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Abstract

After the introduction of shadowed sets and the investigation of their relation with
fuzzy sets, we present BZMV?M algebras as an abstract environment for both shad-
owed and fuzzy sets. Then, we introduce the weaker notion of pre-BZMV®M alge-
bra. This structure enables us to algebraically define a mapping from fuzzy sets to
shadowed sets.
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1 Fuzzy and Shadowed Sets

In this section, we introduce the basic notions of fuzzy and shadowed sets,
and outline the relation existing between them. First, we give the definition
of fuzzy sets. The reader interested in the, widely studied, fields of fuzzy sets
and fuzzy logic, can refer to some classical text (see, for example, [5,10]).

Definition 1.1 Let X be a set of objects, called the Universe. A fuzzy set on
X is any mapping f : X — [0,1]. We denote the collection of all fuzzy sets
on X as [0, 1] or sometimes simply by F.

The role of a fuzzy set is to describe vagueness: given a vague concept
f on a universe X, the value f(z) indicates the degree to which x belongs
to the concept f. One feature of such an approach is the description of a
vague concept through an exact numerical quantity. A different approach
to vagueness has been proposed by Pedrycz ([7,8,9]). His intention was “to
introduce a model which does not lend itself to precise numerical membership
values but relies on basic concepts of truth values (yes - no) and on entire
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unit interval perceived as a zone of uncertainty” ([7]). This idea of modeling
vagueness through vague (i.e., not purely numeric) information, lead him to
the definition of shadowed sets.

Definition 1.2 Let X be a set of objects, called the Universe. A shadowed
set on X is any mapping s : X — {0,1,(0,1)}. We denote the collection of
all shadowed sets on X as {0, 1, (0,1)}*.

In the sequel we will indicate (0,1) with the value % This will simplify
our algebraic approach from a syntactical point of view, without losing the
semantic of “total uncertainty” of the value (0,1). In fact, if 1 corresponds to
truth, 0 to falseness, then % is halfway between true and false, i.e., it represents
a really uncertain situation.

F roma fuzzy set it is possible to obtain a shadowed set. Let f be a
fuzzy set; then, it is sufficient to define a value o € [0, %) and set to 0 the
membership values f(x) which are less than or equal to o and set to 1 those
greater than (1 — a). The membership values belonging to (o,1 — «) are
those characterized b ya great uncertainty or lack of knowledge and they are
consequently considered the “shadow” of the induced shadowed set, i.e., they
are set to %

In a more formal way, once fixed a alue «, we can define the a—approximation

function of a fuzzy set f, denoted by s,(f), as the following shadowed set:

0 f(z)<a
Sa(f)(x) =<1 f(x)>1—a (1)
% otherwise

In Figure 1 it is represented a fuzzy set and the induced shadowed set.

Fig. 1. A fuzzy set and its corresponding shadowed set

2 An algebraic framework

As an algebraic approach to both fuzzy and shadowed sets we propose BZMV®
algebras ([2,3]).

Definition 2.1 A de Morgan Brouwer Zadeh Many Valued (BZMV®M) alge-
bra is a system (A, ®,—, ~,0), where A is a non empty set, @ is a binary
operator, = and ~ are unary operators, 0 is a constant, obeying the following
axioms:
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(BZMV1) (a®b)@®c=(bDc)Pa

(BZMV?2) a®0=a

(BZMV3) =(—a)=a

(BZMV4) =(-a®b)®b=-(a®b) ®a

(BZMV5) ~a® ~~a= -0

(BZMV6) a® ~~ a =~~~ a

(BZMVT) ~=[(—(a® —b) ®@b)] = (~~a@ - ~~b) @~~~ b

On a BZMV®M algebra, it is possible to derive the following further oper-
ators:

a®b:=-=(-ad -b)
aVb:==(-a®b)®b
aAb:==(=(a®—b) S b)

Connectives V and A are the algebraic realization of logical disjunction and
conjunction of a distributive lattic ¢ in particular, they are idempotent op-
erators. Connectives @ and ® are the well known MV disjunction and MV
conjunction operators, which are not idempotent ([10]). A partial order can
be naturally induced b ythe lattice operators as:

a<b iff anb=a (equivalently, aV b="0)

Let us notice that, since it is possible to provethat ~ 0 = =0, in the sequel
we set 1 :=~ 0 = =0. With respect to the just defined partial order we have
that the lattice is bounded: Va € A, 0 < a < 1.

The unary operation = : A — A is a Kleene (or Zadeh) orthocomplemen-
tation (negation). In other words, it satisfies the properties:

(K1)  —=(—a)=a

(K2) —=(aVvb)=-aA-b

(K3) aA—-a<bVv-b
Let us recall that under (K1), condition (K2) is equivalent to the dual de
Morgan law. In general neither the non-contradiction law, Ya : a A =a = 0,
nor the excluded middle law, Va : a V —a = 1, are satisfied b y this negation.

The unary operation ~: A — A is a Brouwer orthocomplementation (nega-
tion). In other words, it satisfies the properties:

(Bl) aA~~a=a (equivalently, a <~~ a)

(B2) ~(aVb)=~aA~b

(B3) an~a=0
In general from (B1)—(B3) neither the excluded middle law Va, aV ~ a =1
nor the dual de Morgan law ~ (a A b) =~ aV ~ b can be deduced.

Using the abov e definitions, we can justify the qualification of de Morgan
given to BZMV algebras in Definition 2.1. In fact, it can be proved that
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BZMVIM algebras satisfy all de Morgan properties:

=(a Ab) =-aV b =(aVb)=-aA-b
~(aNb)=~aV ~Db ~(aVb)=~aN~Db

Besides, it is possible to define, through the interaction of the two unary
operations — and ~, the modal operators of ne cessity v(a) :=~ —a, and
possibility p(a) == = ~ a = —w(-a).

These modal operators turn out to have an Ss-like behavior based on a
Kleene algebra, instead of on a Boolean one ([4]).

Proposition 2.2 In any BZMV*™ algebra the following conditions hold:

(1) v(a) < a < p(a). In other words: ne cessity implies actuality and actuality
implies p ossibility (a characteristic principle of the modal system T ).

(2) v(v(a)) = v(a), u(u(a)) = u(a). Necessity of necessity is equal to ne ces-
sity; similarly for possibility (a characteristic Sy-principle).

(3) a < v(u(a)). Actuality implies ne cessityof p ossibility (a characteristic
B-principle).

(4) nw(a) = v(p(a)) v(a) = u(v(a)) Possibility is equal to the necessity of
p ossibility; whereas ne cessityis equal to the possibility of ne cessity(a
characteristic Ss-principle).

As a consequence of the above definitions we havethat ~ a = —w(a), that

is the Brouwer complement can be interpreted as the negation of possibility
or impossibility.
As stated in Proposition 2.2 ,for any element of a BZMV?™ algebra the or-
der chain v(a) < a < p(a) holds. We are, now, interested to those elements
which satisfy the strongest condition v(e) = e (equivalently, e = pu(e)), i.e., to
those elements which present the classical feature that actuality coincide with
necessity and possibility. These elements are called sharp (exact, crisp) ele-
ments (in contraposition to the elements which are fuzzy) and their collection
is denoted by A..

Remark 2.3 This is not the only way to define sharp elemerts. In fact, since
in general x A =z # 0 (equivalently, = V =z # 1) it is possible to consider
as Kleene sharp (K-sharp) the elements which satisfy the non contradiction
(or equivalently the excluded middle) law with respect to the Kleene negation:
A, ={e€ A:en-e=0} ={e € A:eV-e=1}. Alternatively, considering
the Brouwer negation we havethat, in general, the double negation law does
not hold (see the (B1)). So, we can introduce a further definition of Brouwer
sharp (B-sharp) elements: A, 5 := {e € A :~~ e = e}. Finally, as said before
@ is not an idempotent operator. So the @-sharp elements are: A.q = {e €
A:e®e=e}. However, it can be proved that all this notions are equivalent
([2,3]). Let A be a BZMV algebra, then A, = A.p = Acgp = Ae-.
Consequently , we simply talk of sharp elements and write A, to denote their
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collection.

Given an element a of a BZMVM algebra, modal operators, v and p,
can be used to give a rough approximation of a b ysharp definable elements.
In fact, v(a) (resp., p(a)) turns out to be the best approximation from the
bottom (resp., top) of a by sharp elements. T obe precise, for any element
a € A the follo wing holds:

(I1) v(a) is sharp (v(a) € A,).

(I2) v(a) is an inner (lower) approximation of a (v(a) < a).

(I3) v(a) is the best inner approximation of a by sharp elements (let e € A,
be such that e < a, then e < v(a)).

Analogously

(O1) p(a) is sharp (u(a) € Ae).

(02) p(a) is an outer (upper) approximation of a (a < p(a)).

(03) p(a) is the best outer approximation of a by sharp elements (let
f € A, be such that a < f, then p(a) < f).

Definition 2.4 Given a BZMV algebra (A, @, -, ~,0), the induced rough
approzimation spac eaccording to [1] is the structure (A, A., v, u) consisting of
the set A of all approximable elements, the set A, of all definable (or sharp)
elements, and the inner (resp., outer) approzimation map v : A — A, (resp.,
prA— A).

For any element a € A, its rough approzimation is defined as the pair of sharp
elements: r(a) := (v(a), u(a)) [with v(a) <a < p(a)l.

So the map r : A — A, x A, approximates an unsharp (fuzzy) element by
a pair of exact ones representing its inner and outer sharp approximation,
respectively . Clearly, sharp elements are characterized by the property that
they coincide with their rough approximations: e € A, iff r(e) = (e, e).
An equivalent way to define a rough approximation space is to use the im-
possibility operator instead of the possibility one. So, giv ena fuzzy ele-
ment its approximation is given by the map r; : A — A, x A, defined as
ri(a) := (v(a), ~u(a)) = (v(a),~ a).

We return now to fuzzy and shadowed sets, and we show how it is possible
to giv ethem the structure of BZMV® algebras.

Proposition 2.5 LetF = [0,1]% be the colle ctionof fuzzy sets on the uni-
verse X. Once defined the op entors:

(f @ g)(x) = min{l, f(x) + g(x)}
—f(z) :=1~- f(x)

- f(a) ::{1 if f(z)=0

0 otherwise

and the identically zero fuzzy set: O(x) := 0; then, the structure
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(F,®,,~,0) is a BZMV™ algebra.

Similarly, it is possible to giv ethe structure of BZMV® algebra to the
collection of shadowed sets S = {0, 3,1}* on the universe X. The operations
syntactically are exactly as in Proposition 2.5, but they are defined on the
domain of shadowed sets.

Proposition 2.6 L etS = {0, %, 1}X be the colle ction of shadowd sets on the
universe X. Then, the structure (S,®,—,~,0), where @&, —,~,0 aredefined

as in prop osition2.5, is a BZMV®™ algebra.

Now let us consider a fuzzy set f € F. Then, the possibility and necessity
of f are defined, respectively, as

0 f(x) 1 f(z)=1
1 f(z) # 0 flz)#1

So, when f is a fuzzy set, the abstract rough approximation as the pair r;(f) =
(v(f),~ (f)) singles out a shadowed set. In fact, v(f) can be interpreted as
the characteristic function of the elements which have value 1 in the induced
shadowed set; and ~ f as the characteristic function of the elements which
havevalue 0. The other elements of the universe X represents the shadow of
the shadowed set.

Precisely, the shadowed set s, defined in equation (1) can be obtained, in
the case that a = 0, through a combination of these modal operators:

() (w) = { @ = {

1 0 f(z)=0
slf) =nlHowHes) sl@)={1 flz)=1 (2)
% otherwise

where % is the fuzzy set identically equal to %, ie., forall x € X, %(x) = %

Remark 2.7 The mapping so : F — S, f — so(f), is not a bijection nor an
homomorphism between BZMV M algebras, as can be seen in the following
counterexample. Let us consider the fuzzy sets fi, fo : [0,1] — [0,1] defined
as: fi(z) := 0.2 if z = 0 and 0 otherwise, and fy(x) := 0.3 if x = 0 and 0
otherwise. So, f1 # fo but so(f1) = so(f2) = 0.5 if z = 0 and 0 otherwise, and
this proves that sy is not a bijection. F urthermore (stressing with synbols ®g

and @p the “truncated” sum operation acting on S and F respectively),

1 fla)=0 7&{5 J@ =0 hor e

0 otherwise 0 otherwise

[SO(fl) Ds S[)(fQ)](JZ‘) = {

and so sg is neither an homomorphism of BZMVM algebras.

Of course, sq gives only the induced shadowed set in the particular case of
a = 0, and it does not capture all the possible ones that can be obtained from
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a fuzzy set by equation (1). In order to consider all that possibilities, it is
necessary (and sufficient) to generalize the intuitionistic negation as follows:

1—f(z) if f(x) <«

0 otherwise

Vael0,3) (e D) = { )

Clearly, this is a generalization of ~, in fact when o = 0 we obtain ~¢ f =~ f.
In Figure 2, it is represented a fuzzy set and its « - impossibility (i.e., ~).

Fig. 2. Generalized ~4: a € (0,1/2) and aa =0

The derived operators, p, and v, then become:

z) = (=~ ) = flx) f(z) <a
fa(f) (@) == (= ~a [)(2) {1 F) > a
v 7) = (~. = F)(z) = flz) flz)>(1-a)
o(f) () (~a 2 f) (@) {0 f(z) < (1—a)

Let us introduce the shadowed set s,(f), induced by the fuzzy set f and
defined analogously to the (2). This coincide with the shadowed set previously
defined bythe (1):

1 0 f(z) <«
salf) = ha(H) O (/) ®5)  salf2) =41 fla)21-a
% otherwise

So, giv ena fuzzy set f, on one side we can obtain the rough approximation
ro(f) = (Wal(f), pa(f)), and on the other side we can induce the shadowed
set sq(f). The relation between the two functions r, and s, is given by the

mapping 7, (f) = ¥ (ro(f)) defined as:

b(ra(f)) = P((Walf), walf))) = palf) © (valf) @ %) = 5a(f)

In the follo wingdiagram all the three functions, r,, s, and v are drawn,
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showing the relations among them:

f—=ra(f)
v

sa(f)

We remark that the function v is not a bijection as can be seen in the following
counterexample.

Sa

he fuzzy set

Example 2.8 Let 1 be the identically one fuzzy set and % t
(1,1). Then,

constantly equal to 2. We havery(2) = (2,1) and 754(1)

we obtain ¢ (ro4(2)) =1 = 9(re4(1)).

Coming back to our algebraic structure, we have that, by a substitution
of ~ by~y, the system ([0, 1]%,®, =, ~4, 0) is no more a BZMV ™ algebra.
In fact, for example, axiom BZ MYV 6 is not satisfied. Given afuzzy set f, we
have:

2
3

. o o) = 1 f(z) >« 1 f(317)>a:NN .
F(2) © (~ara £)(0 {f@ e {0 T — 1))

Next section is devoted to the study of an algebrization of the structure
(F,®,, ~q,0) containing this new operator ~.

3 pre-BZMV™ algebras

We, now, introduce a new algebra, which turns out to be weaker than BZMV®
algebra. The advantage of this new structure is that it admits as a model the
collection of fuzzy sets endowed with the operator ~,.

Definition 3.1 A structure (A, @, =, ~y, 0) is a pre-BZMV algebra, if the
following are satisfied:

(i) The substructure (A, ®,—,0) is a MV algebra, whose induced lattice
operators are defined as aVb := = (-a®b) Db, aAb := =(=(a®—b) ®—b),
and the partial order as a < b iff a Ab = a.

(ii) The follo wing properties aresatisfied:
(a) a® ~yroy @ =7~y a
(b) ~y a < —a
(€) o AN~y b=~y (a VD)
(d) ~yp aV ~y b=~y (a A D)

(e) Nw —Qq S Nw - Nw —Qq

The collection of all fuzzy sets can be equipped with a structure of pre-
BZMV®™ algebra, according to the following result.

Proposition 3.2 Let F be the colle ctionof fuzzy sets based on the universe
X and let « € [0, %) Once defined the standard & and — operators on F, and
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the ~q negation as in Equation (3), then the structure By, = (F,®, 0, ~q, 0)
is a pre-BZMVM algebra, which is not a BZMV*™ algebra.

In general, it is possible to show that any BZMV® algebra is a pre-
BZMVM algebra. In fact, in [3] it is shown that all axioms of definition 3.1
are true in any BZMV algebra. In general, the vice versa does not hold. F or
example, let us consider the structure F, with @« = 0.4 and X = R, and define
the fuzzy set f(z) = 0.3 for all x € R. Then, ~, f(2)® ~y~q f(x) = 0.7 for
all . So, axiom (BZMV5) is not satisfied.

Proposition 3.3 If (A, ®, —, ~y,0) is a pre-BZM V™™ algebra satisfying ~u,~
a = =~y a, then it is a BZMV®™ algebra.

Proposition 3.4 L et(A, ®,, ~y,0) be a pre-BZMVM qlgebra. Then, the
following pr op ertiehold:

(i) ~up 0 ==0. In the sequelwe set 1 :=~,, 0 = =0.
(i) If a < b then ~, b <~ a (contrap ositionlaw).

So ~, is a unary operator satisfying both de Morgan laws and the con-
traposition law (ii). However, it is not an in tuitionistic negation, in fact, in
general, it satisfies neither the non contradiction law (property B3), nor the
weak double negation law (property B1), nor the Brouwer law (i.e., the law
Va, ~y a =~oyro,ny, a s not satisfied).

Anyway,also in a pre-BZMVM algebra, it is possible to introduce modal
operators of necessity, v, (a) :=~, —a and possibility u,(a) = = ~, a.
However, in this structure v, and p, do not havean Sj - like behavior but
only an Sy - like one (always based on a Kleene lattice instead of on a Boolean
one).

Proposition 3.5 L et(A, ®,, ~y,0) be a pre-BZMV®™ algebra. Then, for
every a € A the following prop ertiesar esatisfied:
(i) vw(a) <a < py(a) [T principle]
(i) vw(vw(a)) =vw(a)  puw(pw(a)) = pwla)  [Sy principle]
In general the properties: a < vy, (py(a)), pw(a) = vy(py(a)), and vy, (a) =
(Vi (@) do not hold. As an example, let us consider the algebra Fy 4, with

X =[0,1], and define the fuzzy set f(z) = 0.3 if z < % and f(z) = 0.7
otherwise. We have:

03 z<3 ,]0 =<3
Ma(f(x)):{l $2%7A{1 xZ%—Va(/La(f(x)))
0 x<% 0 x<%_
ua<f<x>>={0'7 xz%#{l bS] = Halvalf)

Finally, f(z) is incomparable with v, (ua(f(2))).
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Even if the necessity and possibity mappings have a weaker modal behavior
in pre-BZVM® algebras than in BZMVYM algebras, they can still be used to
define a lower and upper approximation, and it turns out that v, is an interior
operator and i, is a closure operator.

Proposition 3.6 Let (A, &, —,~,,0) be a pre-BZMV®™ algebra. Then the
map py 2 A — A such that p,(a) == = ~y a is a closure operator. That is,
the following are satisfied:

(Co) 0 = 11,(0) (normalized)
(CY) a < piy(a) (increasing)
(C2) (@) = pu(p(a)) (idempotent)
(C3) a<b implies pu,(a) < py(D) (monotone)

The collection of all closed sets is then defined as

CA) ={aecA:a=pu(a)}

Proposition 3.7 Let (A, @, 1, ~,,0) be a pre-BZMV®™ algebra. Then the
map vy, : A — A such that vy (a) ==~ —a is an interior op er ator,i.e.:

(Ip) 1 = 1y(1) (normalized)
(Ih) vp(a) < a (decreasing)
(1) V(@) = vy(vy(a)) (idempotent)
(I3) a<b implies vy,(a) < vy,(b) (monotone)

The collection of all open sets is then defined as
OA) ={ac A:a=uv,(a)}.

It is possible to show that, in general, these subsets of A do not coincide,
neither one is a subset of the other. So, it is worthwhile to consider also
the set of all clopen elements, i.e. elements which are both closed and open:
CO(A) = C(A) NO(A).

The abov e considerations lead to the definition of an abstract approxima-
tion space generated bya pre-BZMV algebra.

Definition 3.8 Let A be a pre-BZMVM algebra. The induced rough ap-
proximation space is the structure (A, O(A), C(A), vy, ftw), where A is the
set of approximable elements; O(A) C A is the set of innerdefinable elements,
such that 0 and 1 € O(A); C(A) C A is the set of outerdefinable elements,
such that 0 and 1 € C(A); vy : A = O(A) is the inner approzimation map;
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fyw : A — C(A) is the outer approzimation map. F orany element a € A, its
rough approzimation is defined as the pair:

rw(a) = (Vu(a), puw(a))  [with  vy(e) <a < py(a)]

drawn in the follo wing diagram:

vu(a) € O(A) ru pw(a) € C(A)

(vw(a), po(a))

This approximation is the best approximation by open (resp. closed) ele-
ments that it is possible to define on a pre-BZMV structure, i.e., there hold
properties similar to (I1)—(I3) and (O1)—(0O3), the only difference is that here
we haveto distinguish between open-exact and closed-exact elements.

In the context of the fuzzy sets pre-BZMV?M algebra of proposition 3.2
the collection of open and closed elements are respectively:

CF)={feF:flx)>a iff f(x)=1}
OF)={feF:flx)y<l—a iff f(x)=0}

The clopen sets are the 0-1 valued fuzzy sets, CO(F) = {0,1}*. In the
universe [0, 1], once set « = 0.4, an example of open element is fi(x) = 0 if
z < 3 and 0.7 otherwise and an example of closed set is fo(z) = 0.3 if z < 3
and 1 otherwise. The fuzzy sets f; and f, are drawn in Figure 3.

f1(x) f2(x)
14 1-t1------------ [r— == === =
A S e— N e S S A
P E Lo N R B Lo
0.3 ' 1
. L !
0 12 1 X 0 12 1 X

Fig. 3. Example of open fuzzy set, f1, and closed fuzzy set, fo.

Finally, we remark that we can also enrich the collection of shadowed sets
{0, 1,1} with the operation ~q, in order to give it a pre-BZMV* structure.
However, it can be easily proved that in this case ~, is equivalent to ~q for
all & € [0,1) and so we again obtain a BZMV algebra.

4 Conclusions

In this paper we analyzed shadowed sets from the algebraic point of view. As
a first result we have seen that once properly defined the operators on the
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collection of shadowed sets of a given universe, they result to be a BZMV®
algebra. The same can be proved about the collection of fuzzy sets. Moreov er,
in such a structure it is possible to algebraically define an operator which
given a fuzzy set returns a particular induced shadowed set. In order to
generalize such an operator it was necessary to introduce the new structure
of pre-BZMVM algebras. Finally, it was shown that the collection of fuzzy
sets with a generalized notion of intuitionistic negation is a model of pre-
BZMVYM algebras. A possible development of the present work is a deeper
theoretical analysis of pre-BZMV?M algebras, which involves the study of the
independence of its axioms, the proobf a representation and a completeness
theorem. On the other hand, it would also be interesting to analyze the
implications of such a structure in an application context.
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