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We study a memristive circuit with included parasitic elements, such as capacitance and inductance. In the multiple-scale scheme,
we analytically show how the parasitic elements affect the voltage and the current. Finally, we provide an analytical expression for
the intersection point coordinates, through which we discuss the functional behavior of the pinched hysteresis loop versus the
operating frequency and the parasitic elements.

1. Introduction

In 1971, Chua postulated the existence of a fourth funda-
mental element circuit, which was termed memristor [1]. In
2008, Williams and his team of HP laboratories announced
the first successful realization of a memristor [2]. Later,
many properties and applications have been visualized for
memristor, including potential construction of high-density
nonvolatilememories [3] and artificial neural networks [4, 5].
Several researchers proposed models to explain the memris-
tor dynamics [6–10], fingerprints of memristors, and relevant
nonlinear properties. In [8, 9], some essential features of
memristors (fingerprints) are discussed. Both papers high-
light three significant fingerprints: pinched hysteresis loop,
the area of hysteresis lobe decreases as frequency increases,
and pinched hysteresis loop becomes a single-valued function
at infinite frequency. The main purpose of this work is to
study the dynamics of amemristor considering their parasitic
elements. Through the analytical multiple-scale analysis,
we show how parasitic elements affect the fingerprints of
memristors and we validate the results with those obtained
from a numerical analysis. In particular, we show how the
coordinates of the intersection point change as a result of a
dominating capacitive or inductive behavior according to the

adopted parameter values. The paper is organized as follows.
In Section 2, we consider the HP’s memristor [2] and we
write the equation that governs the memristor circuit when
parasitic elements are added, that is, capacitance and induc-
tance. In Section 3, we solve the nonlinear equation driving
the circuit using the multiple-scale technique. In Section 4,
we find the analytical expression for the displacement of
the intersection point of the pinched hysteresis loop and we
provide a discussion on the basis of numerical simulations
and circuital analysis. Finally, we draw some conclusions.

2. Memristor with Parasitic Elements

In the work in [11], the authors considered a realistic memris-
tive circuit, where parasitic elements are included (Figure 1).
That work studied the fingerprints of twomemristive systems
(thermistors), obtaining results through experimental mea-
surements and numerical simulations.The usual fingerprints
for ideal memristive systems are modified by the existence of
parasitic elements such as inductance 𝐿, capacitance 𝐶, small
DC current source 𝐼𝑝, and DC voltage source 𝑉𝑝 as shown
in Figure 1. We consider a simplified version of the previous
circuit as shown in Figure 2, where 𝑉𝑝 and 𝐼𝑝 are neglected.
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Figure 1: A memristor considering its parasitic elements: induc-
tance 𝐿, capacitance 𝐶, small DC current source 𝐼𝑝, and small DC
voltage source 𝑉𝑝.
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Figure 2: A memristor considering its parasitic inductance and
capacitance.

Before building the equation for the circuit of Figure 2,
we recall that the memristance is defined according to the
literature as [1]

V𝑀 = 𝑑𝑑𝑡𝜙𝑀 (𝑞) = 𝑑𝑑𝑞𝜙𝑀 (𝑞)
𝑑𝑞
𝑑𝑡 = 𝑀(𝑞) 𝑑𝑞𝑑𝑡 , (1)

where 𝑀(𝑞) is the memristance by definition. According to
Kirchhoff ’s current law [12], the following expression must
be satisfied:

d𝑞𝐿𝑑𝑡 = 𝑑𝑞
𝑑𝑡 +

𝑑𝑞𝐶𝑑𝑡 , (2)

where 𝑞𝐶 represents electric charge in the capacitor. Due
to the fact that the capacitor is connected in parallel with
the ideal memristor, we are able to establish a relationship
between 𝑞𝐶 and 𝜙𝑀(𝑞); that is,

𝑞𝐶𝐶 = 𝑑𝜙𝑀𝑑𝑡 . (3)

Using the previous result, we may rewrite (2) as

𝑑𝑞𝐿𝑑𝑡 = 𝑑𝑞
𝑑𝑡 + 𝐶

𝑑2𝜙𝑀𝑑𝑡2 . (4)

We are now in a position to write the driving equation of the
circuit of Figure 2. Indeed, from Kirchhoff ’s voltage law [12],
we have

V𝑠 (𝑡) = V𝐿 (𝑡) + V𝑀 (𝑡) = 𝐿𝑑2𝑞𝐿𝑑𝑡2 + 𝑑𝜙𝑀𝑑𝑡
= 𝐿𝑑2𝑞𝐿𝑑𝑡2 +𝑀(𝑞) 𝑑𝑞𝑑𝑡 .

(5)

Inserting (4) into (5) and with the help of (1), we obtain the
circuit equation

V𝑠 (𝑡) = 𝐿𝐶𝑀(𝑞) 𝑑3𝑞𝑑𝑡3 + 𝐿
𝑑2𝑞
𝑑𝑡2 (1 + 3𝐶

𝑑𝑀(𝑞)
𝑑𝑞

𝑑𝑞
𝑑𝑡 )

+𝑀(𝑞) 𝑑𝑞𝑑𝑡 + 𝐿𝐶
𝑑2𝑀(𝑞)
𝑑𝑞2 (𝑑𝑞𝑑𝑡 )

3 ,
(6)

where 𝐿 and 𝐶 are the parasitic inductance and capacitance,
respectively, and𝑀(𝑞) represents the memristance. We may
find the circuit equation in terms of the function 𝜙𝑀 integrat-
ing (5) with respect to the time. We obtain

∫ V𝑠 (𝑡) 𝑑𝑡 = 𝜙𝑀 (𝑞) + 𝐿𝑑𝑞𝐿𝑑𝑡 (7)

Using (4), (7) can be rewritten as follows:

∫ V𝑠 (𝑡) 𝑑𝑡 = 𝐿𝑑𝑞𝑑𝑡 + 1
𝜔20

𝑑2𝜙𝑀𝑑𝑡2 + 𝜙𝑀, 𝜔0 ≡ 1√𝐿𝐶. (8)

We now focus on HP’s memristor. The analytical expression
of memristance is given by the following expression:

𝑀(𝑞) = 𝑅off (1 − 𝜇V𝑅on𝐷2 𝑞 (𝑡)) . (9)

Here𝐷 depends on thememristor length, whereas 𝜇V denotes
the ion mobility, 𝑅on denotes the resistance for completely
doped memristor, and 𝑅off denotes the resistance for com-
pletely undoped memristor. We can determine an expression
for 𝜙𝑀, given by

𝜙𝑀 = ∫𝑀(𝑞) 𝑑𝑞 = 𝑅off (𝑞 (𝑡) − 𝑞2 (𝑡)
2𝑞0 ) , (10)

where 𝑞0 = 𝐷2(𝜇V𝑅on)−1 and the integration constants are set
to zero. Next, we consider a periodic voltage source,

V𝑠 (𝑡) = 𝑉0 cos (𝜔𝑡) , (11)
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and define the dimensionless quantities via the parameter𝜙0 = 𝑅off𝑞0:
𝑓 = 𝑉0𝜔𝜙0 ,
𝑟 = 1𝐶𝑅off𝜔,
𝜏 = 𝜔𝑡,
𝑄 = 𝑞

𝑞0 ,
Φ = 𝜙

𝜙0 .

(12)

In terms of the dimensionless quantities, (9) and (10) can be
rewritten as

𝑀(𝑄) = 𝜙0𝑞0 [1 − 𝑄 (𝑡)] (13)

Φ (𝑄) = [𝑄 (𝑡) − 𝑄2 (𝑡)2 ] . (14)

We can invert (14) and, for 𝑄, we obtain
𝑄 = 1 ± √1 − 2Φ. (15)

Imposing the condition that 𝑄 takes real values, it is neces-
sary that Φ < 1/2. Plugging (15) into (8) and making the
time transformation 𝑡 = 𝜏/𝜔, we obtain the equation for the
functionΦ:

𝜀𝑑2Φ𝑑𝜏2 ∓ 𝜀𝑟√1 − 2Φ
𝑑Φ𝑑𝜏 + Φ = 𝑓 sin 𝜏, (16)

where the parameter 𝜀 is defined as

𝜀 = 𝜔2
𝜔20 . (17)

To determine the sign in (16) on which we will focus in the
next section, we impose the constraint that thememristor has
to be a passive memristor. A memristor is passive when the
memristance is positive; that is, 𝑀(𝑞) > 0. This condition
is satisfied when 𝑞(𝑡) < 𝑞0 or, equivalently, in dimensionless
variable, 𝑄 < 1 (see (13)). The condition 𝑄 < 1 implies that
we have to choose the negative sign in (15) and consequently
the positive sign in (16). This will be the subject of our study
in the next section.

3. Dynamics of a Memristor with
Parasitic Elements

In this section, we study (16) considering the positive sign of
the coefficient of the first derivative of Φ, corresponding to
the negative sign in (15). We consider 𝜀 as a small parameter
due to the fact that parasitic elements have small values of
capacitance and inductance (see [11, 13] for numerical data).

In other words, we consider the case 𝜔0 ≫ 𝜔 or 𝜀 ≪ 1. For
what we said, our starting point is the exact equation

𝜀𝑑2Φ𝑑𝜏2 + 𝜀𝑟√1 − 2Φ
𝑑Φ𝑑𝜏 + Φ = 𝑓 sin 𝜏. (18)

We define a suitable time scale 𝑇 = 𝜏/√𝜀 and a new
perturbative parameter 𝛿 = √𝜀. Replacing 𝜏 by 𝑇√𝜀 and √𝜀
by 𝛿 in (18), we obtain

𝑑2Φ𝑑𝑇2 + 𝛿𝑟√1 − 2Φ
𝑑Φ𝑑𝑇 + Φ = 𝑓 sin 𝜏. (19)

We stress that (19) contains only one parameter 𝛿𝑟 and two
time scales 𝑇 and 𝜏. We are now in the position to apply the
multiple-scale method to (19). Following the procedure given
in [14], we postulate a solution of the form

Φ (𝑇) = ∞∑
𝑛=0

𝛿𝑛Φ𝑛 (𝑇+, 𝜏) , (20)

where 𝑇+ = 𝑇(1+𝑎2𝛿2 + ⋅ ⋅ ⋅ ) is the fast variable and 𝜏 = 𝛿𝑇 is
the slow variable.The first two derivatives ofΦ(𝑇) at the first-
order approximation are given by (the reader can find these
results in great detail in chapter IV of [14])

𝑑Φ𝑑𝑇 = 𝜕Φ0𝜕𝑇+ + 𝛿(
𝜕Φ1𝜕𝑇+ +

𝜕Φ0𝜕𝜏 ) + 𝑂 (𝛿2) (21)

𝑑2Φ𝑑𝑇2 =
𝜕2Φ0𝜕𝑇+2 + 𝛿(

𝜕2Φ1𝜕𝑇+2 + 2
𝜕2Φ0𝜕𝑇+𝜕𝜏) + 𝑂 (𝛿2) . (22)

Using the expansion in (20), we can write

1
√1 − 2Φ (𝑇) =

1
√1 − 2Φ0 +

𝛿Φ1
(1 − 2Φ0)3/2 + 𝑂 (𝛿2) . (23)

To the zeroth-order expansion, we obtain the following
differential equation:

𝑑2𝑑𝑇+2Φ0 (𝑇+, 𝜏) + Φ0 (𝑇+, 𝜏) = 𝑓 sin 𝜏. (24)

The solution forΦ0(𝑇+, 𝜏) is given by

Φ0 (𝑇+, 𝜏) = 𝐴 (𝜏) cos (𝑇+) + 𝐵 (𝜏) sin (𝑇+)
+ 𝑓
1 − 𝛿2 sin 𝜏,

(25)

where 𝐴 and 𝐵 are functions depending on the slow variable𝜏. At the order 𝛿, using (22), we obtain the following
differential equation:

𝑑2Φ1𝑑𝑇+2 + Φ1 = − 𝑟
√1 − 2Φ0

𝜕Φ0𝜕𝑇+ − 2
𝜕2Φ0𝜕𝑇+𝜕𝜏 . (26)

In order to ensure the passivity of memristance 𝑀(𝑞), we
know that𝑄 < 1 and consequentlyΦ0 < 1/2.We now assume
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thatΦ0 is sufficiently far from the value 1/2 in such a way that
we may expand square root as

1
√1 − 2Φ0 ≃ (1 + Φ0) . (27)

With this further approximation, evaluating (26), we end up
with

𝑑2Φ1𝑑𝑇+2 + Φ1 = −[2𝑑𝐵 (𝜏)𝑑𝜏 + 𝑟𝐵 (𝜏)] cos (𝑇+)
+ [2𝑑𝐴 (𝜏)𝑑𝜏 + 𝑟𝐴 (𝜏)] sin (𝑇+)
+ 𝑟2 sin (2𝑇+) [𝐴 (𝜏)2 − 𝐵 (𝜏)2]
− 𝑟𝐴 (𝜏) 𝐵 (𝜏) .

(28)

To avoid secular terms, we must vanish the resonant term
coefficients, that is, the coefficients of cos𝑇+ and sin𝑇+
in (28). This procedure leads to the following system of
differential equations:

𝑑𝐴 (𝜏)𝑑𝜏 + 𝑟2𝐴 (𝜏) = 0,
𝑑𝐵 (𝜏)𝑑𝜏 + 𝑟2𝐵 (𝜏) = 0.

(29)

The solutions for 𝐴(𝜏) and 𝐵(𝜏) are given by

𝐴 (𝜏) = 𝐶1 exp [− 𝑟2𝜏] ,
𝐵 (𝜏) = 𝐶2 exp [− 𝑟2𝜏] ,

(30)

where 𝐶1 and 𝐶2 are arbitrary constants depending on initial
conditions for Φ0. By evaluating the initial conditions, we
obtain

𝐶1 = Φini,
𝐶2 = (Φ̇ini − 𝑓𝛿

(1 − 𝛿2) +
𝑟𝛿2 Φini) , (31)

where Φ0(𝑇 = 0) = Φini and (𝑑Φ0/𝑑𝑇)(𝑇 = 0) = Φ̇ini.
Finally, the expression for Φ0(𝑇) is given by

Φ0 (𝑇, 𝜏) = exp [− 𝑟2𝜏] [Φini cos𝑇+

+ (𝑟𝛿2 Φini + Φ̇ini − 𝑓𝛿
(1 − 𝛿2)) sin𝑇+] + 𝑓

1 − 𝛿2
⋅ sin 𝜏,

(32)

where 𝜏 = 𝛿𝑇. In Figure 3, we compare the analytical
expression obtained in (32) with a numerical simulation.The
figure shows an excellent agreement between numerical and
analytical solutions even during the transient period.

Using (15), we plot the electric charge and compare it
with the numerical solution. Figures 4 and 5 show a good
agreement between numerical and analytical solutions. In
Figure 4, we consider a shorter interval of time to appreciate
the wavy part that is reproduced by the analytical solution.
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Figure 3: First term Φ0 versus time 𝑇 obtained in (32) (solid line)
and numerical solution (dashed line). The parameter values areΦini = 0.15, Φ̇ini = 0.1, 𝛿 = 0.05, 𝑓 = 0.3, and 𝑟 = 3.5. The axis
units are dimensionless.
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Figure 4: First term 𝑄0 versus time 𝑇 using (15) and numerical
solution (dashed line) in the transient regime.The parameter values
are 𝑄ini = 0, 𝑄̇ini = 0, 𝛿 = 0.05, 𝑓 = 0.1, and 𝑟 = 3.5. The axis units
are dimensionless.
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Figure 5: First term 𝑄0 versus time 𝑇 using (15) and numerical
solution (dashed line). The parameter values are 𝑄ini = 0, 𝑄̇ini = 0,𝛿 = 0.05, 𝑓 = 0.1, and 𝑟 = 3.5. The axis units are dimensionless.
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4. Behavior of Pinched Hysteresis Loop

As discussed in [11], parasitic elements modify the pinched
hysteresis loop with respect to the loop of an ideal memristor.
In this section, we will find the analytical coordinates of
the intersection point. Under steady-state condition, we are
allowed to neglect the exponential terms in (32). We consider
as memristor the elements described in Figure 2, namely,
the ideal memristor and the parasitic elements. Rewriting
the electrical current (see (4)) and voltage (see (11)) of the
memristor in terms of the dimensionless quantities given by
(12), we have

𝑑𝑄𝐿𝑑𝜏
= 𝑓
1 − 𝛿2 [[[

cos (𝜏)
√1 − (2𝑓/ (1 − 𝛿2)) sin (𝜏) −

sin (𝜏)𝑟 ]]
]
,

𝑉𝑠 (𝜏) = 𝑓 cos (𝜏) ,

(33)

where 𝑑𝑄𝐿/𝑑𝜏 is the electrical current and𝑉𝑠(𝜏) is the voltage
of theHPmemristor in dimensionless notation. To determine
the intersection point located in the 𝑖-V curve, we need to find
the times 𝜏1 and 𝜏2 such that

𝑑𝑄𝐿𝑑𝜏
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏

1

= 𝑑𝑄𝐿𝑑𝜏
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏

2

, (34)

𝑉𝑠 (𝜏1) = 𝑉𝑠 (𝜏2) . (35)

For the sake of brevity, we will focus on the first quadrant,
where both cosines and sinus are positive quantities. From
condition (35), we obtain

𝜏1 = 2𝑛𝜋 ± 𝜏2. (36)

The relationship 𝜏1 = 2𝑛𝜋 + 𝜏2 gives the identical solution
corresponding to the fact that electrical current and voltage
are periodic functions in stationary regime. Substituting the
second equality, 𝜏1 = 2𝑛𝜋 − 𝜏2, into the electrical current
expression (34), we obtain the following equation:

√1 − 𝑥2√1 − 𝑎𝑥 − √1 − 𝑥2√1 + 𝑎𝑥 = 2𝑥𝑟 ,
𝑥 ≡ sin (𝜏2) , 𝑎 ≡ 2𝑓

1 − 𝛿2 .
(37)

We may further assume that 𝑎 ≪ 1, and thus we can write√1 − 𝑎𝑥 ∼ (1 − 𝑎𝑥/2), so

𝑥 = sin (𝜏2) = √1 − 4𝑎2𝑟2 . (38)

Vs
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 = 0.01; f = 0.1; r = 10

dQL/d

Figure 6: Plot of the pinched hysteresis loop as function of the
source voltage amplitude 𝑓.

In the range of validity of (38), the intersection point
coordinates are

𝑑𝑄𝐿𝑑𝜏
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏

2

= 𝑓
1 − 𝛿2 [[[

2
𝑎𝑟√1 − (2𝑓/ (1 − 𝛿2))√1 − 4/𝑎2𝑟2

− √1 − 4/𝑎2𝑟2𝑟 ]]
]
,

(39)

𝑉𝑠 (𝜏2) = 2𝑓
𝑎𝑟 . (40)

Note that, taking the limit 𝐿, 𝐶 → 0, 𝑟 → ∞ and 𝛿 → 0
(see (12) and (17)) and from (39) and (40) we recover the
ideal memristor with the intersection point located at the
origin. In Figure 6, we plot several pinched hysteresis loops
for different amplitude of the voltage source.The coordinates
of the intersection point are well described by (38) and (39).
For small 𝛿 and 𝑓, we compare our analytical solution with
the numerical result as shown in Figure 7. Analogously, we
may proceed with the third quadrant. In Figure 7, we can
appreciate two lobes; the direction of the arrows represents
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Figure 7: Plot of 𝑖-V curve for 𝛿 = 0.01, 𝑓 = 0.2, and 𝑟 = 65
in the steady-state condition. Numerical results (dashed line) and
analytical solution (solid line). The axis units are dimensionless.
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Figure 8: Plot of the voltage (dashed line) and the electrical current
for a period in stationary regime. 𝛿 = 0.01, 𝑓 = 0.2, and 𝑟 = 65.

the change of the variables voltage and current. In the upper
lobe, the direction of the arrows (counterclockwise) is similar
to the case found in an ohmic-inductive circuit. Conversely,
in the lower lobe, the direction of the arrows is clockwise,
similar to the case found in an ohmic-capacitive circuit.
For the values used in Figure 7, the capacitive lobe (lower)
is greater than the inductive lobe, so the current leads the
voltage most of the time in a period for the stationary regime.
To clarify this point, we plot the voltage and electrical current
versus time to show this fact.

In Figure 8, we can appreciate how the current alternately
leads and lags the voltage during a period. This fact is due
to the nonlinear nature of memristor. Indeed the electrical
current is not a pure sinusoidal signal and sowe can find some
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Figure 9: Plot of 𝑖-V curve for 𝛿 = 0.1, 𝑓 = 0.2, and 𝑟 = 15 in the
steady-state condition (only numerical results are shown). The axis
units are dimensionless.
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Figure 10: Plot of the voltage (dashed line) and the electrical current
for a period in stationary regime. 𝛿 = 0.1, 𝑓 = 0.2, and 𝑟 = 15.

time intervals, where the voltage lags the current and in other
cases the voltage leads the current.

In Figure 9, we show the numerical results for 𝛿 = 0.1,𝑓 = 0.2, and 𝑟 = 15. We can see that the intersection point
is located in the third quadrant according to a dominating
inductive behavior as also shown in Figure 10.

5. Conclusion

In this paper, we considered a model of a memristor with
included parasitic elements. We analyzed a system composed
of a parasitic inductance in series with the parallel between
an ideal memristance and a parasitic capacitance. Using
the multiple-time-scale approach, we studied the dynamics
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of the flux and electric charge of memristor. The parasitic
elements considered in the model modify the pinched hys-
teresis loop. We discussed the functional behavior of the
pinched hysteresis loop versus the operating frequency and
the parasitic elements. In particular, we showed that the
intersection pointmoves apart from the origin of the 𝑖-V plane
and we analytically determined its coordinates. Finally, our
theoretical analysis is shown to be in excellent agreementwith
the numerical simulations.
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