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Abstract

Preliminary experience with clinical hepatocyte trans-
plantation during the past decade has provided proof of
concept that cell therapy can be effective for the treat-
ment of some liver diseases. Recent progress in cell bi-
ology resulting in the isolation and characterization of
hepatic stem cells and progenitor cells further in-
creased the expectation for a new approach to the
treatment of genetic and chronic liver disease. Several
potential sources have been identified of hepatic stem/
progenitor cells exhibiting both differentiation to-
wards the hepatic lineage in vitro and hepatic paren-
chymal repopulation with liver-specific metabolic ac-
tivity in liver-injured animal models. However, a few
of these results proved to be poorly reproducible in dif-
ferent laboratories, and it was recognized that some
initial optimistic conclusions were drawn from incor-
rect interpretation of experimental data or from insuf-
ficient knowledge of the mechanisms involved in tissue
regeneration. Moreover, only modest results have
emerged so far from ongoing clinical experience in-
volving the use of putative stem cells in liver disease.
There is much need for a joined effort to concentrate
the resources on a specific cell population, in order to
better characterize its function, to assess its safety and
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to develop better focused clinical trials. In conclusion,
while the biological features of stem cells still justify
the hope for future clinical applications, hepatic stem
cell therapy has still a long way to go from bench to
bedside.
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Cell therapy can be defined as «the use of living cells
to restore, maintain or enhance the function of tissues and
organs».1 The use of isolated, viable cells has emerged as
an experimental therapeutic tool in the past decade, due to
progress in cell biology and particularly in techniques for
the isolation and culture of cells derived from several or-
gans and tissues. However, experimental cell therapy has a
longer tradition in Hepatology, since it has been known
for more than 30 years that isolated hepatocytes infused
into the portal vein engraft into the liver cords and express
normal cell function. Such a therapeutic strategy was put
forward as an alternative to orthotopic liver transplanta-
tion (OLT), which requires major surgery and is limited by
the availability of donors. Indeed, it was shown that sig-
nificant clinical results can be obtained with the transplan-
tation of isolated hepatocytes corresponding to as little as
1-5% of the total hepatocyte mass.2-6

The procedure seems relatively safe, provided portal
pressure and/or portal flow are monitored during cell in-
fusion in order to prevent vascular thrombosis.7 Hepato-
cyte transplantation has recently been used as an alter-
native to OLT in patients with liver-based congenital
metabolic disorders, such as Crigler-Najjar disease,8 α-
1-antitrypsin deficiency,9 glycogen storage disease type
Ia,10 ornithine transcarbamoylase deficiency11,12 and the
deficiency of factor VII.13 The role of hepatocyte trans-
plantation in the treatment of acute and chronic liver
disease is less clear,9,14 due to difficulty in organizing
large-scale clinical trials. Indeed, the main factor limit-
ing the practice of hepatocyte transplantation is again
the availability of liver grafts for cell isolation. More-
over, the metabolic effects of cell transplantation seem
to be fading with time, a problem which can partially be
solved by repeated hepatocyte infusions15 but which
probably indicates the progressive loss of the terminal-
ly-differentiated exogenous cells. In theory, both prob-
lems could be solved by replacing the hepatocyte with
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stem or precursor cells, provided they can be isolated
from a more affordable source.

Indeed, at present, there is growing interest in the
therapeutic use of stem cells.16,17 A stem cell has the abi-
lity to divide for indefinite periods of time, to self-renew
and to give rise to many different cell types. Embryonic
stem cells originate from the inner cell mass of the mam-
malian blastocyst and are totipotent.18 Adult stem cells
are more specialized, being committed to give rise to
cells with a particular function within their own specific
tissue or organ.19 Precursor/progenitor cells are defined
as cells rapidly dividing and already partially deter-
mined towards a specific differentiation pathways.20

However, experimental evidence suggests that some
adult stem cells are able to develop into different types
of specialized cells (a process also known as transdiffer-
entiation), depending on the microenvironment where
they are homed, including the liver.19,21-30

This review will address a series of major issues on he-
patic stem cells, including their origin, their role in liver
regeneration and fibrosis, and their possible use in the
treatment of liver disease.

What is the origin and what are the possible
sources of hepatic stem cells?

In mammals, the liver has the unique ability among
solid organs to regenerate following parenchymal injury.
During fetal development, hepatoblasts give rise both to
hepatocytes and to cholangiocytes. The hepatocyte is
traditionally considered as the cell responsible for liver
regeneration, being able to re-enter the cell cycle, prolif-
erate and differentiate both into hepatocytic and biliary
lineage in response to loss of liver mass. However, an in-
tra-hepatic progenitor cell compartment, resident in the
canals of Hering and consisting of precursors known as
«oval cells» in rodents (or «hepatic progenitor cells» in
human), is activated when the replicative capacity of the
main epithelial cell compartment is inhibited or exhaust-
ed.31-36 These small round cells express phenotypic mark-
ers of both fetal hepatocytes and biliary cells35,37-39 and
are able to differentiate into hepatocytes, bile ductural
cells and intestinal epithelium.40

SHPCs also appear to be involved in the process of he-
patic regeneration. SHPCs are highly proliferative and
can generate mature differentiated hepatocytes in vit-
ro.41,42 SHPCs express markers such as albumin, alpha-fe-
toprotein, transferrin, form bile canaliculi and store gly-
cogen.43 SHPCs also appear to be involved in the process
of hepatic regeneration after partial hepatectomy (PH) in
rats pre-treated with retrorsine, a pirrolyzidine alkaloid
which severely impairs the proliferating capacity of ma-
ture hepatocytes.41,44,45 In this model, hepatic repopula-
tion takes place mainly by proliferation of SHPCs, exhib-
iting phenotypic traits in common with fully differentiat-
ed hepatocytes, fetal hepatoblast, and oval cells.46 Some

reports suggest that SHPCs don’t originate from oval
cells,42 but that they derive from a pre-existing popula-
tion of retrorsine-resistant hepatocytes.47 Indeed, during
liver regeneration, the SHPCs lack hepatic cytocrome
P450 protein48 that is responsible for metabolizing retrors-
ine to pyrrolic derivatives49 and are thus resistant to the
toxic effect of the drug. Avril et al.47 labeled mature hepa-
tocytes using a recombinant retroviral vector harboring
the β-galactosydase “LacZ” gene in the retrorsine/PH rat
model. During parenchymal regeneration, a similar (4%)
proportion of β-galactosydase-positive SHPCs and of ma-
ture hepatocytes was observed, suggesting that mature
hepatocytes could be the actual progenitors of SHPCs.47

However, more recently, using 3-dimensional image anal-
ysis in the retrorsine/PH model of liver regeneration, Vig
et al. observed that oval cells surround and penetrate
SHPCs nodules, suggesting that SHPCs nodules can origi-
nate from oval cells.43

The origin of hepatic stem or precursor cells is still a
matter of debate. Interestingly, oval cells express markers
of Hematopoietic Stem Cells (HSCs), such as Thy-1,
CD34, CD45, Sca-1, c-Kit and flt-3.22,50-54 In particular,
Thy-1 is a highly conserved protein. It has been found in
the brain and in the hematopoietic system of rat, mouse
and humans.53 It is also expressed on stem cells of fetal
liver and in bone marrow (BM)-derived cells.55 In addi-
tion, the normal adult liver contains hematopoietic cells
that are phenotypically similar to cells present in the
BM.56 These observations originated the hypothesis that
liver stem cells may arise from a population resident in
the BM.22 Petersen et al.22 followed the fate of syngeneic
BM cells transplanted into lethally irradiated rats whose
livers were subsequently injured by 2-acetylaminofluo-
rene and CCl

4
, a regimen known to induce oval cell pro-

liferation. Using the sry gene as a marker for the Y chro-
mosome, male donor cells were visualized in female re-
cipients. In a separate experiment, didpeptidyl peptidase
IV (DPP IV)-positive hepatocytes were identified in the
liver of DPP IV –deficient rats transplanted with BM
from DPP IV–positive animals.

Lagasse et al.,29 transplanted fumarylacetoacetate hy-
drolase (FAH)-deficient mouse, an animal model of Ty-
rosinemia type I, with BM cells from a non-affected wild-
type animal transgenic for the β-galactosidase “LacZ”
gene. The liver of the recipient animals was progressively
repopulated with hepatocytes harboring both the β-galac-
tosidase and the fumarylacetoacetate hydrolase enzyme.
Thus, intravenous injection of adult BM cells in the FAH–
/– mouse rescued the mouse and restored the biochemical
function of its liver. It was later shown that the correction
of the metabolic disorder was not due to transdifferentia-
tion of HSCs but rather to a fusion process, probably in-
volving macrophages derived from the exogenous he-
matopoietic cell lineage and the recipient hepatocytes.57,58

This phenomenon can be demonstrated by cytogenetic
analysis in sex-discordant transplantation (Figure 1).
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times, these Authors showed that the MSCs acquired hepa-
tocyte morphology and expressed genes and functions
characteristic of liver parenchymal cells. A modified differ-
entiation medium, containing FGF-4, Oncostatin M, HGF
and EGF, was used by Shi et al., to induce BM-derived
mononuclear cells of C57BL/6 mice to differentiate into
hepatocyte-like cells.62 However, in contrast to the above
results indicating that oval cells may be derived from the
BM, recent work suggests that such cells originate in the
liver itself.43,57,63

In summary, experimental evidence suggests that liver
parenchymal cells can originate from a specific precursor
cell compartment in the liver, from pluripotent stem
cells, from transdifferentiation of HSCs or from cell fu-
sion. The occurrence of true transdifferentiation, or repro-
gramming to the hepatic lineage of an already committed
hematopoietic stem cell, is still a matter of debate.30

Additional, potential sources of hepatic stem cells
have been identified in the cord blood, in the amniotic
fluid and in the placenta. Umbilical Cord Blood (UCB)
contains hematopoietic and mesenchymal stem/precursor
cells Lee et-al.64,65 The transplantation of UCB has been
used for more than 10 years for the treatment of hemato-
logic and genetic diseases.66-71 UCB cells are easily acces-
sible, proliferate in vitro and have longer telomeres com-
pared to adult cells, indicating higher proliferation ca-
pacity.72-74 Several Authors have investigated the hepatic
potential of UCB-derived cells in vitro and in vivo. Kaki-
numa et al.,75 showed that human UCB cells cultured in
the presence of a particular combination of growth and
differentiation factors (i.e. FGF-1, FGF-2, LIF, SCF and
HGF) were able to produce albumin and other hepato-
cytes specific markers in vitro. When inoculated into liv-
er-injured SCID mice, a few functionally differentiated
human UCB-derived hepatocytes were found 55 weeks
post transplantation. By means of a «two-step» differen-
tiation medium, Lee et al.,65 induced human UCB-de-
rived (CD3-, CD14-, CD19-, CD38-, DC66b-, glycophorin
A-) MSCs to differentiate into hepatocyte-like cells. Shar-
ma et al.,76 reported that human UCB-derived mononu-
clear cells generate hepatocyte-like cells after transplan-
tation into NOD-SCID mice with severe hepatocellular
damage produced by CCl

4
. Noteworthy, all such cells

showed some specific human hepatic markers but not a
mature hepatocyte phenotype. Moreover, all the donor-
derived hepatic cells expressed human albumin and hu-
man hepatocyte-specific antigen Hep Par 1 but also ex-
pressed the murine cytokeratine CK18, suggesting the
occurrence of fusion between human and mouse cells.
Newsome et al.,77 infused an unsorted UCB mononuclear
cell preparation into sub-lethally irradiated NOD-SCID
mice. These cells were able to engraft into mice livers
and differentiate into hepatocytic lineage with no evi-
dence of fusion with mouse hepatocytes.77 Piscaglia et
al.,78 transplanted into immunocompetent rats a CD34+/
CD45+ and CD133+/CD45+ population from human

Figure 1. Distinguishing differentiation from fusion by cytogenetic
analysis based on the identification of sex chromosomes.

A. Differentiation of BM-derived cells into liver parenchymal ce-
lls originates hepatocytes with the same chromosomal pattern as
the parent stem cell (XY), and such identity is maintained also in
the case of polyploidy, which is common in the liver (e.g. XYXY
in tetraploid cells).
B. By contrast, cell fusion between male hematopoietic cell lineage
(XY) and female hepatocytes (XX) results in a XXXY pattern, as it was
shown in the Lagasse model.58
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However, other Authors have later demonstrated in differ-
ent models that HSCs can convert in hepatocytes without
fusion both in vitro and in vivo. By co-culturing HSCs
with injured liver tissue, Jang et al.,59 observed production
of cells expressing the immunocytochemical and genetic
features of hepatocytes, and maintaining the original chro-
mosomal pattern. After two days in culture, about 3% of
the cells converted to hepatocytes. A similar finding was
observed after transplantation of BM-derived cells from
male animals into female animals with liver injury: after 2
days, 8% of hepatocytes incorporated the Y chromosome,
while maintaining the original male chromosomal pattern,
suggesting differentiation rather than fusion.59 Several in-
vestigators have claimed in vitro differentiation of BM-
derived cells into hepatocytes, although the results were
often difficult to be reproduced in different laboratories.
The group of Catherine Verfaille isolated from the BM a
population of Multipotent Adult Progenitor Cells
(MAPCs) with the ability to differentiate in culture into
endothelium, neuroectoderm and endoderm. These cells
seem to be indeed pluripotent, a feature of embryonic stem
cells. Hepatic differentiation of these cells was obtained
after a few days in culture with appropriate growth fac-
tors.60 Lee et al.,61 showed that Mesenchymal Stem Cells
(MSCs) isolated from human BM are able to differentiate
into functional hepatocyte-like cells. Setting up a novel in
vitro hepatic differentiation protocol, based on the se-
quential use of HGF and Oncostatin M, and following
cells behavior under hepatogenic conditions at different
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UBC,79 after inducing liver injury by allyl-alcohol,80 and
observed that the human cell population contributed to
hepatic regeneration. Kogler et al.,81 isolated a CD45-
negative population from human UCB (denominated
«Unrestricted Somatic Stem Cells») exhibiting both
pluripotency and a high proliferation capacity in vitro.
Under appropriate conditions, these cells differentiate
into osteoblasts, chondroblasts, adipocytes, hematopoiet-
ic and neural cells. When transplanted in the preimmune
fetal sheep, they were able to generate albumin-produc-
ing human parenchymal liver cells. By analyzing liver
parenchymal cells for the coexistence of human and
ovine genomes, the Authors conclude that they were the
result of differentiation rather than of fusion, although
the latter event could not be completely excluded.

Epithelial cells from the amnion express markers of
neural progenitors cells,82,83 as well as hepatic specific
markers such as albumin and alpha-fetoprotein.84 Further-
more, cells derived from amniotic fluid have a low immu-
nogenicity, are phenotypically similar to MSCs from the
BM85 and are able to engraft in different tissues, includ-
ing the liver.86 Interestingly, amniotic mesenchymal cells
appear to induce immunological tolerance, a property
that might limit the need for immunosuppression in allo-
geneic transplantation.86

Do hepatic stem cells participate in the paren-
chymal regeneration process associated with
acute or chronic liver injury?

Several studies have addressed the ability of stem/pro-
genitor cells to repopulate a diseased liver. In patients
with chronic hepatitis C, Tanja Roskams was able to fol-
low the differentiation of hepatic progenitor cells both
into hepatocytes and cholangiocytes, suggesting that this
stem cell compartment participates in the parenchymal re-
generation associated with chronic viral liver disease.87

Further studies in acute and chronic liver disease of differ-
ent etiology also demonstrated differentiation of progeni-
tor cells into hepatocytes.88-95 The activation of the stem/
precursor cells compartment seems to be correlated with
the severity of the disease.96,97 Activation of progenitor
cells in chronic liver diseases implies that they form a po-
tential target cell population for hepatocarcinogens,87,98-100

a caveat which should be taken into account if such cells
are to be considered as a therapeutic tool.101 The differenti-
ation of the progenitor cells into hepatocytes or biliary
cells depends on the type of mature epithelial cell that is
damaged35,88,95 and by the remodeling of the surrounding
matrix.35,102 However, the factors contributing to the regu-
lation of progenitor cell activation and the components
that define the so called «stem cell niche» for adult human
liver progenitor cells are poorly characterized.103

The contribution of the BM to liver regeneration is less
clear. Several reports in different animal models indicate
that the participation of BM-derived hepatocytes to hepat-

ic parenchymal regeneration is insignificant,104-107 with the
notable exception of the previously described work by
Jang et al.59 Theise et al. infused CD34+ lin- BM cells
from male mice into irradiate female mice, and found that
only 0.39-1.1% of hepatocytes derived from BM. Follow-
ing transplantation of BM cells into five irradiate mice, no
hepatocytes of BM origin was observed in the liver of re-
cipient animals while in two mice 0.4-2.2% of bile duct
cells were positive for the Y chromosome.108 Wagers et
al.,104 generated chimeric animals by transplantation of a
single green fluorescent protein (GFP)-marked HSC into
irradiate mice. Only one hepatocyte out of 70,000 was
found to be GFP(+) in the recipient livers. Similarly, Fuji
et al.,105 were unable to identify BM-derived hepatocytes
following transplantation of GFP(+) BM cells into GFP(-)
hepatectomized mice. Kanazawa and Verma106 tested three
different animal models of liver injury (CCl

4
 treatment, al-

bumin-urokinase transgenic mouse and hepatitis B trans-
genic mouse) and found that only 5/410,000 cells were
derived from BM. Finally, Dahlke et al.,107 were unable to
demonstrate any contribution of the BM to liver regenera-
tion in a rodent model of CCl

4 
liver injury associated with

retrorsine administration, in order to inhibit the replication
of endogenous hepatocytes. In studies on patients with
sex-discordant liver or BM transplantation, the contribu-
tion of BM to hepatic parenchyma seems also to be absent
or minimal.27,28,109-114 The frequency of BM-derived hepa-
tocytes in the different studies was in the range of 0.5-
2%,28,112,113 1-8%27 and 4-7%,109 respectively. Such discor-
dant but mainly discouraging findings probably originate
from very different (and sometimes inappropriate) experi-
mental set-ups. Possible factors influencing liver repopula-
tion with BM-derived hepatic parenchymal cells include
the model and timing of liver injury, the route of stem cells
administration (systemic vs intraportal) and the selection
of the stem/precursor cell population as well as its activa-
tion before infusion.

What is the role of stem cells in hepatic fibrogene-
sis?

Myofibroblasts play a key role in the inflammatory re-
sponse and in the process of hepatic fibrogenesis, due to
their capacity to produce extracellular matrix.115 Working
in collaboration with Malcolm Alison and Stuart Forbes
and using the Y chromosome as a marker, we were able to
identify recipient-derived myofibroblasts in liver grafts
following sex-mismatched transplantation.116 These pre-
liminary data were later confirmed in a larger series, sug-
gesting a contribution of the BM to the fibrogenetic pro-
cess leading to liver cirrhosis and pointing to a possible
negative effect of BM-derived cell transplantation in liver
disease.117 However, experimental work in rodents indi-
cates that a specific cell population in the BM may actual-
ly prevent the fibrotic process in the liver. Systemic infu-
sion of a subpopulation of BM-derived nonhematopoietic
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cells, separated using an anti-Liv8 antibody, resulted in
the resolution of liver fibrosis induced by CCl

4 
treatment

and normalized the synthetic function of the liver.118

These reports suggest that the BM may be actively in-
volved in hepatic fibrogenesis, but its role in promoting
or preventing the scarring process has yet to be defined.

Can the regenerative potential of stem cells be
exploited for the treatment of liver diseases?

The treatment of liver disease with BM-derived hepatic
stem cells might have considerable advantages over the
use of hepatocytes. BM can be obtained from millions of
potential living donors with simple procedures, in contrast
to obtaining hepatocytes from the few cadaveric livers re-
jected for whole organ transplantation but still suitable for
cell isolation. It was postulated that a population of stem
cells resident in the BM can be released into the circula-
tion, in response to stimuli derived from injured tissue, mi-
grate to injured site and participate in regeneration.119-123

We hypothesize that such cells represent the vestiges of a
very ancient body repair system present in more primitive
life forms. During evolution, with the development of
more complex organisms, such a system probably became
obsolete and was mostly replaced by more efficient, spe-
cific tissue/organ stem/precursor cells. In the light of this
hypothesis, it is not surprising that the participation of
BM-derived cells to non-hematopoietic tissue has often
been described as insignificant. However, we could proba-
bly take advantage of the peculiar characteristics of such
cells by concentrating them in the injured tissue and pro-
viding the optimal conditions to promote their participa-
tion in the regenerative process.

With respect to the cell population, about twenty differ-
ent phenotypes of BM- or UCB-derived cells with potential
for hepatic differentiation have been identified using a vari-
ety of surface markers.20 It is reasonable to assume that
some degree of overlap exists among the different cell
populations, and there is much need for a joined effort in
order to select a single phenotype including the most sig-
nificant markers and demonstrating the most convincing
and reproducible potential for hepatic differentiation.
Clearly, a similar approach should also be applied to iso-
late intra-hepatic «resident» stem/precursor cells.

Following the pioneering work of Nancy Rolando124,125

as well as similar applications in the fields of Cardiolo-
gy,126 several investigators have approached the use of G-
CSF as a method to mobilize from the BM stem/precursor
cells with the aim to induce hepatic colonization improv-
ing parenchymal regeneration both in acute and in chron-
ic liver disease. However, no convincing data have been
published so far, suggesting that a significant therapeutic
effect has yet to be demonstrated. Meanwhile, studies in
laboratory animals have shown that the improvement in
hepatic regeneration associated with G-CSF administra-
tion was not associated with increased liver repopulation

by BM-derived parenchymal cells, but rather to a more
efficient repair process mediated by resident hepatic pa-
renchymal cells.127 Probably the most convincing clinical
evidence for a possible therapeutic application of liver
stem cells was published recently by am Esch II et al.128

These Authors infused autologous CD133+ BM-derived
cells into the portal vein following partial portal embo-
lization, and they observed a significant improvement in
hepatic regeneration with respect to the control group,
which did not receive cell infusion.

Recent work, performed in collaboration between our
laboratory and the Laboratory of Surgical Research of the
Cedars-Sinai Medical Center in Los Angeles, led to suc-
cessful isolation and characterization of a putative subpop-
ulation of ß2-microglubulin -/ Thy1+ hepatic stem cells
both from the liver and from the BM.129,130 Selective in-
traportal infusion of syngeneic ß2-microglubulin -/ Thy1+

BM-derived cells, following allogeneic liver transplanta-
tion in rats with subtherapeutic immunosuppression, re-
sulted in up to 62 ± 5.0% repopulation of the transplanted
lobes with syngeneic hepatocytes and cholangiocytes.
Moreover, the survival of the animals which received cell
infusion was doubled with respect to control group, sug-
gesting that graft repopulation with BM-derived cells can
rescue liver grafts undergoing rejection. We then used re-
versible ischemia/reperfusion liver injury to induce en-
graftment and hepatic parenchymal differentiation of ex-
ogenous ß2-microglubulin-/Thy1+ BM-derived cells.131

Transplantation of BM-derived cells obtained from GFP-
transgenic rats into Lewis rats resulted in the presence of
up to 20% of GFP(+) hepatocytes in ischemia/reperfusion-
injured liver lobes after one month. Infusion of wild-type
BM-derived cells into GFP-transgenic rats resulted in the
appearance of GFP(-) hepatocytes, suggesting that the
main mechanism underlying parenchymal repopulation
was differentiation rather than cell fusion. Transplantation
of wild-type BM-derived cells into hyperbilirubinemic
Gunn rats with deficient bilirubin conjugation after is-
chemia/reperfusion damage resulted in 30% decrease of se-
rum bilirubin, in the appearance of bilirubin conjugates in
bile and in the expression of normal UDP-glucuronyltrans-
ferase enzyme, evaluated by PCR analysis. Thus, reversible
ischemia/reperfusion injury induced hepatic parenchymal
engraftment and differentiation into mature hepatocytes
of BM-derived cells, and transplantation of BM-derived
cells from non affected animals resulted in the partial cor-
rection of hyperbilirubinemia in the Gunn rat, suggesting
that this procedure could potentially be used for the treat-
ment of inherited metabolic liver diseases.

Conclusions

The use of isolated viable cells to restore the function
of organs and tissues is emerging as a promising therapeu-
tic tool. In the field of Hepatology, multiple sources of he-
patic stem/precursor cells have been identified, and pre-
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liminary evidence of therapeutic effectiveness has been
provided in animal models. However, we have to learn
more on the mechanisms of liver regeneration, including
the role of stem/precursor cells. Definite (and possibly
joined) protocols for the selection of a specific cell popu-
lation and for in vitro expansion/differentiation should be
developed, as well as protocols for clinical liver repopula-
tion. The long-term fate of the transplanted cells should
also be assessed in animal models, with respect to func-
tion, possible extra-hepatic localization, genetic/epigenet-
ic stability and especially tumorigenesis. The risk is that
superficial planning, without adequate consideration and
knowledge of the underlying pathophysiology, will result
in poorly focused clinical trials and possible complica-
tions, which could in turn originate skepticism on the de-
velopment of cell therapy in Hepatology. Even if the bio-
logical characteristics of hepatic stem cells still justify the
hope for successful future clinical applications, only a
more cautious and systematic «bench to bedside» ap-
proach will guarantee consistent results.
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