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Abstract

We study travelling wave profiles for discrete approximations to
hyperbolic systems of conservation laws. A detailed example is con-
structed, showing that for the Lax-Friedrichs scheme the travelling
profiles do not depend continuously on the wave speed, in the BV
norm. Namely, taking a sequence of wave speeds λn → λ, the corre-
sponding profiles Ψn converge to a limit Ψ uniformly on the real line,
but Tot.Var.{Ψn −Ψ} ≥ c0 > 0 for all n.

1 Introduction

Consider a strictly hyperbolic N × N system of conservation laws in
one space dimension:

ut + f(u)x = 0. (1)

For initial data with small total variation, the existence of a globally
defined entropy weak solution is well known [10]. The uniqueness of
solutions obtained as limits of Glimm or front tracking approximations
has now also been established [6], [4], together with their continuous
dependence on the initial data. For vanishing viscosity approximations

ut + f(u)x = ε uxx , (2)
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uniform BV bounds, stability and convergence as ε→ 0 were recently
established in [3]. Assuming that all the eigenvalues of the Jacobian
matrix Df(u) are strictly positive, similar results are proved in [2] for
solutions of the semidiscrete (upwind) Godunov scheme

d

dt
uj(t) +

1
∆x

[
f
(
uj(t)

)
− f

(
uj−1(t)

)]
= 0 , uj(t) = u(t, j∆x) .

A major remaining open question is whether the entropy weak solu-
tions of (1) can also be recovered as the unique limits of fully discrete
schemes, where the derivatives w.r.t. both time and space are replaced
by finite differences. We recall that, for the 2 × 2 system of isen-
tropic gas dynamics, the convergence of Lax-Friedrichs and Godunov
approximations was proved in [8], within the framework of compen-
sated compactness. Further results have been obtained for straight line
systems, where all the Rankine-Hugoniot curves are straight lines. For
straight line systems of two equations, LeVeque and Temple [12] used
the existence of a coordinate system of Riemann invariants to prove
stability and convergence of the Godunov scheme. For N ×N -systems
in the same class, uniform BV bounds, stability and convergence of a
relaxation scheme, Godunov and Lax-Friedrichs approximations were
established in [7], [5], [17], respectively. The analysis relies on the fact
that, due to the very particular geometry, the interaction of waves of
the same family does not generate additional oscillations.

A key ingredient of the proofs in [3] and [2] is the local decom-
position of approximate solutions in terms of travelling waves. This
approach strongly relies on the existence of a center manifold of travel-
ling wave profiles having a sufficient degree of smoothness. In principle,
one could try to use this same strategy to prove uniform BV bounds
and stability also for discrete numerical approximations. In this case,
the existence of travelling wave profiles has been established in [14],
[13]. However, an argument put forward by D. Serre [15] indicates that
the continuous dependence on parameters of discrete travelling wave
profiles meets some basic obstructions.

In the present paper, after reviewing Serre’s argument, we elucidate
this crucial point, constructing an explicit example where the discrete
shock profiles for the Lax-Friedrichs scheme do not depend continu-
ously on the speed λ, in the BV norm. Our example is a 2× 2 system
in triangular form

ut + f(u)x = 0, (3)
vt + g(u)x = 0. (4)

The characteristic speeds are 0 and f ′(u) and the system is strictly
hyperbolic provided f ′(u) > 0. The Lax-Friedrichs scheme for (3)-(4)
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with ∆x = ∆t takes the form

un+1,j =
1
2
(
un,j+1 + un,j−1

)
− 1

2
(
f(un,j+1)− f(un,j−1)

)
, (5)

vn+1,j =
1
2
(
vn,j+1 + vn,j−1

)
− 1

2
(
g(un,j+1)− g(un,j−1)

)
. (6)

For the rest of the paper we fix a flux function f(u) which satisfies
f ′(u) > 1/8 together with the CFL condition |f ′(u)| < 1, for all u ∈ R.
The second flux function g will be constant to the right and to the left
of a given interval.

A discrete shock profile (DSP) with speed λ for (5)-(6) is a pair of
functions (

U(x), V (x)
)

=
(
U (λ)(x), V (λ)(x)

)
satisfying

U(x− λ) =
U(x+ 1) + U(x− 1)

2
− f(U(x+ 1))− f(U(x− 1))

2
, (7)

V (x− λ) =
V (x+ 1) + V (x− 1)

2
− g(U(x+ 1))− g(U(x− 1))

2
. (8)

We consider a rational speed λ = p/q and a sequence of perturbations
λ+ εn with εn → 0. For a particular choice of the flux function g, we
show that the sequence V (λ+εn) cannot converge to V (λ) in the BV
norm. Indeed, for every n the difference V (λ)− V (λ+εn) has uniformly
positive total variation. This non-zero amount of oscillation occurs far
downstream, within an interval of the form [−aε−2

n ,−bε−2
n ], for some

fixed a > b > 0. As a consequence, there cannot exist any smooth
center manifold of travelling wave profiles in the space BV (in fact, not
even a continuous one).

The present analysis brings to light a basic mechanism which gener-
ates spurious oscillations in numerically computed solutions. Roughly
speaking, these oscillations are due to resonances between the speed of
a shock and the ratio ∆x/∆t in the grid size. By further developing
these ideas, in a forthcoming paper [1] we will show how these reso-
nances can amplify the initial total variation by an arbitrarily large
factor. In particular, no a-priori BV bounds can hold for finite differ-
ence approximations of general systems of conservation laws.

2 Obstructions to the continuous depen-
dence of discrete profiles

In this section we give a precise formulation of an argument originally
due to D. Serre [15], in the context of solutions to the Lax-Friedrichs
scheme. The main result can be stated as follows.
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Theorem 2.1. Consider a strictly hyperbolic N × N system of con-
servation laws of the form (1). Assume that the eigenvalues of the
Jacobian matrix Df(u) satisfy

−1 < λ1(u) < λ2(u) < · · · < λN (u) ≈ 0

and that the N -th characteristic field is genuinely nonlinear. Then, for
a generic flux function f ∈ C2(RN ; RN ), the discrete travelling profiles
corresponding to shocks of the N -th family do not depend continuously
on their speed, in the BV norm.

Proof. Set

un,j
.= u(n∆t, j∆x), ∆t = ∆x = 1 ,

and consider the Lax-Friedrichs approximation scheme

un+1,j =
un,j+1 + un,j−1

2
− f(un,j+1)− f(un,j−1)

2
.

This can be written in conservation form as

un+1,j = un,j +
[
F (un,j−1, un,j)− F (un,j , un,j+1)

]
, (9)

with

F (u, v) =
u− v

2
+
f(u) + f(v)

2
. (10)

Let ψ = ψ(y) be a discrete shock profile of the N -th family, having
bounded variation and connecting the left and right states u−, u+.
Calling σ the speed of the shock profile, by definition one has

ψ(y − σ) = ψ(y) +
[
F

(
ψ(y − 1), ψ(y)

)
− F

(
ψ(y), ψ(y + 1)

)]
. (11)

Since ψ(±∞) = u± and ψ has bounded variation, for every x0 ∈ R
and every integer k ∈ Z there holds

W (k) .=
∑

j

[
ψ(x0 + j + k)− ψ(x0 + j)

]
= k(u+ − u−) . (12)
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Moreover, using (11) with y = x0 + j + σ, for every x0 ∈ R we obtain

W (σ) .=
∑

j

[
ψ(x0 + j + σ)− ψ(x0 + j)

]
=

∑
j

[
F

(
ψ(x0 + j + σ), ψ(x0 + j + σ + 1)

)
−

− F
(
ψ(x0 + j + σ − 1), ψ(x0 + j + σ)

)]
=

∑
j

[
ψ(x0 + j + σ)− ψ(x0 + j + σ + 1) + ψ(x0 + j + σ − 1)

2

]
+

+
∑

j

[
f
(
ψ(x0 + j + σ + 1)

)
− f

(
ψ(x0 + j + σ − 1)

)
2

]
= f(u+)− f(u−)

= σ(u+ − u−) . (13)

For every discrete profile ψ ∈ BV travelling with speed σ, (12) and
(13) together imply

W (s) = s(u+ − u−) for all s ∈ Z + σZ. (14)

If σ is irrational, from (14) by continuity we obtain

W (s) =
∑

j

[
ψ(x0 + j + s)− ψ(x0 + j)

]
= s(u+ − u−), (15)

for all s ∈ R.

*

*

*
*

*

u−

u+

u

u
u

v

v

v
u
0

0
1
1

2
2

0w

w1

Figure 1

Now assume that there exists a family of discrete wave profiles
ψ(σ) corresponding to irrational speeds σ such that ψ(σ) → ψ in BV,
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as σ → 0. Defining u± .= ψ(±∞), by continuity one finds

W (s) =
∑

j

[
ψ(x0 + j + s)− ψ(x0 + j)

]
= s(u+ − u−) , (16)

for every x0, s ∈ R. In particular, the limiting profile with zero speed
will satisfy

ψ(y) = ψ(y) + F
(
ψ(y − 1), ψ(y)

)
− F

(
ψ(y), ψ(y + 1)

)
,

hence
F

(
ψ(y), ψ(y + 1)

)
= f∞

.= f(u+) = f(u−) .

Recalling (10), this yields

ψ(y + 1)− ψ(y) + f
(
ψ(y + 1)

)
+ f

(
ψ(y)

)
= 2f∞ .

Since all the eigenvalues of Df have size strictly smaller than 1, by the
implicit function theorem we obtain a solution in the form

ψ(y + 1) = Φ
(
ψ(y)

)
. (17)

The matrix Df(u+) has N negative eigenvalues, while Df(u−) has
1 positive and N − 1 negative eigenvalues. This geometry implies
that the discrete travelling profiles joining u− with u+ are precisely
the orbits contained in the 1-dimensional unstable manifold at u−.
Therefore, any discrete travelling profile with speed 0 must be formed
by a continuous family of these orbits (Figure 1). Let

. . . , u−1, u0, u1, u2, . . .

. . . , v−1, v0, v1, v2, . . .

any two distinct orbits, with

uj+1 = Φ(uj), vj+1 = Φ(vj), for all j ,

u−∞ = v−∞ = u−, u∞ = v∞ = u+.

By (16) we must have∑
j

(uj − vj) = κ(u+ − u−) (18)

for some constant κ 6= 0. In particular, the right hand side of (18)
must be parallel to u+−u−. We claim that, for a generic flux function
f , there exists a couple of distinct orbits for which the relation (18)
fails. Indeed, if such a couple of orbits exists for f , by continuity the
relation (18) still fails for al nearby fluxes f̃ suitably close to f in the
C2 norm.
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Otherwise, consider two consecutive points u0, u1 on the first orbit.
We can slightly perturb the function f and obtain a new flux function
g such that g = f outside two small neighborhoods of u0 and u1, not
containing any other point uj , vj . We claim that it is possible to choose
this perturbation so that the new orbit corresponding to g is

. . . , u−1, w0, w1, u2, u3, . . .

i.e., only the two points u0, u1 are changed. To achieve this, we need
the relations

w0 − u−1 + f(u−1) + g(w0) = 2f∞ , (19)

w1 − w0 + g(w0) + g(w1) = 2f∞ , (20)

u2 − w1 + g(w1) + f(u2) = 2f∞ . (21)

This is a set of 3 equations for 4 variables. We can use (19) to obtain
w0 and (21) to obtain w1. Then, summing all three equations we get
the compatibility condition

2
[
g(w0) + g(w1)

]
= 6f∞ −

[
f(u−1) + f(u2)

]
+ (u−1 − u2) . (22)

Comparing (19) and (21) with the corresponding equations satisfied
by u0 and u2 we obtain

w0 − u0 + g(w0)− f(u0) = 0 ,

u1 − w1 + g(w1)− f(u1) = 0 .

Hence

w0 + w1 − u0 − u1 = g(w1)− g(w0)− f(u1) + f(u0) . (23)

It is now clear that one can choose g(w0), g(w1) so that their sum
satisfies (22), but the quantity on the right hand side of (23) is not
parallel to u+ − u−. This shows that the relation (18) is generically
false, hence the convergence ψ(σ) → ψ in BV cannot hold.

3 The heart of the matter

We begin by observing that the system (3)-(4) is in triangular form.
Let (U, V ) be a discrete travelling wave profile with speed λ. Then U
must be a travelling profile for the scalar difference equation (5), while
V should be a travelling profile for the linear difference equation with
sources

vn+1,j =
1
2
(
vn,j+1 + vn,j−1

)
+ gn,j , (24)
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where
gn,j =

1
2

[
g(U(j − 1− λn)

)
− g

(
U(j + 1− λn)

]
.

We shall choose flux function g = g(u) in such a way that

g′(U(ξ)) = 0 if ξ /∈ ]− ρ, ρ[ .

As a consequence, we have

gn,j 6= 0 only if |j − nλ| < 1 + ρ .

All the source terms in (24) are thus located within a small strip around
the line x = λt.

Over large time intervals, the equation (24) is well approximated in
terms of a heat equation with almost periodic sources. To understand
how much oscillations can be produced in the solution vn,j , in this
section we first study in detail a “toy problem”, consisting of the heat
equation with point sources. We claim that this simple P.D.E. actually
captures the heart of the matter. Indeed, by careful estimates of the
various approximation errors, we will later prove that the same amount
of oscillations occurs also for solutions of (24). For clarity of exposition,
we consider three cases of increasing difficulty.

CASE 1. Let us begin with the simplest case of a heat equation, where
the source acts continuously in time and is concentrated along the line
x = σt with σ > 0, namely

vt − vxx = δt,σt . (25)

In this case the travelling wave solution is found explicitly:

v(t, x) = φ(x− σt) (26)

with

φ(y) =
∫ ∞

0

G(t, y + σt) dt =
{
σ−1e−σy if y ≥ 0,
σ−1 if y ≤ 0. (27)

Here G(t, x) := e−x2/4t/2
√
πt is the standard heat kernel. Notice that

the travelling profile can also be obtained as the value at time t = 0 of
a solution of (25) defined for t ∈ ]−∞, 0]. We also have

φ′(y) =
∫ ∞

0

Gx(t, y + σt) dt =
{
−e−σy if y > 0,
0 if y < 0. (28)

CASE 2. Next, we consider the case where the sources are located on
a discrete set of points Pn = (n, σn) with n ∈ Z (the white circles in
Figure 2)

vt − vxx = δn,σn . (29)
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x0

Figure 2

We again assume that σ > 0 and consider a solution of (29) defined
for t ∈]−∞, 0]. Its value at time t = 0 is now computed as

v(0, y) = Φ(y) .=
∑
n≥1

G(n, y + σn) . (30)

For y → ∞, it is clear that Φ(y) tends to zero exponentially fast, to-
gether with all derivatives. We wish to understand how the oscillations
decay for y → −∞, i.e. far downstream from the shock. For y < 0, the
sum (30) can be expressed as an integral

Φ(y) .=
∑
n≥1

G(n, y + σn) =
∫ ∞

0

G(t, y + σt)
(
1 + h′1(t)

)
dt, (31)

where
h1(t)

.= [[t]]− t+ 1/2 .

By induction, we can find a sequence of periodic functions hm such
that

hm(t) = hm(t+ 1) ,
∫ 1

0

hm(t) dt = 0 ,
d

dt
hm(t) = hm−1(t) .

Integrating by parts and recalling (27), from (31) we obtain

Φ(y) =
∫ ∞

0

G(t, y + σt)
(
1 +

dm

dtm
hm(t)

)
dt (32)

=
1
σ

+ (−1)m

∫ ∞

0

dm

dtm
G(t, y + σt)hm(t) dt . (33)
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Since

hm(t) =
∫ t

ξm

hm−1(s) ds t ∈ [0, 1]

for some point ξm ∈ [0, 1], by induction on m we find∣∣hm(t)
∣∣ ≤ 1

for all m ≥ 1 and t ∈ [0, 1]. The identities

G(t, x) = t−1/2G(1, x/
√
t) , Gt = Gxx ,

imply

∂m

∂xm
G(t, x) = t−(m+1)/2 · ∂

m

∂xm
G(1, x/

√
t) , (34)

∂m

∂tm
G(t, x) = t−(2m+1)/2 · ∂

m

∂tm
G(1, x/

√
t) . (35)

We recall here some basic estimates for the heat kernel and its deriva-
tives, that will be used throughout the paper. For m = 0, 1, . . . we
have ∥∥∥∥ ∂m

∂xm
G(t, ·)

∥∥∥∥
L∞

= O(1) · 1
t(m+1)/2

, (36)∥∥∥∥ ∂m

∂tm
G(t, ·)

∥∥∥∥
L∞

= O(1) · 1
t(2m+1)/2

. (37)

In addition we observe that, as y → −∞, the function t 7→ G(t, y+σt)
becomes exponentially small together with all its derivatives, outside
the interval centered at |y|/σ with width |y|δ+1/2 , for any δ > 0. More
precisely

sup
|t+y/σ|<|y|δ+1/2

∣∣∣∣ dm

dtm
G(t, y + σt)

∣∣∣∣ = O(1) · ecδy as y → −∞ , (38)

for some constant cδ > 0.
Letting y → −∞, for every m ≥ 1 the above estimates imply∣∣∣∣Φ(y)− 1

σ

∣∣∣∣ ≤ ∫ ∞

0

∣∣∣∣ dm

dtm
G(t, y + σt)

∣∣∣∣ dt = O(1) · y−m/2. (39)

Similarly,∣∣Φ′(y)∣∣ ≤ ∫ ∞

0

∣∣∣∣ dm+1

dtm+1
G(t, y + σt)

∣∣∣∣ dt = O(1) · y−(m+1)/2. (40)

Since m ≥ 1 is arbitrary, this shows that the function Φ′ is rapidly
decreasing as y → −∞. In particular, taking m = 2 in (40) we obtain
the integrability of Φ′, hence a bound on the total variation of Φ.
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CASE 3. Finally, assume that the impulses are located not at the
points Pn = (n, σn) but at the points with integer coordinates Qn

.=(
n, [[σn]]

)
(the black circles in Figure 2)

vt − vxx = δn,[[σn]] , (41)

where [[a]] denotes the integer part of a real number a.
Again we consider a solution defined for t ∈ ] − ∞, 0] and study

its profile at the terminal time t = 0. Assuming σ > 0, a direct
computation yields

v(0, y − 1) = Ψ(y) :=
∑
n≥1

G
(
n, y + [[σn]]

)
.

Because of (39), to determine the asymptotic behavior as y → −∞, it
suffices to estimate the difference

K(y) .= Ψ(y)− Φ(y) = −
∑
n≥1

[
G(n, y + σn

)
−G

(
n, y + [[σn]]

)]
.

It is here that, if the speed σ is close to a rational, a resonance is
observed. To see a simple case, let σ = 1 + ε, with ε > 0 small. Then
we can approximate

K(y) ≈ −
∑
n≥1

Gx(n, y + σn
)(
σn− [[σn]]

)
≈ −

∫ ∞

0

Gx(t, y + σt)
(
εt− [[εt]]

)
dt . (42)

The functions appearing in the above integration are shown in Figure 3.

ε−1

1/2

xG

n − [[  n]]εε

|y|

|y|
−1

1

0

0 t/σ|y|

Figure 3

We recall that∫ ∞

0

Gx(t, y + σt) dt = −
∫ ∞

0

y + σt

4t
√
πt

exp
{
− (y + σt)2

4t

}
dt = 0
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for every y < 0. Set yε
.= −ε−2. When y ranges within the interval

Iε
.= [yε, yε/2] = [−ε−2,−ε−2/2] ,

the integral in (42) can be of the same order of magnitude as∫ ∞

0

∣∣Gx(t, yε + σt)
∣∣ dt ≥ c0 y

−1/2
ε = c0 ε .

Moreover, each time that y increases by an amount ∆y = ε−1, the
phase of the fractional part [[εy]]− εy goes through a full cycle, hence
the map

y 7→
∫ ∞

0

Gx(t, y + σt)
(
εt− [[εt]]

)
dt

oscillates by an amount ≥ c1ε. In all, we have approximately 1/2ε
cycles within the interval Iε. Hence the total variation of the discrete
profile Ψ(1+ε) on Iε can be estimated as

T.V.
{
Ψ(1+ε) ; Iε

}
≥ c2 (43)

for some constant c2 > 0 independent of ε. We write here Ψ = Ψ(1+ε)

to emphasize that the profile depends on the speed σ = 1 + ε. By (43)
it is clear that, as ε→ 0+, the functions Ψ(1+ε) do not form a Cauchy
sequence and cannot converge in the space BV.

4 Construction of discrete shock profiles

Since (3) is a decoupled scalar equation, the existence of discrete shock
profiles (DSP) for the Lax-Friedrichs scheme (5) follows from [11], [16].
For given left and right states u−, u+ we denote by Uλ(x) the DSP
connecting u− to u+ and moving with speed

λ =
f(u+)− f(u−)

u+ − u−
.

We proceed to construct the second component of a discrete travelling
profile with speed λ by using the discrete Green kernel for (6) and
the Duhamel principle. Consider the Lax-Friedrichs scheme for the
equation zt = 0,

zn+1,j =
zn,j+1 + zn,j−1

2
. (44)

We observe that the discrete Green’s function Kn,k for (44) is given
by

Kn,k =
{ (

1
2

)n (
n

(n−k)/2

)
for k = −n,−n+ 2, . . . , n− 2, n,

0 otherwise.
(45)
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Given any DSP for the first equation, a DSP for (6) is obtained by
prescribing vanishing v-data at time n = −∞, and then letting the
u-terms act as a source in (6) from n = −∞ to n = 0. Consider first
the difference equation

vn+1,j =
1
2
(
vn,j+1 + vn,j−1

)
+ gn,j , (46)

where the sources gn,j are assumed given. By Duhamel’s principle
we have that if vanishing data are given at time step −N , then the
solution of (46) at time step n ≥ −N is

vn,j =
n−1∑

m=−N−1

∑
k∈Z

gm,j−kKn−1−m,k. (47)

To apply this in our situation we introduce the functions ψ, H : R → R
by

ψ(s) :=
d

ds
g(U(s)),

and

H(x) := −1
2
[
g(U(x+ 1))− g(U(x− 1))

]
= −1

2

∫ x+1

x−1

ψ(s) ds,

where U = U (λ) is a scalar DSP for the first equation. In this case (6)
may be written in the form (46) with the sources gn,j given by

gn,j = H(j − λn).

From now on we make the assumption that g(u) is such that ψ and
hence also H have compact support.

Proposition 4.1. The pair of functions (U (λ), V (λ)) where U (λ) is a
DSP for (5) and V (λ) is defined by

V (λ)(x) :=
∞∑

n=1

∑
k∈Z

H(x− k + λn)Kn−1,k,

is a DSP for the system (5)-(6).

/ Remark 4.1: The proof of this proposition is immediate once it is
verified that the double sum converges. Since H has compact support
the convergence follows. .
We next give a useful integral representation of V (λ)(x). For a fixed ξ
we define the function v(λ)(·; ξ) : R → R by

v(λ)(x; ξ) :=
∞∑

n=1

(
Kn−1,[[x+λn−ξ]] +Kn−1,[[x+λn−ξ]]+1

)
.
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Proposition 4.2. The function V (λ)(x) is given by

V (λ)(x) = −1
2

∫ ∞

−∞
ψ(ξ)v(λ)(x; ξ) dξ. (48)

Proof.

V (λ)(x) =
∞∑

n=1

∑
k∈Z

H(x− k + λn)Kn−1,k

= −1
2

∞∑
n=1

∑
k∈Z

[∫ x−k+λn+1

x−k+λn

ψ(ξ) dξKn−1,k +
∫ x−k+λn

x−k+λn−1

ψ(ξ) dξKn−1,k

]

= −1
2

∞∑
n=1

∑
k∈Z

[∫ x−k+λn+1

x−k+λn

ψ(ξ)Kn−1,[[x+λn−ξ]]+1 dξ+

+
∫ x−k+λn

x−k+λn−1

ψ(ξ)Kn−1,[[x+λn−ξ]] dξ

]

= −1
2

∞∑
n=1

[∫ ∞

−∞
ψ(ξ)Kn−1,[[x+λn−ξ]]+1 dξ +

∫ ∞

−∞
ψ(ξ)Kn−1,[[x+λn−ξ]] dξ

]

= −1
2

∫ ∞

−∞
ψ(ξ)

∞∑
n=1

(
Kn−1,[[x+λn−ξ]]+1 +Kn−1,[[x+λn−ξ]]

)
dξ

= −1
2

∫ ∞

−∞
ψ(ξ)v(λ)(x; ξ) dξ.

5 Approximation by the heat kernel

We will compare solutions of the Lax-Friedrichs scheme with certain
solutions of the heat equation. As a first step we approximate the
discrete Green’s function Kn,k using the heat kernel

G(t, x) =
1

2
√
πt
e−

x2
4t .

We use the following notation (see [9]):

ak(ν) :=
(

1
2

)2ν (
2ν
ν + k

)
.

By Stirling’s formula we have

ak(ν) = hN (hk) · exp(ε1 − ε2),
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where

h =

√
2
ν
, N (x) =

1√
2π
e−

x2
2 ,

and the errors ε1, ε2 satisfy

−3k2

4ν2
< ε1 <

k4

4ν3
, provided |k| < ν/3, and ε2 = O(1/ν).

There are two cases to consider depending on whether both n and k
are even or both are odd.

• Case 1: n = 2m, k = 2l. In this case we have,

Kn,k = al(m) = 2G
(n

2
, k

)
· eε1−ε2 .

• Case 2: n = 2m+ 1, k = 2l + 1. In this case we have,

Kn,k =
n

n+ k
al(m)

= 2
n

n+ k
G

(
n− 1

2
, k − 1

)
· eε1−ε2

= 2G
(n

2
, k

)
· eε1−ε2

n

n+ k

√
n

n− 1
e

k2
2n−

(k−1)2

2(n−1) .

We will use this approximation only in the case when |k| ≤ O(1)n1/2+δ

where 0 < δ � 1. It follows that in either case we have

eε1−ε2 = 1 +O(1)n−1+4δ.

An easy calculation shows that under the same condition on k,

n

n+ k

√
n

n− 1
e

k2
2n−

(k−1)2

2(n−1) = 1 +O(1)n−1+δ.

Recalling (36), summing up we have the following.

Proposition 5.1. For n ≥ 1 and for |k| ≤ O(1)n1/2+δ, with 0 < δ �
1, we have

Kn,k = 2G
(n

2
, k

)
+O(1)n−3/2+δ. (49)

For a given speed λ > 0 and for δ ∈]0, 1/2[ we define the time
interval

I(y;λ, δ) =
[ y
λ
− y1/2+δ,

y

λ
+ y1/2+δ

]
. (50)

We will make repeated use of the fact that, for y < 0, the indices
outside I(|y|;λ, δ) contribute exponentially little to the sum

S(y) :=
∞∑

n=1

Kn,[[y+λn]].
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Proposition 5.2. For y < 0, λ > 0 and δ ∈]0, 1/2[ we have∑
n/∈I(|y|;λ,δ)

Kn,[[y+λn]] ≤ O(1)e−C(δ,λ)|y|c(λ,δ)
, (51)

for some positive constants C(δ, λ) and c(λ, δ).

Proof. For notational convenience assume that λ = 1, the case λ < 1
being similar. First of all we have Kn,[[y+n]] 6= 0 iff n ≥ |y|

2 . We divide
the above sum in four parts, where n ranges over I1 =

] |y|
2 ,

|y|+1
2

]
, I2 =] |y|+1

2 , |y| − |y|1/2+δ
[
, I3 =

]
|y| + |y|1/2+δ, 2|y|

[
and I4 =

[
2|y|,+∞

[
,

respectively. If n ∈ I1 (and there is at most one such n) then [[y+n]] =
−n and n = O(|y|), so that Kn,[[y+n]] = 1

2n = 2−C|y| is transcendentally
small. For the remaining indexes we can use the following estimate
obtained by Stirling’s formula(

n

k

)
≤ Cnn+1/2

kk+1/2(n− k)n−k+1/2
, for 0 < k < n. (52)

If n ∈ I2, from (45) and (52) it follows

Kn,[[y+n]] ≤ C

√
n2n

yy(2n− y)2n−y
=:

√
F (n, y).

A calculation shows that n 7→ F (n, y) is increasing on I2 and that

F1(y) := ln
(

max
n∈I2

F (n, y)
)

= lnF (|y|−|y| 12+δ) = −|y|2δ+O(1)|y|3δ− 1
2 .

The case n ∈ I3 is treated in a similar way. It follows that∑
n∈I2∪I3

Kn,[[y+n]] ≤ O(1)|y|e−C(δ)|y|2δ

.

Finally let n ∈ I4. Since the map y 7→ F (n, y) is increasing when
|y| ≤ n, then F (n, y) ≤ F (n, n/2) ≤ (2/3)n/2 for n ∈ I4. Thus

∑
n∈I4

Kn,[[y+n]] = O(1)
∑

n≥2|y|

(
2
3

)n/4

= O(1)
(

2
3

)|y|/2

.

This completes the proof.

In the following we will also need an analogous result for the heat
kernel G.
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Proposition 5.3. Let y < 0, λ > 0 and δ ∈]0, 1/2[. Then, outside the
interval I(|y|;λ, δ) the integral of G as well as any of its derivatives is
transcendentally small, i.e. for any m ≥ 0, we have∫

R+\I(|y|;λ,δ)

∣∣∣∣ ∂m

∂xm
G(t, y + λt)

∣∣∣∣ dt ≤ O(1)e−C(δ,λ)|y|c(λ,δ)
, (53)

for some positive constants C(δ, λ) and c(λ, δ). Moreover∣∣∣∣ ∑
n/∈I(|y|;λ,δ)

∂m

∂xm
G (n, y + λn)

∣∣∣∣ ≤ O(1)e−C(δ,λ)|y|c(λ,δ)
, (54)

∣∣∣∣ ∑
n/∈I(|y|;λ,δ)

∂m

∂xm
G

(
n, [[y + λn]]

)∣∣∣∣ ≤ O(1)e−C(δ,λ)|y|c(λ,δ)
. (55)

Proof. For simplicity, assume λ = 1. Concerning the integral, we have∫ |y|−|y|1/2+δ

0

∣∣∣∣ ∂m

∂xm
G(t, y + t)

∣∣∣∣ dt = O(1)
∫ |y|−|y|1/2+δ

0

e−|y|
2δ/5 dt

= O(1) · |y| e−|y|
2δ/5,

∫ ∞

|y|+|y|1/2+δ

∣∣∣∣ ∂m

∂xm
G(t, y + t)

∣∣∣∣ dt = O(1) ·

{∫ |y|

|y|1/2+δ

+
∫ ∞

|y|

}
e−

τ2
4(τ+|y|) dτ

≤ C|y|e−|y|
2δ/8 +

∫ ∞

|y|
e−τ/8 dτ = O(1)e−C|y|2δ

.

Hence (53) follows. The other two estimates can be obtained from
(53), (39) and (40).

As a consequence of the previous propositions, we are authorized
to add or subtract the tails of the integrals/sums, introducing an error
which is exponentially decreasing with y. This will be frequently and
tacitly used in the following.

5.1 Estimates on the approximation errors

In order to estimate the variation of the second component of the
DSPs we will need that v(λ)(x; ξ) is close, within acceptable errors, to
the corresponding function defined in terms of the heat kernel. This
function is given as

w(λ)(x; ξ) := 2
∞∑

n=1

G
(n

2
, [[zn]]

)
,
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where
zn = zn(x, λ) := x+ λ(n+ 1)− ξ. (56)

We will need to carefully keep track of the dependence of w(λ) on λ.
We proceed estimate w(λ). Using (31), (39), (36) and (37), for all

m ≥ 1, x � 0 and ξ in the support of ψ, writing z = x − ξ + λ, we
have

w(λ)(x; ξ) = 2
∞∑

n=1

G
(n

2
, [[zn]]

)
= 2

∞∑
n=1

G
(n

2
, zn

)
− 2

∞∑
n=1

{
G

(n
2
, zn

)
−G

(n
2
, [[zn]]

)}
=

2
λ

+O(1)|x|−m+

− 2
∑

n∈I(|z|;λ,δ)

{
Gx

(n
2
, zn

)
· ((zn)) +O(1)n−3/2((zn))2

}
=

2
λ
− 2

∑
n∈I(|z|;λ,δ)

Gx

(n
2
, zn

)
· ((zn)) + O(1)|x|−1+δ,

(57)

where ((a)) := a− [[a]] is the fractional part of a real number a. In this
calculation we have used that |I(|z|;λ, δ)| = O(1)|x|1/2+δ and that
n = O(1)|x| when n ∈ I(|z|;λ, δ).
The case of rational speed. The estimate (57) is valid for any speed
λ. Now suppose that λ is a rational speed,

λ =
p

q
, p, q ∈ N,

with p and q relatively prime, and consider the sum on the right-hand
side of (57). By writing n = mq + j with m ≥ 0, j ∈ {0, . . . , q − 1},
Taylor expanding about the points (tm, xm) where

tm = mq/2, xm = xm(x, λ) := x+ λmq − ξ,

and using the formula

q∑
j=1

((
z +

pj

q

))
= ((qz)) +

q − 1
2

, (58)
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from (36) and (37), we obtain, for zn = zn(x, λ) and z = x− ξ + λ,∑
n∈I(|z|;λ,δ)

Gx

(n
2
, zn

)
((zn))

=
∑
m≥0

q−1∑
j=0︸ ︷︷ ︸

mq+j∈I(|z|;λ,δ)

Gx

(
mq + j

2
, x+ λ(mq + j + 1)− ξ

)
((zmq+j))

=
∑
m≥0

q−1∑
j=0︸ ︷︷ ︸

mq+j∈I(|z|;λ,δ)

{
Gx

(mq
2
, xm

)
+ sup

t,x

(
|Gxt|+ |Gxx|

)
O(q)

}
((zmq+j))

=
∑
m≥1

Gx

(mq
2
, xm

) q−1∑
j=0

((zmq+j))+

+O(q)|x|1/2+δ
(
|x|−2 + |x|−3/2

)
+ e−C|x| (59)

=
{

((q(x− ξ))) +
q − 1

2

} ∑
m≥1

Gx

(mq
2
, xm

)
+O(q)|x|−1+δ.

In this calculation we have used that |I(|z|;λ, δ)| = O(1)|x|1/2+δ and
that n = O(1)|x| when n ∈ I(|z|;λ, δ). Analogously to (40), one can
prove that ∑

m≥1

Gx

(mq
2
, xm

)
= O(qM−1)|x|−

M+1
2 +δ,

for every integer M . We thus have that∑
n∈I(|z|;λ,δ)

Gx

(n
2
, zn

)
· ((zn))

=
{

((q(x− ξ))) +
q − 1

2

} ∑
m≥1

Gx

(mq
2
, xm

)
+O(q)|x|−1+δ

= O(qM )|x|−
M+1

2 +δ +O(q)|x|−1+δ. (60)

From (57) and (60) we conclude that when the speed λ = p/q is a
rational we have

w(λ)(x; ξ) =
2
λ

+O(qM )|x|−
M+1

2 +δ +O(q)|x|−1+δ. (61)

Due to the dependence on the denominator q, equation (61) is not
useful for computing the variation of differences w(λ)−w(λ̃) as λ̃→ λ.
Instead, (61) will be used for a fixed reference speed λ, while we need
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an alternative analysis to estimate w(λ̃), where λ̃ = λ + ε is a small
perturbation of λ.

For this we return to the right hand side of (59), with xm = xm(x, λ̃)
and zn = zn(x, λ̃). We establish the following technical result.

Proposition 5.4. Let λ = p/q and λ̃ = λ+ ε, with 0 < ε� 1. Then
for z = x− ξ, where ξ lies in the support of ψ, there holds

∑
m≥0

Gx

(mq
2
, z + λ̃mq

)
·

q∑
j=1

((z +mqε+ λ̃j))

=
∫ ∞

0

Gx

(sq
2
, z + λ̃sq

)
· ((q(z + sqε))) ds+

+O(q)|x|−1+δ +O(εq2)|x|−1/2+δ. (62)

Proof. We compare both the sum and the integral to the same integral
and show that in each case the error is O(q)|x|−1+δ +O(εq2)|x|−1/2+δ.
Let aj = z + λ̃j and consider the following difference∣∣∣∣∣∣

∑
m≥0

Gx

(mq
2
, z + λ̃mq

)
·

q∑
j=1

((z +mqε+ λ̃j)) −

−
∫ ∞

0

Gx

(sq
2
, z + λ̃sq

)
·

q∑
j=1

((aj + sqε)) ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
m≥0

∫ m+1

m

{
Gx

(mq
2
, z + λ̃mq

)
−

−Gx

(sq
2
, z + λ̃sq

)} q∑
j=1

((aj +mqε)) ds

∣∣∣∣∣∣ +

+

∣∣∣∣∣∣
∑
m≥0

∫ m+1

m

Gx

(sq
2
, z + λ̃sq

) 
q∑

j=1

((aj +mqε))− ((aj + sqε))

 ds

∣∣∣∣∣∣
≤

∑
m≥0

q∑
j=1︸ ︷︷ ︸

mq+j∈I(|z|;λ̃,δ)

{
sup
t,x

(
|Gxt|+ |Gxx|

)
O(q)

}
((aj +mqε)) + e−C|x|+

+
O(1)
|x|

q∑
j=1

∑
mq∈I(|z|;λ̃,δ)

∫ m+1

m

∣∣((aj +mqε))− ((aj + sqε))
∣∣ ds. (63)

The first sum on the right hand side of (63) is bounded by O(q)|x|−1+δ.
To estimate the second sum, we divide the interval I(|z|; λ̃, δ) into
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r = O
(
εq |I(|z|; λ̃, δ)|

)
= O

(
εq

)
|x|1/2+δ intervals J1, . . . , Jr of equal

length 1/(εq), and re-write the sum over m as

r∑
k=1

∫
Jk

∣∣((aj + [[s]]qε))− ((aj + sqε))
∣∣ ds.

The integrand is bounded by εq except on a sub-interval of length 1
where it is O(1). Hence, for each k, the integral over Jk is bounded
by order one. It follows that the second sum on the right hand side of
(63) is bounded by O(εq2)|x|−1/2+δ.

On the other hand, using (58), (28) and (36), we have∣∣∣∣∫ ∞

0

Gx

(sq
2
, z + λ̃sq

)
· ((q(z + sqε))) ds −

−
∫ ∞

0

Gx

(sq
2
, z + λ̃sq

)
·

q∑
j=1

((aj + sqε)) ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ ∞

0

Gx

(sq
2
, z + λ̃sq

)
·

((q(z + sqε)))−
q∑

j=1

((aj + sqε))

 ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ ∞

0

Gx

(sq
2
, z + λ̃sq

)
·

·


q∑

j=1

(
((z + λj + sqε))− ((aj + sqε))

)
− q − 1

2

 ds

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ ∞

0

Gx

(sq
2
, z + λ̃sq

)
·

q∑
j=1

(
((z + λj + sqε))− ((aj + sqε))

)
ds

∣∣∣∣∣∣
≤ O(1)

q|z|

q∑
j=1

∫
I(|z|;2λ̃,δ)

∣∣∣((z + λj + 2εt))− ((aj + 2εt))
∣∣∣ dt+O(1)|x|−M

=
O(1)
εq|z|

q∑
j=1

∫
J(|z|;j,ε,λ̃,δ)

∣∣((η))− ((η + εj))
∣∣ dη +O(1)|x|−M , (64)

where J(|z|; j, ε, λ̃, δ) = z + λj + 2εI(|z|; 2λ̃, δ). Each of the integrals
in the sum is therefore of order O(ε2q)|z|1/2+δ. Finally, using that
z = x− ξ and that ξ varies in a compact interval, from (63) and (64)
we thus obtain (62).
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Using (59) and (57) for speed λ̃ together with Proposition 5.4 yields

w(λ̃)(x; ξ) =
2
λ̃
− 2

∑
m≥0

Gx

(mq
2
, z + λ̃mq

)
·

q∑
j=1

((z +mqε+ λ̃j))+

+O(q)|x|−1+δ

=
2
λ̃
− 2

∫ ∞

0

Gx

(sq
2
, z + λ̃sq

)
· ((q(z + sqε))) ds

+O(q)|x|−1+δ +O(εq2)|x|−1/2+δ

=
2
λ̃
− 2
q

∫ ∞

0

Gx

(
t

2
, z + λ̃t

)
· ((qz + qεt)) dt+ E(|x|; ε, q),

where z = x− ξ and

E(y; ε, q) =
O(q)
y1−δ

+
O(εq2)
y1/2−δ

. (65)

We proceed by simplifying this expression. Put y = −x� 0, such that
z + λ̃t = −y − ξ + λ̃t, and introduce the coordinate τ by

τ

√
y

λ̃
= y − λ̃t.

Thus τ -values outside an interval [−Cyδ, Cyδ] corresponds to t-values
for which the contribution to the integral is exponentially small. A
simple calculation now shows that

Gx

(
t

2
, z + λ̃t

)
=

1√
2π

λ̃

y
τe−τ2/2 +O(1)y−3/2+δ.

Substitution into the expression above yields

w(λ̃)(− y; ξ) =
2
λ̃

+ E(y; ε, q)−

− 1
q

√
2
πλ̃y

∫
|τ |<Cyδ

τe−τ2/2 ·
((
qε

λ̃

(
y − τ

√
y

λ̃

)
− qy − qξ

))
dτ.

(66)

Recalling (61) we get that for a rational speed λ = p/q and a pertur-
bation λ̃ = λ+ ε, there holds

w(λ)(x;ξ)− w(λ̃)(x; ξ) =
2
λ
− 2
λ̃

+ E(y, ε, q)−

− C1

qy1/2

∫
|τ |<Cyδ

τe−τ2/2 ·
((
qξ + qy − qε

λ̃

(
y − τ

√
y

λ̃

)))
dτ,

(67)
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where C1 is a positive constant. We will use this estimate for rational
speeds λ̃ converging to a fixed rational speed λ. The relevance of the
estimate is that it does not depend explicitly on the denominator of
the approximating speeds.

5.2 Estimating v(λ) − w(λ)

In this subsection we show that w(λ) is a sufficiently good approxima-
tion of v(λ). We have the following estimate which actually holds for
any real speed λ.

Proposition 5.5. Provided ξ is in the compact support of ψ, the func-
tions v(λ)(x; ξ) and w(λ)(x; ξ) satisfy

v(λ)(x; ξ)− w(λ)(x; ξ) =
∑

n∈I(|z|;λ,δ)
n−[[zn]]odd

2Gx

(n
2
, zn

)
+O(1)|x|−1+2δ, (68)

when x < 0, where z = x− ξ + λ and zn = zn(x, λ) is given by (56).

Proof. Observe that

G
(n

2
, [[zn]] + 1

)
= G

(n
2
, [[zn]]

)
+Gx

(n
2
, zn

)
+O(1)n−3/2.

By Proposition 5.2 only indices n ∈ I(|z|;λ, δ) in the sums defining v(λ)

and w(λ) are significant. If n ∈ I(|z|;λ, δ) then n = O(1)|x| while [[zn]]
is O(1)|x|1/2+δ, so that we are within the validity of the approximation
(49). Since exactly one of n− [[zn]], n− ([[zn]] + 1) is even, we have

v(λ)(x; ξ) =
∑

n∈I(|z|;λ,δ)

(
Kn,[[zn]] +Kn,[[zn]]+1

)
+O(1)e−C|x|

=
∑

n∈I(|z|;λ,δ)
n−[[zn]]even

2G
(n

2
, [[zn]]

)
+

∑
n∈I(|z|;λ,δ)

n−[[zn]]odd

2G
(n

2
, [[zn]] + 1

)
+

+
∑

n∈I(|z|;λ,δ)

O(1)n−3/2+δ +O(1)e−C|x|

=
∑

n∈I(|z|;λ,δ)

2G
(n

2
, [[zn]]

)
+

∑
n∈I(|z|;λ,δ)

n−[[zn]]odd

2Gx

(n
2
, zn

)
+

+
∑

n∈I(|z|;λ,δ)

O(1)n−3/2+δ +O(1)e−C|x|

= w(λ)(x; ξ) +
∑

n∈I(|z|;λ,δ)
n−[[zn]]odd

2Gx

(n
2
, zn

)
+O(1)|x|−1+2δ,

since I(|z|;λ, δ) has length O(1)|x|1/2+δ.
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To estimate the sum on the right-hand side of (68) we will make
particular choices for the speeds λ and λ̃. In what follows we will fix

λ =
1
4
, λ̃ =

k

4k − 1
, (69)

such that ε = 1
16k−4 . In order to satisfy the non-resonance condition

of Majda and Ralston [14] we will let k be an even integer. We have
the following key estimates that are independent of k (and ε).

Proposition 5.6. With λ and λ̃ given by (69) we have∑
n∈I(|z|;λ,δ)

n−[[zn(x,λ)]]odd

Gx

(n
2
, zn(x, λ)

)
=

O(1)
|x|1−δ

, (70)

and ∑
n∈I(|z|;λ̃,δ)

n−[[zn(x,λ̃)]]odd

Gx

(n
2
, zn(x, λ̃)

)
=

O(1)
|x|1−δ

. (71)

Proof. We give the proof for (71), the proof of (70) being similar.
Given ξ and x, we set z = x− ξ + λ̃ such that zn(x, λ̃) = z + λ̃n. We
denote by N the set of the integers n contributing to the sum (71). Let
a k-block denote a half-open interval of length 4k − 1 consisting of k
consecutive subintervals of equal length 1/λ̃ = 4− 1/k, each on which
the function B(s) := [[z + λ̃s]] is constant. Without loss of generality
we can assume that I(|z|; λ̃, δ) is exactly partitioned into finitely many
k-blocks. A k-block contains 4k − 1 integers and each subinterval has
length 4−1/k. It follows that in each k-block there are k−1 subintervals
containing exactly four integers, and one subinterval containing three
integers. Since B(s) is constant on each of the subintervals, then the
function n 7→ n − [[z + λ̃n]] takes on two even and two odd value on
each subinterval that contains exactly four integers. As k is even two
consecutive k-blocks will contain exactly 4k−1 integers n in N . Thus,
of two consecutive k-blocks, one contains 2k, and the other 2k − 1, of
integers n in N . We observe that in the sequence of these indices n,
the elements are at most a distance 3 apart from each other. Finally,
since k is an even integer, in all subsequent unions of two consecutive
k-blocks, the distribution of the indices n ∈ N is the same. We can
therefore define a map µ that maps N bijectively onto the regular grid
of even integers in I(|z|; λ̃, δ), in such a way that |n− µ(n)| ≤ 3. The
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sum in (71) can therefore be estimated as follows,∑
n∈N

Gx

(n
2
, zn(x, λ̃)

)
=

∑
n∈N

Gx

(
µ(n)

2
, zµ(n)(x, λ̃)

)
+

+
∑
n∈N

[
Gx

(n
2
, zn(x, λ̃)

)
−Gx

(
µ(n)

2
, zµ(n)(x, λ̃)

)]
=

∑
n∈2Z∩I(|z|;λ̃,δ)

Gx

(n
2
, zn(x, λ̃)

)
+

+O(1) sup(|Gxt|+ |Gxx|) · |I(|z|; λ̃, δ)|

=
O(1)
|x|1−δ

,

where we have used (28), (36) and (37).

/ Remark 5.1: We note that the complexity of the preceding ar-
guments is essentially due to the fact that we are working with the
Lax-Friedrichs scheme. The same computations would be significantly
simpler for e.g. the upwind scheme, in which case the complication of
even and odd terms do not occur. .
Combining Proposition 5.5 and Proposition 5.6 we conclude that, if
the velocities λ and λ̃ are given by (69), then

v(λ)(x; ξ)− v(λ̃)(x; ξ) = w(λ)(x; ξ)− w(λ̃)(x; ξ) +
O(1)
|x|1−δ

. (72)

6 Estimates on the amount of oscillation

In the remaining part of the paper the velocities λ and λ̃ = λ + ε are
given by (69). Recalling that ψ has compact support we conclude from
(48), (72) and (67) that

V (λ)(x)− V (λ̃)(x) = − ε

λλ̃

∫ ∞

−∞
ψ(ξ) dξ + E(y, ε)+

+
C1

y1/2

∞∫
−∞

∫
|τ |<Cyδ

ψ(ξ)τe−τ2/2

((
4ξ + 4y − 4ε

λ̃

(
y − τ

√
y

λ̃

)))
dτ dξ,

= A(ε) + E(y, ε) +
C1

y1/2

∫
|τ |<Cyδ

τe−τ2/2h(τ ; y, ε) dτ, (73)
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where y = −x and where we have introduced

E(y, ε) := E(y, ε, 4)
∫ ∞

−∞
ψ(ξ) dξ,

A(ε) := − ε

λλ̃

∫ ∞

−∞
ψ(ξ) dξ,

h(τ ; y, ε) :=
∫ ∞

−∞
ψ(ξ)

((
4ξ + 4y − 4ε

λ̃

(
y − τ

√
y

λ̃

)))
dξ.

Making the change of variables η = 4ξ and denoting φ(η) = ψ(η/4),
β = 4λ/λ̃, and γ = 4/λ̃3/2, we have that

h(τ ; y, ε) =
1
4

∫ ∞

−∞
φ(η)

((
η + βy + γε

√
yτ

))
dη. (74)

We proceed to use (73) to show that the function V (λ)−V (λ̃) contains
an O(1) amount of variation on an interval of the form

J(ε) := [−Cε−2/(1+2δ),−cε−2/(1+2δ)].

Recalling (65) we see that E(y, ε) is of order O(ε2(1−δ)/(1+2δ)) on J(ε).
As a first step we consider the limiting case where φ(η)/4 is the

Dirac delta function centered at η = 0. In this case

h(τ ; y, ε) = h0(τ ; y, ε) :=
((
βy + γε

√
yτ

))
,

such that

V (λ)(x)− V (λ̃)(x) = A(ε) + E(y, ε) +
C1

y1/2
H0(y; ε), (75)

where
H0(y; ε) :=

∫
|τ |<Cyδ

τe−τ2/2
((
βy + γε

√
yτ

))
dτ. (76)

Lemma 6.1. There exist an O(ε−1/(1+2δ)) number of points y1, . . . , yL

in −J(ε) with

H0(yn; ε) =
{ −O(1) for n odd,
O(1)ε2δ/(1+2δ) for n even.

(77)

Proof. Set
y1 := [[ε−2/(1+2δ)]]/β,

and let

yn := y1 +
1
β

(
n[[ε−1/(1+2δ)]] +

n+ 1
2

)
,
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for n = 2, . . . , [[ε−1/(1+2δ)]]. These choices imply that

((
βyn + γε

√
ynτ

))∣∣
τ=0

= ((βyn)) =
{

0 for n odd,
1/2 for n even.

We observe that an O(1) change in the constant C in (76) induces an
exponentially small error (with respect to y). In order to simplify the
computations we make the following choices for the constant C in (76),

C = Cn :=


1

γεy
δ+1/2
n

= O(1) for n odd,
1

2γεy
δ+1/2
n

= O(1) for n even.

Thus, up to an exponentially small error, we have for n odd

H0(yn; ε) =
∫
|τ |<Cnyδ

n

τe−τ2/2
((
βyn + γε

√
ynτ

))
dτ

=
∫ 0

−∞
τe−τ2/2 = −O(1), (78)

while for n even a similar argument yields

H0(yn; ε) = O(1)ε2δ/(1+2δ).

For a fixed, small ε it now follows from Lemma 6.1 and (75) that
the function V (λ)(x)− V (λ̃)(x) alternates between values

A(ε) +O(1)ε2(1−δ)/(1+2δ) −O(1)ε1/(1+2δ),

for x = −yn, n odd, and

A(ε) +O(1)ε2(1−δ)/(1+2δ) +O(1)ε,

for x = −yn, n even. Provided ε is small enough, this implies that in
every interval [−yn+1,−yn], the function V (λ)(x)−V (λ̃)(x) contains an
O(1)ε1/(1+2δ) amount of variation. Since there are an O(1)ε−1/(1+2δ)

number of such intervals, this argument shows that, in the limiting case
where φ(η)/4 in (74) is a Dirac delta, the function V (λ)(x) − V (λ̃)(x)
contains at least an O(1) amount of variation on J(ε).

It remains to argue that the same result holds whenever φ(η)/4
is close to a Dirac delta function. For this it is sufficient to show
that the difference |H(y; ε) − H0(y; ε)| can be made arbitrarily small
independently of the O(1)-estimate in (78). This will be accomplished
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by imposing that the support of φ (hence ψ) be sufficiently small. We
have

|H(y; ε)−H0(y; ε)|

≤
∫ +∞

−∞

φ(η)
4

∫
|τ |<Cyδ

∣∣∣K(τ)
{((

F (y; ε, τ)− η
))
−

((
F (y; ε, τ)

))}∣∣∣ dτ dη,
where F (y; ε, τ) = βy+γε

√
yτ . Since ε

√
y is O(1) it follows that there

is a constant C̄ such that∫
|τ |<Cyδ

∣∣∣K(τ)
{((

F (y; ε, τ)− η
))
−

((
F (y; ε, τ)

))}∣∣∣ dτ ≤ C̄η.

We thus have that

|H(y; ε)−H0(y; ε)| ≤ C

∫ +∞

−∞
φ(η)η dη,

which can be made arbitrarily small, compared to the O(1)-estimate
in (78), by choosing φ sufficiently close to a Dirac delta.

We have thus proved the following theorem.

Theorem 6.2. Discrete shock profiles for the Lax-Friedrichs scheme
for strictly hyperbolic systems of two conservation laws of the form (3)-
(4) do not depend continuously in BV on their speeds. More precisely,
one can find a sequence of rational speeds λn converging to λ ∈ Q, for
which there are discrete shock profiles Ψn and Ψ of speeds λn and λ,
respectively, and such that

Tot.Var.{Ψn −Ψ} ≥ c0

for some constant c0 > 0 independent of n.

/ Remark 6.1: From (48), (68), (70) and (61), we observe that with
our particular choices of speeds we have

V (λ)(x+ ∆x)− V (λ)(x) =
O(1)
|x|1−δ

,

for x� 0 and ∆x = O(1). It follows that an O(1) translation of V (λ)

relative to V (λ̃) changes the total variation of their difference only by
O(ε) in the region J(ε). .
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