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Abstract

Among the many challenges that the Internet of Things poses, the accuracy of the sensor network and relative data flow is of the

foremost importance: sensors monitor the surrounding environment of an object and give information on its position, situation

or context, and an error in the acquired data can lead to inappropriate decisions and uncontrolled consequences. Given a sensor

network that gathers relative data – that is data for which ratios of parts are more important than absolute values – acquired data

have a compositional nature and all values need to be scaled. To analyze these data a common practice is to map bijectively

compositions into the ordinary euclidean space through a suitable transformation, so that standard multivariate analysis techniques

can be used. In this paper an error bound on the commonly used asymmetric log-ratio transformation is found in the Simplex. The

purpose is to highlight areas of the Simplex where the transformation is ill conditioned and to isolate values for which the additive

log-ratio transform cannot be accurately computed. Results show that the conditioning of the transformation is strongly affected

by the closeness of the transformed values and that not negligible distortions can be generated due to the unbounded propagation

of the errors. An explicit formula for the accuracy of the sensors given the maximum allowed tolerance has been derived, and the

critical values in the Simplex where the transformation is component-wise ill conditioned have been isolated.
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1. Introduction

The “Internet of Things” (IoT from now on) is built upon the idea of embedding computing power, sensors and

universal networking capabilities into objects of everyday use. It requires objects (Things) to be uniquely identified

and addressable; high level communication protocols; high level abstractions of the automation possibilities of each

device and widespread standards for representing, storing and processing harvested data3. All these intertwined as-

pects should ideally guarantee interoperability of devices, seamless and robust communications, security and privacy,

low energy consumption, scalability, environment-friendly use of resources. Examples of IoT potential can be found

in the cultural heritage, where ad hoc classification techniques5,6,7,8,9,10 or collaborative analytics in the Internet of

cultural things4 have proven to be effective. Among the many challenges that IoT poses, the accuracy of the sensor

network and relative data flow play a crucial role16. Sensors can monitor surrounding environment of an object and

give information on its position, situation or context, and an error in the acquired data can lead to inappropriate deci-
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sions and uncontrolled consequences. For this reason, inaccuracy severely limits the smartness that can be embedded

into objects and ultimately the IoT potential.

In case a sensor measures relative values instead of absolute amounts (Humidity is an example), generated data falls

within the compositional analysis umbrella: information content to be extracted and analyzed is conveyed into the ratio

of parts, instead of the absolute amount, as is the case of minerals building up rocks or ingredients in a recipe. Another

way for saying this is that the sample space should be scale invariant. Given the scale invariance, comparing samples

requires them to be standardized to a common reference quantity (1 for unity, 100 for percentages, 106 for parts per

million and so on), and the obvious way to obtain this standardization is to divide each sample by its total weight.

This simple operation, called closure, subtly introduces a constraint on the data, which loose a degree of freedom,

and hence causes a spurious correlation (the closure problem) that misleads following analysis2. While the special

nature of compositional data and some warnings on their handling have been formulated more than a century ago, it

is no more than three decades that compositional data have found a proper representation and a complete formulation,

mainly thanks to the seminal work of Aitchison1 and the developments it solicited (see15 for a compendium).

More formally, when N sample data are all positive, and it is meaningful to analyze them in terms of ratios, the vector

xj = [x j1, . . . , x jD]

of strictly positive numbers expressing the D measured quantities on each sample j ∈ {1, . . . ,N} in Euclidean space

is called a composition. A desirable property for compositions is scale invariance, that is xj and αxj should map to

the same vector in the sample space ∀α ∈ IR+. Once the closure operator is applied for standardization (see Section

2), the sample space becomes constrained, looses one degree of freedom and changes its nature: it is reduced to the

D-dimensional Simplex (see Section 2). Once proper operations are introduced, the open Simplex and the Euclidean

space can be shown to be isomorphic vector spaces.

The additive log-ratio transformation is one of the possible realizations of the isomorphism between the two vector

spaces (the Simplex and the Euclidean space). As it will be shown in the following, the additive log-ratio transform

includes logarithms of ratios of parts, hence its computation accuracy is strongly affected by the closeness of the

values (ratios close to one produce logarithms close to zero) and it can generate not negligible distortions due to

the unbounded propagation of the errors that contaminate the available data. Purpose of the paper is to perform

a sensitivity analysis and to reveal the compositions for which the additive log-ratio transform can, or cannot, be

accurately computed. The practical consequence is that special care must be taken when operating on sensor data that

are in a certain area of the Simplex. To the best of our knowledge, no such numerical analysis has been performed

before.

In section 2 the core definitions and the mathematical background are briefly outlined; in section 3 the sensitivity

analysis for the additive log-ratio transformation is performed; in section 4 drawn conclusions close the paper.

2. Preliminaries

Compositional data are vectors of D positive components (where D > 0 in an integer number). The sample

space for compositional data is an open Simplex. More details about simplexes can be found in12,11,13; here it is just

reminded that the open D-dimensional Simplex Δk, closed to κ > 0, is the set of vectors having positive components

with constant sum κ:

S D =

⎧⎪⎪⎨⎪⎪⎩[x1, . . . , xD] | xi ∈ IR+,∀i ∈ {1, . . . ,D} ∧
D∑

i=1

xi = κ

⎫⎪⎪⎬⎪⎪⎭ . (1)

Notice that any vector x, having D real positive components, can be rescaled so that its components sum to a positive

constant κ (usually 1 or 100); in other words, x can always be mapped into a vector of S D through a compositional

operation called closure. Let

x = [x1, . . . , xD], xi ∈ IR+, ∀i = 1, . . . ,D,

be a vector with positive entries, then the closure of x is defined as:

C(x) = κ

⎡⎢⎢⎢⎢⎣ x1∑D
i=1 xi

, . . . ,
xD∑D
i=1 xi

⎤⎥⎥⎥⎥⎦ (2)
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The closure acts as a projection of positive vectors onto the Simplex. Please note that, after the closure, the data

become linearly dependent and the dimension of the sample space drops to D − 1.

2.1. The Simplex as vector space

As stated before, the Simplex S D is isomorphic to the Euclidean space, through the transformations described in

Section 2, once proper operations and norm are defined. Such operations follows:

• the operation that translates in the Simplex the sum of vectors is called perturbation and denoted by ⊕. If x ∈ S D

and y ∈ S D are compositions, the perturbation of x by y is defined as

x ⊕ y = C[x1y1, . . . , xDyD]; (3)

• the operation, analogous to multiplication between a scalar and a vector in the Euclidean space, is called pow-
ering and denoted by �. If x ∈ S D, and α ∈ IR, the powering of x by α is defined as:

α � x = C[xα1 , . . . , x
α
D] (4)

It is stressed here that with operations ⊕ and �, the Simplex S D behaves like a vector space. Other useful definitions

for vectors in the Simplex are the inner product, the norm and the distance:

• the inner product of two compositions x ∈ S D and y ∈ S D is defined as:

〈x, y〉 =
D∑

i=1

log
xi

g(x)
log

yi

g(y)
(5)

where g(z) = (z1 · z2 · . . . · zD)1/D denotes the geometric mean of the components of z
• the induced norm is defined as:

‖x‖2 =
D∑

i=1

(
log

xi

g(x)

)2
(6)

• the distance Δ : S D × S D → IR+0 is defined as:

Δ2(x, y) =

D∑
i=1

{
log

xi

g(x)
− log

yi

g(y)

}2

(7)

Considering the introduced definitions, it is easy to derive the notion of perturbation independence as the correspond-

ing of linear independence in the ordinary Euclidean space. The analogous of the linear combination of two vectors

in the Simplex is:

w = a � v1 ⊕ b � v2 (8)

from which all related notions of basis, generated subspace and orthonormality can be derived.

2.2. Representation of the Simplex

Up to D = 4, compositions have an intuitive graphical representation. Indeed, a 2-Simplex (D = 2) is a line seg-

ment, a 3-Simplex (D = 3) is a triangle and a 4-Simplex (D = 4) is a tetrahedron. More specifically, the representation

of a 3-Simplex in the plane is a ternary diagram, i.e. a triangle with vertexes P1, P2 and P3, in which any composition

(x1, x2, x3) is represented by the interior point:

P =
3∑

i=1

xiPi = x1P1 + x2P2 + x3P3. (9)
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Here, the entries xi are used as barycentric coordinates of P with respect to Pi. Barycentric coordinates represent a

measure of the closeness of a point P to the vertexes Pi. More precisely, if P is an interior point of a D-Simplex S D

of vertexes P1, P2, . . . , PD+1 , the barycentric coordinates can be expressed as a ratio of volumes of simplexes11,12,13:

xi =
vol
(
S D(P1, . . . , Pi−1, P, Pi+1, . . . , PD+1)

)
vol
(
S D(P1, . . . , PD+1)

) (i = 0, . . . , k).

Exploiting the previous characterization for D = 3, a simple geometrical interpretation can be given: the barycentric

coordinate xi, i.e. the value of each component in the composition, is proportional to the distance of P from the

opposite side of vertex Pi. The graphical representation with ternary diagrams is very useful to show what happens to

parallelism, orthogonality and projection when mapping to and from the Simplex.

Fig. 1. The three dimensional Simplex

2.3. The alr transformation

Transformations are used to map bijectively compositions into ordinary euclidean space, to allow the use of stan-

dard multivariate analysis techniques on compositional data.

The additive log-ratio (alr from now on) is a transformation S D → RD−1 defined as follows:

alr(x) =

[
log

x1

xD
, . . . ,

xD−1

xD

]
(10)

where the choice of the xi at the denominator is arbitrary. Its inverse is a transformation RD−1 → S D defined as

follows:

alr−1(y) = C [ey1 , . . . , eyD−1 , 1
]

(11)

It is stressed here that the transformed vector has size (D − 1) and expresses coordinates with respect to an oblique

(not orthogonal, the angles between each pair of compositions in the basis is 60 degree) basis. alr main disadvantages

are that the mapping from the Simplex – Aitchison distance – to the real alr space with ordinary euclidean metric is

not isometric and that it is not easy to map back the results of the analysis. Nonetheless the transformation allows to

analyze the data in the ordinary euclidean space with standard unconstrained techniques, and is often chosen for its

simplicity.
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3. Sensitivity analysis

Following the approach presented in D’Amore et al. 14, the error propagation in using the alr transformation is

studied hereafter. Possible sources of errors for sensors are, among others, the round-off error, the representation

format, the sampling rate, the jitter, the resolution, and more. A cumulative error term for all these sources will be

considered in the following.

Let a composition x be known with errors δx, that is the composition x̃ = x + δx is available. Since entries x j are all

positive, the parts of x̃ can be written as:

x̃ j = x j + δx j = x j

(
1 + θ j

)
, where θj =

δxj

xj

(12)

expresses the relative error on x j. To study the sensitivity of the alr to the changes δx j on the data, a small constant θ,
which can be thought the accuracy of the sensor network, is assumed to exist, such that:

|θ j| ≤ θ, ∀ j = 1, . . . ,D. (13)

The following result gives a bound for the propagation error.

Theorem 3.1. Let x and x̃ = x + δx be compositions with δx j as in (12) and θ j as in (13). Then, it is:

|alr j(x̃) − alr j(x)|
|alr j(x)| ≤ μ j ·

(
θ + O(θ2)

)
, ∀ j = 1, . . . ,D − 1 (14)

with:
μ j =

2

| log(x j/xD)| , ∀ j = 1, . . . ,D − 1. (15)

Proof 3.1. Exploiting the alr form, it can be obtained:

|alr j(x̃) − alr j(x)| =
∣∣∣∣∣log

x̃ j

x̃D
− log

x j

xD

∣∣∣∣∣ =
∣∣∣∣∣∣log

x̃ j

x j
− log

x̃D

xD

∣∣∣∣∣∣ ≤ | log(1 + θ j)| + | log(1 + θD)| ≤ 2θ + O(θ2),

where the last inequality arises from the Taylor expansion of log(1 + x). The proof is completed by dividing by
|alr j(x)| = | log(x j/xD)|.
Please note that the quantities μ j in (15) act as amplification factors of the relative errors from the data x to the solutions

alr j, hence they must be considered the relative condition numbers of the problem of evaluating the additive log-ratio

transformation. If parts x j and xD are close to each other, then log x j/xD ≈ 0 and μ j → ∞. Then for compositions

with some part x j close to xD the evaluation of alr j is compely unreliable. More in general, the quantity:

μ = max
j=1,...,D−1

μ j (16)

can be accepted as the relative condition number of the alr function. The behaviour of μ is characterized by the

following result:

Theorem 3.2. The problem of evaluating the alr transformation is well conditioned if and only if, ∀ j = 1, . . . ,D − 1,
one of the following properties holds true:

x j ≥ e2xD or xD ≥ e2xj. (17)

Proof 3.2. The problem is well conditioned if μ ≤ 1, that is if:

2

| log(x j/xD)| ≤ 1 ⇔ | log(x j/xD)| ≥ 2.

The thesis follows solving the last inequality for both cases x j > xD and x j ≤ xD.
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Theorem 3.2 shows that the evaluation of the alr transformation is well conditioned for some compositions, so that

the errors on the data acquired by sensors are not amplified, while ill conditioned for other compositions, so that the

errors on these data are strongly amplified (proportionally to conditioning). This fact suggests that to have a precise

evaluation of the alr, called tol the desired accuracy, the following inequality should hold:

|alr j(x̃) − alr j(x)|
|alr j(x)| ≤ tol, (18)

from which it can be deduced that the sensor should have an accuracy that verifies the bound:

θ ≤ tol
μ
. (19)

4. Conclusions

Given a sensor network that acquires relative data, for which ratios of parts are more important than absolute

values, it has been shown that the amplification factors of the relative errors from the data x to the solutions alr j are,

under some circumstances, unbounded and should hence be carefully managed. An explicit formula for the accuracy

of the sensors that acquire the data given the maximum allowed tolerance has been derived, and the critical values

in the Simplex where the transformation is component-wise ill conditioned have been highlighted. Future work is in

studying other transformations and in comparing the sensitivity to errors of the various possible choices.
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