band-width of the network and the size of the data to be transmitted are two 
fundamental factors to be considered in order to guarantee the actual usability of these technologies. 
In this paper we focus our attention on digital terrain models (DTM's) and we briefly analyse the problems about the definition of the 
minimal necessary information to store and transmit DTM's over network, with a fixed tolerance, starting from a huge number of 
observations. Then we propose an innovative compression approach for sparse observations by means of multi-resolution spline 
functions approximation. The method is able to provide metrical accuracy at least comparable to that provided by the most common 
deterministic interpolation algorithms (inverse distance weighting, local polynomial, radial basis functions). At the same time it 
dramatically reduces the number of information required for storing or for transmitting and rebuilding a digital terrain model dataset. 
A brief description of the method is presented and comparisons about the accuracy and data-store compression obtained with respect 
to other interpolators are shown. 
 
 

1. INTRODUCTION 

The concept of Digital Terrain Models (DTM, Li Z. et al, 2005) 
is relatively recent and a first, quite illustrative, definition is 
given by Miller and LaFlamme (1958): “DTM is simply a 
statistical representation of the continuous surface of the 
ground by a large number of selected points with known X, Y, 
Z coordinates in an arbitrary coordinate field”. 
 
Nowadays, the information provided by DTM's represents a 
fundamental database for Geographical Information Systems 
(GIS, O' Sullivan and Unwin, 2003) and is used in a large 
number of scientific and technical applications: geodesy, 
geomorphology, geology, seismology, hydrology, geophysics, 
civil and environmental engineering, territorial planning, 
remote sensing, mapping, etc. 
 
Up to few years ago, DTM's were only used in specific 
applications of territorial analyses, typically by the scientific 
community. The coming and the diffusion of the new 
technologies based on Web GIS and virtual globes have 
changed the perspective: altimetric analyses and three 
dimensional representations of the terrain are both object of 
new researches and praxis. 
 

At the beginning, virtual globes were simply conceived as tools 
to visualize satellite and aerial images, directly georeferenced 
on an approximate surface of the Earth globe. With respect to 
the traditional programs for the 2D representation, they have 
introduced the third dimension and, consequently, a simpler 
usage and a greater visual consistence between the digital 
representation and the real world. 
 
At present, the new acquisition techniques provide information 
with a never seen accuracy. Virtual globes are no more merely 
qualitative viewers for low resolution global data, but can 
become scientific instruments to process and analyze high 
accuracy geographical information. 
 
Virtual globes and Web GIS cannot be properly compared, but 
they share a fundamental principle: the geographic information 
(satellite and aerial images, height data, vectorial objects) is 
accessed via Web. Particularly, the servers provide data 
according to specific transmission standards that have been 
defined mainly by the Open Geospatial Consortium (OGC, 
2006, 2010a, 2010b). The data can be either images (WMS 
protocols) or matrices (WCS protocols) or vectorial data (WFS 
protocols) and are directly accessed, visualized and analyzed 
by the clients. 
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In the Web distribution of geographical information, the 
databases storage size represents a critical point. Given a 
specific interest area, typically the server needs to perform 
some preprocessing, the data have to be sent to the client, that 
applies some additional processing. The efficiency of all these 
actions is crucial to guarantee a near real time availability of 
the information. Particularly, virtual globes require the data 
more frequently than 2D viewers, because they operate a 
continuous reconstruction of the scene, according to the 
position and the view angle of the observer during the 
navigation. 
 
Different techniques can be adopted to interpolate a DTM from 
the raw observations and different data models can be adopted 
to store and transmit a DTM. The purpose of this paper is to 
discuss storage and transmission requirements. Moreover, a 
complementary approach is studied and compared with the 
standard models. 
 
Section 2 shortly introduces and compares the different ideas of 
data based and analytical DTM's. Sect. 3 describes the 
standard data based models, while Sect. 4 discusses the main 
problems involved by the implementation of an analytical 
model in a GIS software. In Sect. 5, a new approach to model a 
surface by multi resolution bilinear splines is presented: 
particularly, its application to store a DTM is discussed. Sect. 6 
and 7 analyze the performances of the different models, by 
comparing their application to a case study. Sect. 8 contains the 
conclusions and the future developments. 
 
1.1 Data based and analytical DTM's 

The new acquisition techniques, like LiDAR, SAR, etc., 
provide height information with never seen accuracy and 
spatial density (El-Sheimy et al., 2005). However, the raw 
datasets have size that prevent their use and analysis within 
desktop GIS, even more so in real time Web GIS and virtual 
globes. Once the required tolerance has been defined, the DTM 
is obtained from the raw dataset by some sampling or 
interpolation technique and is stored and distributed as contour 
lines, Triangular Irregular Network (TIN) or regular grid. These 
models can be defined data based because, despite their 
different data structures, describe the terrain surface by a set of 
representative heights. The heights of other points can be 
interpolated from the set. 
 
On the contrary, our approach to model the heights can be 
defined function based, because it implies the storage of a 
dataset of coefficients that univocally, by a given function, 
allows the computation of the height everywhere. Particularly, 
the raw observations are interpolated by a linear combination of 
splines with compact support, whose resolutions and positions 
vary in space and are automatically chosen according to the 
raw data distribution. In the following they will be called multi 
resolution splines. For each spline, the resolution level, the 
position and the coefficient are stored by the server and are 
transmitted to the clients. These data allow the complete 
reconstruction of the terrain at any point and different detail 
levels can be provided, according to the required accuracy. 
 
Generally speaking, the accuracy of a DTM depends on its 
spatial resolution. Therefore, to improve the accuracy, more 
data need to be stored and transmitted. In the 3D navigation, 
the visual inspection and the qualitative analysis do not need 
the highest accuracy. In this case, the transmission and 
processing of high resolution data is useless and time 

consuming. On the contrary, the accuracy of the input dataset is 
fundamental to guarantee good results to numerical processing 
aimed at quantitative analyses.  
 
In a combined approach, data based models could be used to 
distribute low resolution DTM's if qualitative analyses are 
needed. On the contrary, analytical models could be used when 
more accurate data are needed for specific queries, processing 
and numerical analyses. The two different models require 
different architectures, particularly at the client level. A data 
based model requires a thin client, that simply receives the data 
and interrogates them, while a function based model requires a 
thick client, that must be able to execute specific algorithms to 
extract height information from the coefficients. 
 
1.2 Data based DTM's: contour lines, grids and TIN's 

In general, a surface is composed by an infinite number of 
points: a data based DTM is obtained by extracting a finite 
sample that represents the whole surface at a given accuracy. 
The sample constitutes the database that the server stores, uses 
in all the preprocessing and distributes to the clients. 
 
The standard data based models are contour lines, grids (or 
elevation matrix) and Triangular Irregular Networks (TIN). 
Contour lines are obtained by connecting with a line all the 
points with the same height. The lines are drawn at given, 
equally spaced in height, intervals. Contour lines are useful to 
visualize heights on maps in 2D applications, but seldom are 
used for analysis purposes, and are stored and transmitted 
following the general rules of vector objects. 
 
Gridded DTM's (in the following DTMGRID) are georeferenced 
as regular grids of nodes, whose heights are stored. The storage 
of a grid requires a set of metadata that allow its georeferencing: 
for example, the X (East) and Y (North) coordinates of the 
lower left node, the number of nodes and the gridding interval 
(spatial resolution) in both the directions are provided. The 
metadata are listed in the so called header, where also the value 
assigned to no data is reported. The heights are stored in an 
ordered sequence. 
 
DTMGRID is a very simple conceptual model. Gridded data can 
be easily accessed, visualized and spatially analyzed by map 
algebra. However, the choice of the grid resolution is a crucial 
point. Given an interest area, a finer grid guarantees a better 
description of the terrain details but requires more space than a 
coarser grid. Particularly, the storage size is inversely 
proportional to the square of the gridding interval. If rough 
terrain (for example mountains) alternates to flat terrain (plains), 
the high resolution needed to accurately describe the first 
causes a useless redundancy in the second. To continuously 
describe the heights between the nodes, either a bilinear or a 
bicubic interpolation is typically applied. 
 
In the TIN model, the DTM (in the following DTMTIN) is 
described by a set of planar triangular faces that are obtained 
by connecting sparse points, whose horizontal coordinates and 
heights are given. Usually, the Delaunay criterion is applied to 
triangulate the points. By a TIN model, more points can be 
stored where the terrain is rough and less points are used in flat 
areas. Each point of a TIN is represented by its three (X, Y, 
height) coordinates. Moreover, to reconstruct the topology of 
the triangles, the labels of the three vertices of each triangle are 
needed. However, this simple data model requires long 
computation times for the processing and the analysis of the 3D 
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surface. Therefore, in the practice more complex topological 
models are applied, like for example the node based, the 
triangle based or the edge based data structures. These models 
reduce computation times but require an overhead of 
information that is stored and transmitted to the clients. When a 
TIN model is used, the height within each triangle is linearly 
interpolated from its three vertices. 
 
1.3 Interpolation techniques and analytical DTM's 

The observations are interpolated to reconstruct surfaces. 
Several interpolation techniques exist. A first classification can 
be into exact and approximate interpolations. An exact 
interpolator passes for all the observations and allows the 
complete reconstruction of all the discontinuities existing in the 
dataset. However, the observation errors are not filtered and 
propagate into the model. A classical example of exact 
interpolator is given by the Inverse Distance Weighting (IDW). 
Approximate interpolators apply statistical methods to estimate 
a smooth function from the observations. In this way, the errors 
can be filtered and both the observations accuracy and the 
function correctness can be assessed. However, actual details 
and discontinuities can be lost in the smoothing. Local 
Polynomial (POL) is an exact interpolation if N polynomial 
coefficients are estimated from N observations. It is an 
approximate interpolator when the coefficients are fewer than 
the observations and are estimated by least squares. 
 
In the deterministic interpolation, either exact or approximate, 
the analytical model of the surface is a priori chosen and the 
observations are used to estimate it: IDW and POL are 
examples of deterministic interpolators. In the stochastic 
interpolation (Christakos, 1992), the observations are 
considered as a sample of a random field (the surface) that is 
completely described by spatial stochastic properties like, for 
example, the covariance function. The stochastic properties are 
estimated analyzing the observations and then applied to 
interpolate the surface. Collocation and kriging provide 
examples of stochastic interpolators. 
 
Despite their differences, all the interpolation techniques share 
the same principle: to interpolate the height in a point, the 
available observations are weighted by coefficients that are 
computed according to the specific technique rule. This is the 
principle both to interpolate DTM's from raw observations and, 
in grids and TIN's, to reconstruct heights between the DTM 
points. Our approach is complementary and is based on the idea 
that the coefficients of the interpolation functions can be 
directly stored and distributed to represent a DTM. This model 
can be called analytical. 
 
Note that the most popular interpolation techniques, as reported 
in scientific and technical literature, cannot be easily and 
efficiently used to implement an analytical model because the 
functions cannot be described by a small number of parameters 
or coefficients. 
 
In IDW and POL, the interpolation coefficients and domain are 
a function of the positions of both the interpolation point and 
the observations: to reply the model, all the observations must 
be stored and distributed. 
 
Radial Basis technique uses a linear combination of radial 
functions that interpolate exactly the observations and are 
characterized by the minimum curvature. The different methods 
(Regularized Spline, Spline with Tension, Thin Plate Spline) 

differ in the function choice. These functions could be 
analytically described by a finite set of coefficients but  the 
needed coefficients are at least as many as the raw observations. 
 
Let consider a stochastic interpolator, for example the 
collocation. The height in a point is provided by the h(t) = cTξ, 
where ξ is the vector of the observations multiplied by the 
inverse of its covariance matrix, c is the cross-covariance 
vector between the point and the observations. c can be built by 
knowing the covariance function of the surface and the 
positions of the observations, while  ξ needs to be stored. Also 
in this case, an analytical model would require as many data as 
the original observations. 
 
The classical bilinear splines estimated by least squares provide 
a twofold interpretation, because they can be thought as both 
data based and analytical models. Given the required spatial 
resolution, the raw observations are interpolated to estimate the 
coefficients of the splines. These coefficients are then used to 
predict the heights on a regular grid, that represents the data 
based model. If the splines and the grid have the same spatial 
resolution, the coefficients of the splines and the heights of the 
relevant grid nodes are equal. Moreover, the coefficients of the 
bilinear splines used to interpolate from the four neighboring 
nodes of a regular grid are exactly the relevant four heights. 
Indeed each local bilinear spline assumes the maximum in its 
node, while annihilates on all the other nodes. In this case, the 
analytical model has exactly the same complexity of the data 
based model. 
 
The adoption of a new multi resolution splines interpolation has 
been studied, that represents a true analytical model and 
provides actual storage and distribution saving with respect to a 
data based model. It will be discussed in the following sections. 
 
 

2. THE MULTI RESOLUTION SPLINES APPROACH 

The interpolator here presented has been already discussed in 
(Brovelli and Zamboni, 2004, 2009). It is an approximate 
deterministic method based on a least squares approach. It is a 
global method, i.e. each observation contributes to the whole 
interpolating surface, but at the same time it shows a relatively 
short range of diffusion of the local information.  
 
We suppose that the h field has been sampled at n locations t1, 
t2, …, tn and we model these observations  ho(t) by means of a 
suitable combination of bilinear spline functions (deterministic 
model) and residuals νi seen as noise (stochastic model). 
 
The main idea is to combine splines with different width in 
order to guarantee in every region of the field the resolution 
adequate to the data density, exploiting all available 
information implicitly stored in the sample. 
 
Different levels of splines, corresponding to different halving 
steps, are considered. A new level halves the width of the 
support of the previous level.  
 
In the mono-dimensional case, each observation can be 
described as a linear combination of spline functions of 
decreasing (halving) Δ width: 

( )11
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, i
0 0

2
 

h hNM
i

i h k
h k

t t
h(t ) kλ ϕ ν

−−

= =

⎛ ⎞−
= ⋅ − +⎜ ⎟⎜ ⎟Δ⎝ ⎠
∑ ∑

 

 
 

 
 
 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/W25, 2011
ISPRS Guilin 2011 Workshop, 20-21 October 2011, Guilin, China

9



 

 

where M is the number of levels, Nh is the number of splines at 

level h (Nh=2h+1+1), Δ = (tmax-tmin)/2. (t)ϕ is defined as follows: 
 
 

1 0 1
0 1

( ) 0

t t
(t) t

t t
ϕ

ϕ

− ≤ ≤⎧
⎪= >⎨
⎪ − <⎩  

 
 
Constraints must be introduced on λh,k coefficients in order to 
avoid local rank deficiency. A general solution of this problem 
is till now under study and then, to be cautious, at present we 
are applying the following criterion: a generic k-th spline 
function at h level 
 
 

( )min h     where    
2h i h ht k tϕΔ
Δ

− Δ − Δ =
 

 
 
is active (i.e. λh,k ≠0) if: 

 at least f (f>0) observations exist for each Δh half-
support of the spline; 

 it does not exist a spline at lower level having the 
same application point. 

 
The bi-dimensional formulation can be directly obtained 
generalizing the mono dimensional case. We suppose that h(t) 
= h(t1,t2) can be modelled as: 
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where 1hΔ  and h2Δ  are the X and Y grid resolution; M is the 
number of different resolutions used in the model; τlk= [l k]T 
are the nodes indexes (l,k) of the bi-dimensional grid; λh,l,k is 
the coefficient of the spline at the grid node τlk; N1h and N2h are 
the number of X and Y grid nodes at the h resolution. 
 
To avoid local rank deficiency, we generalize the same 
criterion seen in 1D (at least f observations for each quarter of 
spline support are needed). 
 
With our model, the stored data are the number M of levels, the 
structure of the 0 level grid (corners and interval) and the 
coefficients λh,l,k  of the splines. 
 
 
3. THE STORAGE REQUIREMENTS: A CASE STUDY 

In order to evaluate the DTM storage requirement of a data 
based model, we sample data from a LiDAR survey; it is a 
promontory overlooking the lake of Como in Northern Italy. 
The horizontal spacing of the pre-processed grid is 2 m x 2 m 
and its vertical accuracy (Rood, 2004) is of about 20 cm. 
 

The first step is to extract three different samples in order to 
simulate three dataset of sparse observations with different 
accuracy from which extract the relevant DTM's. 
 
For this reason, four TIN's have been extracted from the grid, 
with different sampling tolerances. By fixing the tolerance 
equal to 5m, 2m and 1m, we have created respectively the 
training datasets TR5, TR2 and TR1 containing scattered data 
(i. e. the nodes of the TIN's) . By fixing the tolerance equal to 
20 cm (and removing TR5, TR2 and TR1), we have finally 
created the test dataset TE to use for cross-validate the results. 
The original dataset is shown in Figure 1. In Table 1 the 
statistics of the datasets are reported. 
 
 

 
 

Figure 1. The original DTM 
 
 

 DTM TR5 TR2 TR1 TE 
Count 422610 3274 9256 21656 81869 
Min 197.44 197.44 197.44 197.44 197.47 
Max 332.27 332.27 332.27 332.27 332.23 
Mean 225.27 214.33 225.75 230.81 235.59 
RMS 27.80 28.58 30.85 30.36 27.83 

 
Table 1. Statistics of the sampled datasets. Values in m. 

 
The following analysis is aimed to numerically quantify the 
space needed to store grid and TIN data based models. 
Particularly, an occupation of 64 bits (8 bytes) is hypothesized 
for the horizontal coordinates and the height of a point. In the 
following S(α) is the storage space required by α. To compute 
it, the following formulas are used. 
 
S(DTM)= S(metadataDTM) + S(dataDTM) 
 
For grids, we have: 
 
S(metadataGRID)=  
S(LL_X)+S(LL_Y)+S(DX)+S(DY)+S(N_X)+S(N_Y)+S(ND) 
= 7×64 bits = 56 bytes 
 
S(dataGRID) = N_X×N_Y×S(height) = N×8 bytes 
 
LL_X, LL_Y are the X e Y coordinates of the lower left node 
of the grid; DX and DY are the grid intervals in X and Y; N_X, 
N_Y are the numbers of nodes in X and Y; N = N_X × N_Y; 
ND is the value used for no data. 
 
As TIN's are concerned, the minimal model, without additional 
topological information, is discussed. 
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S(metadataTIN) = S(N_V)+S(N_F) 
 
S(dataTIN)=S(dataNODES)+S(dataFACES)) = 
 
N_V×3×64bits+N_F×3× Ceil[log2(N_V)]bits 
 
N_V and N_F are the number of vertices and faces. The 
vertices are stored as 3D points (X, Y and height). The 
triangular faces are stored simply by the list of the three 
relevant vertices. Consider that k bits can address 2k points: if 
the number of vertices is N_V, the size in bits needed for each 
label is Ceil(log2(N_V)), where Ceil is the rounding to the 
greater integer. 
 
Using the three training sets as raw observations, TIN and grid 
models corresponding to the accuracies of 1, 2 and 5 m in 
height have been built. By construction, the training sets 
directly provide the DTMTIN at the different accuracy levels. In 
Table 3 the dimensions of the DTMTIN are reported. 
 
To produce DTMGRID, five deterministic interpolation 
techniques have been tested: the Inverse Distance Weighting 
(IDW), the 1° Order Local Polynomial (POL), the Completely 
Regularized Spline (CRS), the Spline with Tension (SWT) and  
the Thin Plate Spline (TPS). The interpolations have been 
computed in ArcGIS, applying the parameters automatically 
optimized by the software itself. 
 
If both the accuracy and the storage size of a grid have to be 
considered, the optimal compromise is given by the coarser 
grid that guarantees the desired accuracy. Therefore, different 
spatial resolutions have been tested in the interpolation, starting 
from 10 m and decreasing it by steps of one meter. The 
residuals of each resulting DTMGRID have been computed with 
respect to the starting TR and to the set of check points (TE). 
For each interpolation function and for each starting TR, the 
coarser DTMGRID whose accuracy is consistent with the starting 
data set has been selected. In Table 2, the statistics and the 
characteristics of the final DTMGRID are reported. 
 
In the interpolation of TR1 and TR2, POL function does not 
provide consistent accuracies, even pushing the resolution of 
DTMGRID to one meter. The other algorithms provide 
satisfactory results, the best being CRS that provides one meter 
accuracy already at the resolution of three meters. 
 
 

TR N_V S_V 
(bytes) N_F S_F 

(bytes) 
S  

(KB) 
1 m 21656 519744 41343 294374 795 
2 m 9256 222144 16580 110430 325 
5 m 3274 78576 4644 28320 104 

 
Table 2. Characteristics of the three sampled TIN. N_V: 

number of vertices; S_V: storage space for vertices; 
N_F: number of faces; S_F: storage space for faces; 
S: total storage size. 

 
As expected, the TIN model requires less storage space than the 
grid model. The saving ranges from 72% to 97% for TR1, from 
68% to 80% for TR2, from 59% to 67% for TR5. 
 
Lev.: level; N_Nodes: number of nodes at the level; bitsN: bits 
needed to store the number of active splines; bitsIX and bitsIY:  

bits needed to store the row and column indexes IX and IY; 
bitsCf: bits needed to store each coefficient; N_Sk: number of 
active splines at the level. 
 
 
Lev N_Nodes bitsN bitsIX + bitsIY bitsCf 
1 3×3 4 (2 + 2) ×N_S1 64×N_S1

2 5×5 6 (3 + 3) ×N_S2 64×N_S2

3 9×9 8 (4 + 4) ×N_S3 64×N_S3

… … … … … 
M (2M+1)×(2M+1) 2(M+1) (M+1)×2× N_SM 64×N_SM

 
Table 4. Space requirements for the multi resolution DTM. 

 
 
3.1 Interpolation and storage size of the multi resolution 
model 

By interpolating TR1, TR2 and TR5, the coefficients of the 
multi resolution splines model (DTMMR) have been estimated. 
Then, the relevant accuracies and storage sizes have been 
analyzed. 
 
DTMMR requires the storing of metadata besides the 
coefficients, that are needed to define the position and the 
resolution of each activated spline. Once defined the global 
interpolation domain (lower left and upper right corners), the 
record corresponding to a particular level is stored in the 
following way: 
 
N Ix1 Iy1 c1 Ix2 Iy2 c2 … … … IxN IyN cN
 
Where N is the number of splines belonging to the level; Ixi, Iyi 
are the row and column indexes of the node occupied by the i-
th spline; ci is the coefficient of the i-th spline. At level M, the 
maximum number of rows (or columns) is IMAX=2M+1, while 
the maximum number of active splines is 
NMAX=(2M+1)×(2M+1). It is easy to show that 
Ceil(log2(2M+1))=(M+1): the resulting storage requirements are 
reported in Table 4. 
 
The statistics of the DTMMR's obtained by interpolating T1, T2 
and T5 are summarized in Table 5. For each TR, the total 
number of splines, the number of splines per level, the statistics 
of the residuals on the used observations and on the 
checkpoints are reported. Moreover the storage size in Kbytes 
is given.  
 
The interpolations of TR1, TR2 and TR5 activate eight, seven 
and six levels of splines respectively. However, the final 
accuracies of DTMMR(TR1) and DTMMR(TR2) are not 
completely satisfactory: indeed, the RMSE's exceed one and 
two meters respectively and are worse than those of the 
respective DTMGRID's. As previously stated, the adopted 
criterion (f=1 or f=2) to automatically activate the splines is 
conservative and, in these cases, provide sub optimal results. 
Experimentally, the manual activation of more splines allows a 
more accurate interpolation and improves the residuals. 
Moreover, it should be taken into account that the decimation 
criterion adopted to sample TR1, TR2 and TR5 from the 
original grid is optimized to build a TIN model and not to apply 
a multi resolution interpolation. At present, an optimized 
criterion for the automatic activation of the splines is under  
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study. Moreover, new decimation algorithms will be applied. 
 
To honestly compare the storage size required by different 
models, they should have the same accuracy. Except for the 
POL interpolation, all the final DTMGRID's interpolated from 
TR1 are more accurate than DTMMR(TR1). In the storage  
comparison, coarser DTMGRID have been chosen, with 
accuracies similar to that provided by our approach. Even the 

final DTMGRID's interpolated from TR2 have better accuracies 
than DTMMR(TR2) but, in this case, the coarser grids are worse. 
Therefore, for DTMMR(TR2) and DTMMR(TR5) the storage 
requirements are compared with the grids of Table 3, for 
DTMMR(TR1) with the grids reported in Table 6. The 
comparisons, in term of storage saving, are reported in Table 7. 
The relevant considerations are reported in the conclusions. 
 

 
 

ResObs ResCheck 
T TR R (m) NX NY S(KB) 

M (m)  RMSE (m) M (m) RMSE (m) 
1m 1 1830 1784 25506 -0.0 0.1 -0.1 1.1 
2m 5 366 357 1021 -0.3 2.0 -0.2 2.0 IDW 

5m 10 183 179 256 -0.9 5.0 -0.7 4.8 
 

1m 1 1830 1784 25506 -0.2 1.9 -0.2 1.5 
2m 1 1830 1784 25506 -0.4 3.5 -0.4 2.6 POL 

5m 8 229 223 399 -0.8 5.5 -0.9 5.0 
 

1m 3 610 595 2836 -0.2 1.3 -0.1 1.1 
2m 5 366 357 1021 -0.4 2.4 -0.1 1.8 CRS 

5m 10 183 178 255 -0.9 5.2 -0.8 4.9 
 

1m 2 915 892 6376 -0.2 1.1 -0.1 1.1 
2m 5 366 357 1021 -0.4 2.3 -0.3 2.0 SWT 

5m 9 203 198 314 -0.7 4.7 -0.7 4.8 
 

1m 1 1830 1784 25506 -0,10 0,50 -0,03 1,19 
2m 4 458 446 1596 -0,44 2,06 -0,10 2,05 TPS 

5m 10 183 178 255 -1,39 5,71 -0,77 4,99 
 
Table 3. Characteristics of the interpolated grids. T: technique used to interpolate; TR: interpolated dataset; R: final resolution; NX 

and NY: number of nodes in X and Y; S: storage size; ResObs, ResCheck: statistics of the residuals on the used 
observations and the check points; M: mean; RMSE: root mean square error. 

 
 

Number of coefficients for each level L ResObs ResCheck TR NSplines 
L1 L2 L3 L4 L5 L6 L7 L8 M (m) RMSE (m) M (m) RMSE (m)

S 
(KB) 

1m 5616 9 9 34 106 336 955 2080 2087 0.0 1.1 0.0 1.4 55 
2m 1767 9 9 34 106 292 610 707 / 0.0 1.8 0.0 2.2 17 
5m 349 9 9 34 85 112 100 / / 0.0 3.4 -0.4 4.8 3 
 
Table 5. Statistics of DTMMR. TR: interpolated TIN. NSplines: total number of activated splines. ResObs, ResCheck: statistics of the 

residuals on the used observations and the check points. M: mean. RMSE: root mean square error. S: storage size. 
 
 

ResObs ResCheck T TR R(m) NX NY S(KB) 
M (m) RMSE (m) M (m) RMSE (m) 

IDW 1m 3 610 595 2836 -0.2 1.1 -0.1 1.2 
CRS 1m 4 458 446 1596 -0.3 1.9 -0.2 1.4 
SWT 1m 4 458 446 1596 -0.3 1.9 -0.2 1.4 
TPS 1m 3 610 595 2836 -0.2 1.2 -0.0 1.4 

 
Table 6. Characteristics of the grids interpolated from TR1 with accuracy similar to DTMMR. T: technique used to interpolate; R: 

spatial resolution; NX and NY: number of nodes in X and Y; S: storage size; ResObs, ResCheck: statistics of the residual 
on the used observations and the check points; M: mean; RMSE: root mean square error. 
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[S(DTMMR) / S(DTMGRID)] (%) 
TR 

IDW POL CRS SWT TPS 
[S(DTMMR) / S(DTMTIN)] (%) 

1m 1,9% 0,2% 3,4% 3,4% 1,9% 6,9% 
2m 1,7% 0,1% 1,7% 1,7% 1,1% 5,2% 
5m 1,3% 0,8% 1,3% 1,0% 1,3% 3,1% 
 

Table 7. Storage size comparisons between DTMMR and DTMGRID, DTMTIN 
 
 

4. CONCLUSIONS 

 
DTM's are obtained by interpolating raw height observations 
and can be stored in different formats. Typically, TIN's and 
grids are adopted, in which the interpolated heights are stored 
for a particular set of representative points. These models can 
be defined data based DTM's. The accuracy of a DTM is a 
crucial point for many applications. However, in Web GIS and 
virtual globes the DTM's are distributed by servers to clients: 
for these applications the saving of storage size allows a faster 
transmission and represents a strategic task. 
 
In this paper a new approach has been presented to interpolate 
and store a DTM, aimed at saving storing size without losing in 
accuracy. Multi resolution bilinear splines are adopted to 
interpolate the observations and their coefficients are stored, 
instead of the interpolated heights. The coefficients can then be 
used to reconstruct the height at any point. The model is defined 
analytical instead of data based.  
 
Data based models have been compared with our approach, 
considering accuracy and storage requirements. An original grid 
has been sampled to produce three TIN's with tolerances of one, 
two and five meters respectively. Then, the TIN's nodes have 
been interpolated by different deterministic techniques to 
produce grids at different spatial resolutions and the grids have 
been compared with the original data. Synthetically, different 
interpolation techniques provide similar results and the 
accuracy of the grids increases with their resolution: in 
particular, accuracies of one, two and five meters are obtained 
respectively with one, five and ten meters of spatial resolution. 
At present, our approach reaches an accuracy slightly worse 
than the accuracies provided by the finest grids. This problem is 
probably due to a particular interpolation choice that still needs 
to be deeply analyzed and optimized. However, for similar 
accuracies, our approach allows a significant storage saving 
with respect to the other models: indeed, its storage size is 
about 2% of the grids size and 5% of the TIN's. 
 
These results are quite satisfactory and justify further studies 
finalized to define a complete scheme for the managing of the 
data in the server, for their transmission and for their use by the 
clients. 
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