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Abstract

After the introduction of shadowed sets and the investigation of their relation with

fuzzy sets, we present BZMVdM algebras as an abstract environment for both shad-

owed and fuzzy sets. Then, we introduce the weaker notion of pre-BZMVdM alge-

bra. This structure enables us to algebraically de�ne a mapping from fuzzy sets to

shadowed sets.
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1 Fuzzy and Shadowed Sets

In this section, we introduce the basic notions of fuzzy and shadowed sets,

and outline the relation existing between them. First, we give the de�nition

of fuzzy sets. The reader interested in the, widely studied, �elds of fuzzy sets

and fuzzy logic, can refer to some classical text (see, for example, [5,10]).

De�nition 1.1 Let X be a set of objects, called the Universe. A fuzzy set on

X is any mapping f : X ! [0; 1]. We denote the collection of all fuzzy sets

on X as [0; 1]X or sometimes simply by F .

The role of a fuzzy set is to describe vagueness: given a vague concept

f on a universe X, the value f(x) indicates the degree to which x belongs

to the concept f . One feature of such an approach is the description of a

vague concept through an exact numerical quantity. A di�erent approach

to vagueness has been proposed by Pedrycz ([7,8,9]). His intention was \to

introduce a model which does not lend itself to precise numerical membership

values but relies on basic concepts of truth values (yes - no) and on entire
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unit interval perceived as a zone of uncertainty" ([7]). This idea of modeling

vagueness through vague (i.e., not purely n umeric) information, lead him to

the de�nition of shadowed sets.

De�nition 1.2 Let X be a set of objects, called the Universe. A shadowed

set on X is any mapping s : X ! f0; 1; (0; 1)g. We denote the collection of

all shadowed sets on X as f0; 1; (0; 1)gX.

In the sequel we will indicate (0; 1) with the value
1

2
. This will simplify

our algebraic approach from a syntactical point of view, without losing the

semantic of \total uncertainty" of the value (0; 1). In fact, if 1 corresponds to

truth, 0 to falseness, then
1

2
is halfway between true and false, i.e., it represents

a really uncertain situation.

F roma fuzzy set it is possible to obtain a shadowed set. Let f be a

fuzzy set; then, it is suÆcient to de�ne a value � 2 [0; 1
2
) and set to 0 the

membership values f(x) which are less than or equal to � and set to 1 those

greater than (1 � �). The membership values belonging to (�; 1 � �) are

those characterized b ya great uncertainty or lack of knowledge and they are

consequently considered the \shadow" of the induced shadowed set, i.e., they

are set to
1

2
.

In a more formal way, once �xed a value �, we can de�ne the �{approximation

function of a fuzzy set f , denoted b ys�(f), as the following shadowed set:

s�(f)(x) :=

8
><
>:

0 f(x) � �

1 f(x) � 1� �
1

2
otherwise

(1)

In Figure 1 it is represented a fuzzy set and the induced shadowed set.

a b c d0

α

1−α
1 1

a b c d

1/2

0

Fig. 1. A fuzzy set and its corresponding shadowed set

2 An algebraic framework

As an algebraic approach to both fuzzy and shadowed sets we propose BZMV
dM

algebras ([2,3]).

De�nition 2.1 A de Morgan Brouwer Zadeh Many Valued (BZMV
dM

) alge-

bra is a system hA;�;:;�; 0i, where A is a non empty set, � is a binary

operator, : and � are unary operators, 0 is a constant, obeying the following

axioms:
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(BZMV 1) (a� b)� c = (b� c)� a

(BZMV 2) a� 0 = a

(BZMV 3) :(:a) = a

(BZMV 4) :(:a� b)� b = :(a� :b)� a

(BZMV 5) � a� �� a = :0

(BZMV 6) a� �� a =�� a

(BZMV 7) � :[(:(a� :b)� b)] = :(�� a� : �� b)� : �� b

On a BZMVdM algebra, it is possible to derive the following further oper-

ators:

a� b := :(:a� :b)

a _ b := :(:a� b)� b

a ^ b := :(:(a� :b)� :b)

Connectives _ and ^ are the algebraic realization of logical disjunction and

conjunction of a distributive lattic e; in particular, they are idempotent op-

erators. Connectives � and � are the well known MV disjunction and MV

conjunction operators, which are not idempotent ([10]). A partial order can

be naturally induced b ythe lattice operators as:

a � b i� a ^ b = a (equivalently, a _ b = b)

Let us notice that, since it is possible to prov e that � 0 = :0, in the sequel

we set 1 :=� 0 = :0. With respect to the just de�ned partial order we hav e

that the lattice is bounded: 8a 2 A, 0 � a � 1.

The unary operation : : A 7! A is a Kleene (or Zadeh) orthocomplemen-

tation (negation). In other words, it satis�es the properties:

(K1) :(:a) = a

(K2) :(a _ b) = :a ^ :b

(K3) a ^ :a � b _ :b

Let us recall that under (K1), condition (K2) is equivalent to the dual de

Morgan law. In general neither the non-contradiction law, 8a : a ^ :a = 0,

nor the excluded middle law, 8a : a _ :a = 1, are satis�ed b ythis negation.

The unary operation�: A 7! A is a Brouwer orthocomplementation (nega-

tion). In other words, it satis�es the properties:

(B1) a^ �� a = a (equivalently, a ��� a)

(B2) � (a _ b) =� a^ � b

(B3) a^ � a = 0

In general from (B1){(B3) neither the excluded middle law 8a; a_ � a = 1

nor the dual de Morgan law � (a ^ b) =� a_ � b can be deduced.

Using the abov e de�nitions, we can justify the quali�cation of de Morgan

given to BZMV algebras in De�nition 2.1. In fact, it can be proved that
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BZMVdM algebras satisfy all de Morgan properties:

:(a ^ b) = :a _ :b :(a _ b) = :a ^ :b

� (a ^ b) =� a_ � b � (a _ b) =� a^ � b

Besides, it is possible to de�ne, through the interaction of the two unary

operations : and �, the modal operators of ne cessity, �(a) :=� :a, and

possibility, �(a) := : � a = :�(:a).

These modal operators turn out to hav e an S5-like behavior based on a

Kleene algebra, instead of on a Boolean one ([4]).

Proposition 2.2 In any BZMV
dM

algebra the following conditions hold:

(1) �(a) � a � �(a). In other words: ne cessity implies actuality and actuality

implies possibility (a characteristic principle of the modal system T ).

(2) �(�(a)) = �(a), �(�(a)) = �(a). Necessity of necessity is equal to ne ces-

sity; similarly for possibility (a characteristic S4-principle).

(3) a � �(�(a)). Actuality implies ne cessityof possibility (a characteristic

B-principle).

(4) �(a) = �(�(a)) �(a) = �(�(a)) Possibility is equal to the necessity of

possibility; whereas ne cessityis equal to the possibility of ne cessity(a

characteristic S5-principle).

As a consequence of the abov e de�nitions we hav e that � a = :�(a), that

is the Brouwer complement can be interpreted as the negation of possibility

or impossibility.

As stated in Proposition 2.2 ,for any element of a BZMVdM algebra the or-

der chain �(a) � a � �(a) holds. We are, now, interested to those elements

which satisfy the strongest condition �(e) = e (equivalently, e = �(e)), i.e., to

those elements which present the classical feature that actuality coincide with

necessity and possibility. These elements are called sharp (exact, crisp) ele-

ments (in contraposition to the elements which are fuzzy) and their collection

is denoted b yAe.

Remark 2.3 This is not the only way to de�ne sharp elements. In fact, since

in general x ^ :x 6= 0 (equivalently, x _ :x 6= 1) it is possible to consider

as Kleene sharp (K-sharp) the elements which satisfy the non contradiction

(or equivalently the excluded middle) law with respect to the Kleene negation:

Ae;: := fe 2 A : e^:e = 0g = fe 2 A : e_:e = 1g. Alternatively, considering

the Brouwer negation we hav e that, in general, the double negation law does

not hold (see the (B1)). So, we can introduce a further de�nition of Brouwer

sharp (B-sharp) elements: Ae;B := fe 2 A :�� e = eg. Finally, as said before

� is not an idempotent operator. So the �-sharp elements are: Ae;� = fe 2

A : e� e = eg. However, it can be prov ed that all this notions are equivalent

([2,3]). Let A be a BZMV
dM algebra, then Ae = Ae;B = Ae;� = Ae;:.

Consequently ,we simply talk of sharp elements and write Ae to denote their
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collection.

Given an element a of a BZMV
dM

algebra, modal operators, � and �,

can be used to give a rough approximation of a b y sharp de�nable elements.

In fact, �(a) (resp., �(a)) turns out to be the best approximation from the

bottom (resp., top) of a b y sharp elements. T obe precise, for any element

a 2 A the follo wing holds:

(I1) �(a) is sharp (�(a) 2 Ae).

(I2) �(a) is an inner (lower) approximation of a (�(a) � a).

(I3) �(a) is the best inner approximation of a by sharp elements (let e 2 Ae

be such that e � a, then e � �(a)).

Analogously

(O1) �(a) is sharp (�(a) 2 Ae).

(O2) �(a) is an outer (upper) approximation of a (a � �(a)).

(O3) �(a) is the best outer approximation of a b y sharp elements (let

f 2 Ae be such that a � f , then �(a) � f).

De�nition 2.4 Given a BZMV
dM

algebra hA;�;:;�; 0i, the induced rough

approximation spac eaccording to [1] is the structure hA;Ae; �; �i consisting of

the set A of all approximable elements, the set Ae of all de�nable (or sharp)

elements, and the inner (resp., outer) approximation map � : A ! Ae (resp.,

� : A! Ae).

For any element a 2 A, its rough approximation is de�ned as the pair of sharp

elements: r(a) := h�(a); �(a)i [with �(a) � a � �(a)].

So the map r : A ! Ae � Ae approximates an unsharp (fuzzy) element b y

a pair of exact ones representing its inner and outer sharp approximation,

respectively . Clearly, sharp elements are characterized b y the property that

they coincide with their rough approximations: e 2 Ae i� r(e) = he; ei:

An equivalent way to de�ne a rough approximation space is to use the im-

possibility operator instead of the possibility one. So, giv en a fuzzy ele-

ment its approximation is given b y the map ri : A ! Ae � Ae de�ned as

ri(a) := h�(a);:�(a)i = h�(a);� ai.

We return now to fuzzy and shadowed sets, and we show how it is possible

to giv ethem the structure of BZMV
dM

algebras.

Proposition 2.5 L etF = [0; 1]
X be the colle ctionof fuzzy sets on the uni-

verse X. Once de�ned the op erators:

(f � g)(x) := minf1; f(x) + g(x)g

:f(x) := 1� f(x)

� f(x) :=

(
1 if f(x) = 0

0 otherwise

and the identically zer o fuzzy set: 0(x) := 0; then, the structure

68



Catt aneo and Ciucci

hF ;�;:;�; 0i is a BZMVdM algebra.

Similarly, it is possible to giv ethe structure of BZMVdM algebra to the

collection of shadowed sets S = f0; 1
2
; 1gX on the universe X. The operations

syntactically are exactly as in Proposition 2.5, but they are de�ned on the

domain of shadowed sets.

Proposition 2.6 L etS = f0; 1
2
; 1gX be the colle ction of shadowed sets on the

universe X. Then, the structure hS;�;:;�; 0i, where �;:;�; 0 ar e de�ned

as in prop osition2.5, is a BZMVdM algebra.

Now let us consider a fuzzy set f 2 F . Then, the possibility and necessity

of f are de�ned, respectively, as

�(f)(x) =

(
0 f(x) = 0

1 f(x) 6= 0
�(f)(x) =

(
1 f(x) = 1

0 f(x) 6= 1

So, when f is a fuzzy set, the abstract rough approximation as the pair ri(f) =

h�(f);� (f)i singles out a shadowed set. In fact, �(f) can be interpreted as

the characteristic function of the elements which hav e value 1 in the induced

shadowed set; and � f as the characteristic function of the elements which

hav e value 0. The other elements of the universe X represents the shadow of

the shadowed set.

Precisely, the shadowed set s� de�ned in equation (1) can be obtained, in

the case that � = 0, through a combination of these modal operators:

s0(f) := �(f)� (�(f)�
1

2
) s0(f)(x) =

8><
>:
0 f(x) = 0

1 f(x) = 1
1

2
otherwise

(2)

where 1

2
is the fuzzy set identically equal to 1

2
, i.e., for all x 2 X, 1

2
(x) := 1

2
.

Remark 2.7 The mapping s0 : F ! S; f ! s0(f), is not a bijection nor an

homomorphism between BZMV
dM algebras, as can be seen in the following

counterexample. Let us consider the fuzzy sets f1; f2 : [0; 1] 7! [0; 1] de�ned

as: f1(x) := 0:2 if x = 0 and 0 otherwise, and f2(x) := 0:3 if x = 0 and 0

otherwise. So, f1 6= f2 but s0(f1) = s0(f2) = 0:5 if x = 0 and 0 otherwise, and

this prov es thats0 is not a bijection. F urthermore (stressing with symbols �S

and �F the \truncated" sum operation acting on S and F respectively),

[s0(f1)�S s0(f2)](x) =

(
1 f(x) = 0

0 otherwise
6=

(
1

2
f(x) = 0

0 otherwise
= [s0(f1 �F f2)](x)

and so s0 is neither an homomorphism of BZMVdM algebras.

Of course, s0 gives only the induced shadowed set in the particular case of

� = 0, and it does not capture all the possible ones that can be obtained from
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a fuzzy set b y equation (1 ). In order to consider all that possibilities, it is

necessary (and suÆcient) to generalize the intuitionistic negation as follows:

8� 2 [0;
1

2
) (�� f)(x) :=

(
1� f(x) if f(x) � �

0 otherwise
(3)

Clearly, this is a generalization of�, in fact when � = 0 we obtain�0 f =� f .

In Figure 2, it is represented a fuzzy set and its � - impossibility (i.e., ��).

0

α

1−α
1

0

1

Fig. 2. Generalized ��: � 2 (0; 1=2) and � = 0

The derived operators, �� and �� then become:

��(f)(x) := (: �� f)(x) =

(
f(x) f(x) � �

1 f(x) > �

��(f)(x) := (�� :f)(x) =

(
f(x) f(x) � (1� �)

0 f(x) < (1� �)

Let us introduce the shadowed set s�(f), induced b y the fuzzy set f and

de�ned analogously to the (2). This coincide with the shadowed set previously

de�ned b ythe (1):

s�(f) := ��(f)� (��(f)�
1

2
) s�(f)(x) =

8><
>:
0 f(x) � �

1 f(x) � 1� �

1

2
otherwise

So, giv ena fuzzy set f , on one side we can obtain the rough approximation

r�(f) = h��(f); ��(f)i, and on the other side we can induce the shadowed

set s�(f). The relation between the two functions r� and s� is given b y the

mapping r�(f)!  (r�(f)) de�ned as:

 (r�(f)) =  (h��(f); ��(f)i) = ��(f)� (��(f)�
1

2
) = s�(f)

In the follo wingdiagram all the three functions, r�, s� and  are drawn,
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showing the relations among them:

f
r�

s�

r�(f)

 

s�(f)

We remark that the function  is not a bijection as can be seen in the following

counterexample.

Example 2.8 Let 1 be the identically one fuzzy set and
2

3
the fuzzy set

constantly equal to
2

3
. We hav e r0:4(

2

3
) = h2

3
; 1i and r0:4(1) = h1; 1i. Then,

we obtain  (r0:4(
2

3
)) = 1 =  (r0:4(1)).

Coming back to our algebraic structure, we hav e that, b y a substitution

of � b y��, the system h[0; 1]X;�;:;��; 0i is no more a BZMV dM
algebra.

In fact, for example, axiom BZMV 6 is not satis�ed. Given afuzzy set f , we

hav e:

f(x)� (���� f)(x) =

(
1 f(x) > �

f(x) f(x) � �
6=

(
1 f(x) > �

0 f(x) � �
= (���� f)(x):

Next section is devoted to the study of an algebrization of the structure

hF ;�;:;��; 0i containing this new operator ��.

3 pre-BZMVdM algebras

We, now, introduce a new algebra, which turns out to be weaker than BZMV
dM

algebra. The advantage of this new structure is that it admits as a model the

collection of fuzzy sets endowed with the operator ��.

De�nition 3.1 A structure hA;�;:;�w; 0i is a pre-BZMV
dM

algebra, if the

following are satis�ed:

(i) The substructure hA;�;:; 0i is a MV algebra, whose induced lattice

operators are de�ned as a_b := :(:a�b)�b, a^b := :(:(a�:b)�:b),
and the partial order as a � b i� a ^ b = a.

(ii) The follo wing properties aresatis�ed:

(a) a� �w�w a = : �w a

(b) �w a � :a
(c) �w a^ �w b = �w (a _ b)
(d) �w a_ �w b = �w (a ^ b)
(e) �w :a � �w : �w :a

The collection of all fuzzy sets can be equipped with a structure of pre-

BZMV
dM

algebra, according to the following result.

Proposition 3.2 Let F be the colle ctionof fuzzy sets based on the universe

X and let � 2 [0; 1
2
). Once de�ned the standard � and : operators on F , and
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the �� negation as in Equation (3 ), then the structure F� = hF ;�;:;��; 0i

is a pre-BZMVdM algebra, which is not a BZMVdM algebra.

In general, it is possible to show that any BZMVdM algebra is a pre-
BZMVdM algebra. In fact, in [3] it is shown that all axioms of de�nition 3.1
are true in any BZMVdM algebra. In general, the vice versa does not hold. F or
example, let us consider the structure F� with � = 0:4 and X = R, and de�ne
the fuzzy set f(x) = 0:3 for all x 2 R. Then, �� f(x)� ���� f(x) = 0:7 for
all x. So, axiom (BZMV5) is not satis�ed.

Proposition 3.3 If hA;�;:;�w; 0i is a pre-BZMVdM algebra satisfying �w�w

a = : �w a, then it is a BZMVdM algebra.

Proposition 3.4 L et hA;�;:;�w; 0i be a pre-BZMVdM algebra. Then, the

following pr op ertieshold:

(i) �w 0 = :0. In the se quel we set 1 :=�w 0 = :0.

(ii) If a � b then �w b ��w a (contrap ositionlaw).

So �w is a unary operator satisfying both de Morgan laws and the con-
traposition law (ii). However, it is not an in tuitionisticnegation, in fact, in
general, it satis�es neither the non contradiction law (property B3), nor the
weak double negation law (property B1), nor the Brouwer law (i.e., the law
8a, �w a =�w�w�w a is not satis�ed).

Anyway,also in a pre-BZMVdM algebra, it is possible to introduce modal
operators of necessity, �w(a) :=�w :a and possibility �w(a) := : �w a.
However, in this structure �w and �w do not hav e an S5 - lik e behavior but
only an S4 - like one (always based on a Kleene lattice instead of on a Boolean
one).

Proposition 3.5 L et hA;�;:;�w; 0i be a pre-BZMVdM algebra. Then, for

every a 2 A the following prop ertiesar esatis�ed:

(i) �w(a) � a � �w(a) [T principle]

(ii) �w(�w(a)) = �w(a) �w(�w(a)) = �w(a) [S4 principle]

In general the properties: a � �w(�w(a)), �w(a) = �w(�w(a)), and �w(a) =
�w(�w(a)) do not hold. As an example, let us consider the algebra F0:4 , with
X = [0; 1], and de�ne the fuzzy set f(x) = 0:3 if x <

1

2
and f(x) = 0:7

otherwise. We hav e:

��(f(x)) =

(
0:3 x <

1

2

1 x �
1

2

6=

(
0 x <

1

2

1 x �
1

2

= ��(��(f(x))):

��(f(x)) =

(
0 x <

1

2

0:7 x �
1

2

6=

(
0 x <

1

2

1 x �
1

2

= ��(��(f(x))):

Finally, f(x) is incomparable with ��(��(f(x))).
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Even if the necessity and possibity mappings have a weaker modal behavior

in pre-BZVMdM algebras than in BZMVdM algebras, they can still be used to

de�ne a lower and upper approximation, and it turns out that �w is an interior

operator and �w is a closure operator.

Proposition 3.6 Let hA;�;:;�w; 0i be a pre-BZMVdM algebra. Then the

map �w : A ! A such that �w(a) := : �w a is a closure operator. That is,

the following are satis�ed:

(C0) 0 = �w(0) (normalized)

(C1) a � �w(a) (increasing)

(C2) �w(a) = �w(�w(a)) (idempotent)

(C3) a � b implies �w(a) � �w(b) (monotone)

The collection of all closed sets is then de�ned as

C (A) = fa 2 A : a = �w(a)g

Proposition 3.7 Let hA;�;:;�w; 0i be a pre-BZMVdM algebra. Then the

map �w : A ! A such that �w(a) :=�w :a is an interior op er ator,i.e.:

(I0) 1 = �w(1) (normalized)

(I1) �w(a) � a (decreasing)

(I2) �w(a) = �w(�w(a)) (idempotent)

(I3) a � b implies �w(a) � �w(b) (monotone)

The collection of all open sets is then de�ned as

O (A) = fa 2 A : a = �w(a)g:

It is possible to show that, in general, these subsets of A do not coincide,

neither one is a subset of the other. So, it is worthwhile to consider also

the set of all clopen elements, i.e. elements which are both closed and open:

C O (A) = C (A) \ O (A).

The abov e considerations lead to the de�nition of an abstract approxima-

tion space generated b ya pre-BZMVdM algebra.

De�nition 3.8 Let A be a pre-BZMVdM algebra. The induced rough ap-

proximation space is the structure hA;O (A); C (A); �w ; �wi, where A is the

set of approximable elements; O (A) � A is the set of innerde�nable elements,

such that 0 and 1 2 O (A); C (A) � A is the set of outerde�nable elements,

such that 0 and 1 2 C (A); �w : A ! O (A) is the inner approximation map;
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�w : A ! C (A) is the outer approximation map. F orany element a 2 A, its

rough approximation is de�ned as the pair:

rw(a) := h�w(a); �w(a)i [with �w(a) � a � �w(a)]

drawn in the follo wing diagram:

a 2 A
�w �w

rw�w(a) 2 O (A) �w(a) 2 C (A)

h�w(a); �w(a)i

This approximation is the best approximation by open (resp. closed) ele-

ments that it is possible to de�ne on a pre-BZMV
dM

structure, i.e., there hold

properties similar to (I1){(I3) and (O1){(O3), the only di�erence is that here

we hav e to distinguish between open-exact and closed-exact elements.

In the context of the fuzzy sets pre{BZMV
dM

algebra of proposition 3.2

the collection of open and closed elements are respectively:

C (F) = ff 2 F : f(x) > � i� f(x) = 1g

O (F) = ff 2 F : f(x) < 1� � i� f(x) = 0g

The clopen sets are the 0{1 valued fuzzy sets, C O (F) = f0; 1gX . In the

universe [0; 1], once set � = 0:4, an example of open element is f1(x) = 0 if

x <
1

2
and 0:7 otherwise and an example of closed set is f2(x) = 0:3 if x <

1

2

and 1 otherwise. The fuzzy sets f1 and f2 are drawn in Figure 3.

0 x

f1(x)

1/2 1

α
1−α

1

0.7

0

1

x

f2(x)

1/2 1

0.3
α

1−α

Fig. 3. Example of open fuzzy set, f1, and closed fuzzy set, f2.

Finally, we remark that we can also enrich the collection of shadowed sets

f0; 1
2
; 1gX with the operation ��, in order to give it a pre-BZMV

dM
structure.

However, it can be easily prov ed that in this case �� is equivalent to �0 for

all � 2 [0;
1

2
) and so we again obtain a BZMV

dM
algebra.

4 Conclusions

In this paper we analyzed shadowed sets from the algebraic point of view. As

a �rst result we hav e seen that once properly de�ned the operators on the

74



Catt aneo and Ciucci

collection of shadowed sets of a given universe, they result to be a BZMV
dM

algebra. The same can be prov ed about the collection of fuzzy sets. Moreov er,

in such a structure it is possible to algebraically de�ne an operator which

given a fuzzy set returns a particular induced shadowed set. In order to

generalize such an operator it was necessary to introduce the new structure

of pre-BZMV
dM

algebras. Finally, it was shown that the collection of fuzzy

sets with a generalized notion of intuitionistic negation is a model of pre-

BZMV
dM

algebras. A possible development of the present work is a deeper

theoretical analysis of pre-BZMV
dM

algebras, which involves the study of the

independence of its axioms, the proofof a representation and a completeness

theorem. On the other hand, it would also be interesting to analyze the

implications of such a structure in an application context.
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