
Computer Physics Communications 183 (2012) 1641–1653
Contents lists available at SciVerse ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Particle packing algorithm for SPH schemes

Andrea Colagrossi a,b,∗, B. Bouscasse a, M. Antuono a, S. Marrone a,c

a CNR-INSEAN, The Italian Ship Model Basin, Rome, Italy
b Centre of Excellence for Ship and Ocean Structures, NTNU, Trondheim, Norway
c Department of Mechanics and Aeronautics, University of Rome “Sapienza”, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 August 2011
Received in revised form 7 February 2012
Accepted 27 February 2012
Available online 8 March 2012

Keywords:
Meshless methods
Smoothed particle hydrodynamics
Particle initialization
Lagrangian systems

Using some intrinsic features of the Smoothed Particle Hydrodynamics (SPH) schemes, an innovative
algorithm for the initialization of the particle distribution has been defined. The proposed particle packing
algorithm allows a drastic reduction of the numerical noise due to particle resettlement during the
early stages of the flow evolution. Moreover, thanks to its structure, it can be easily derived starting
from whatever SPH scheme and applies under the hypotheses that the fluid is weakly-compressible or
incompressible as well. A broad range of numerical test cases proved this tool to be fast, robust and
reliable also for complex geometrical configurations.
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0. Introduction

In the Smoothed Particle Hydrodynamics (SPH) scheme the
matter of how to initialize the particle positions plays a relevant
role. If particles are not initially set in “equilibrium” positions, they
may resettle giving rise to spurious motions which can strongly af-
fect the fluid evolution.

Here, the acceptation of the word “equilibrium” deserves a clar-
ification. We refer to an equilibrium configuration as the set of
particle positions which, under static conditions, does not lead to
particle resettlement. As proved in the following, the spurious par-
ticle motion is caused by inaccuracies in the SPH representation
of the pressure gradient. Specifically, these inaccuracies largely in-
crease when the particle distribution is anisotropic and disordered.
At worst, the pressure gradient is unable to approximate the cor-
rect static conditions and non-physical currents/vorticity are gener-
ated. Then, the aim of the present work is to provide an algorithm
which automatically gives the equilibrium configuration, that is,
the specific particle distribution for which the pressure gradient
is accurate and no particle resettlement occurs.

Apart from a few cases characterized by simple geometries, the
equilibrium configuration is not known “a priori”. Further, the gen-
eration of spurious currents/vorticity may be particularly strong
in the presence of complex solid boundary profiles (i.e. corners,
bended bodies, etc.).
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A possible solution is to start numerical simulations with a
high numerical damping term and leave a long enough time to
make particles self-resettle in equilibrium positions (see, for ex-
ample, Monaghan [1]). Unfortunately, the attainment of a stable
configuration can require a very long evolution, this leads to a
large increase of computational costs. Moreover, the high damp-
ing used for particle initialization does not exclude that a further
resettlement occurs when the actual simulation is started with a
real viscosity term. This behavior has been observed in some nu-
merical simulations of Section 3.

In the SPH framework, the first attempt to define a proper al-
gorithm for particle initialization is due to Oger et al. [2] who
adapted the Bubble method described in Shimada [3] to SPH
solvers. This algorithm is based on the use of Van der Waals-like
forces to place particles throughout the fluid domain. This method
proves to be quite fast, applies to general geometries and provides
a regular particle distribution. One of the weak points is that the
particle positions obtained through the Bubble algorithm may not
satisfy the static solution predicted by the SPH scheme, leading to
a further resettlement.

Then, the key point to build a robust packing algorithm re-
lies on the capability of providing a regular particle distribution
which is also a static solution of the SPH scheme. To this purpose
a novel packing algorithm has been derived taking advantage of
some intrinsic features of the SPH schemes. Thanks to this, the
proposed method allows the attainment of a regular particle distri-
bution compatible with the static solution. Further, it can be easily
derived starting from whatever SPH code and applies to weakly-
compressible or incompressible SPH schemes as well.

The paper is organized as follows: Section 1 introduces the SPH
scheme and gives an insight of the constitutive features which are
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Fig. 1. Configurations of the kernel support Ω(r) with respect to the fluid domain
boundary.

used to build the packing algorithm. Section 2 describes the pro-
posed algorithm and highlights some interesting aspects about its
Lagrangian structure. Finally, Section 3 provides a broad range of
numerical test cases which prove the packing algorithm to be fast,
robust and reliable also for complex geometrical configurations.

1. Governing equations

Two different approaches can be adopted in the SPH framework
to model incompressible flows: the first relies on the direct use
of the Navier–Stokes equations while the second is based on the
assumption that the fluid is weakly-compressible and barotropic
(that is, a one-to-one relation between pressure and density is
assumed to hold true). Both approaches have benefits and draw-
backs (for a detailed description we address the reader to Mon-
aghan [4] and Shao [5]) and lead to the so-called incompressible
SPH and weakly-compressible SPH schemes. The main advantage
of the packing algorithm is that it applies to both schemes as well.
In the present case, we adopt a weakly-compressible SPH scheme
and, therefore, use the weakly-compressible Euler equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dρ

Dt
+ ρ∇ · u = 0,

Du

Dt
= g − ∇p

ρ
,

p = F (ρ),

Dr

Dt
= u,

(1.1)

where r indicates a position inside the fluid domain Ω , g is the
gravity acceleration while u, ρ and p are respectively the veloc-
ity, the density and the pressure fields. Function F represents the
state equation linking the density field with the pressure one (we
recall that the fluid is assumed to be barotropic). The weakly-
compressibility assumption is enforced by choosing a sound ve-
locity, c0 = √

dF/dρ , which is much larger than the maximum
expected velocity of the fluid (for more details we address the
reader to the works of Madsen and Shäffer [6] and Monaghan [4]).

1.1. The SPH scheme

The SPH scheme is based on the filtering (smoothing) of any
generic flow field f with a convolution integral over the fluid do-
main Ω

〈 f 〉(r) =
∫
Ω

f
(
r′)W

(
r′ − r;h

)
dV ′. (1.2)

W (r′ − r;h) is a weight function, which in practical applications
must have a compact support Ω(r), and h (usually referred to as
the smoothing length) is a characteristic length of such support (see
Fig. 1). From a physical perspective, the smoothing length h rep-
resents the characteristic length of the domain of influence of the
fluid particle which is at the position indicated by r. A very com-
prehensive review of the SPH framework can be found in Ref. [4].

The weight function W (r′ − r,h), called smoothing function or
kernel in the SPH terminology, is positive, centered in r and de-
creases monotonously with the distance ‖r − r′‖. This monotonous
decrease goes to zero at the border of its support Ω(r). The ker-
nel considered in the present work is supposed to be isotropic in
space, which is equivalent to being dependent only on the dis-
tance s = ‖r′ − r‖. The notation W (r′ − r;h) will be shortened
hereinafter as W (r′ − r) and the dependence on h will be implic-
itly assumed. In the limit as the smoothing length h goes to zero,
the kernel has to converge weakly to a Dirac “function” and the
original field of the convolution integral (1.2) has to be recovered.
To this purpose, the kernel W must integrate to one (see e.g. [8]),
that is:∫
Ω

W
(
r′ − r

)
dV ′ = 1 ∀h > 0. (1.3)

As extensively discussed in [8], such a property is not satisfied
when the kernel domain is not completely immersed inside the
fluid domain. This, for example, occurs in the neighborhood of the
free surface ∂ΩF (see Fig. 1) where the kernel domain is cut by the
free surface. As a consequence, the lack of “mass” inside the kernel
domain implies that the integral in (1.3) is smaller than one.

The filtering formula (1.2) can be applied to the gradient of a
generic function

〈∇ f 〉(r) =
∫
Ω

∇′ f
(
r′)W

(
r′ − r

)
dV ′ (1.4)

with the prime on ∇ meaning that the derivatives are computed
on the r′ variable. Eq. (1.4) can be further analyzed if it is inte-
grated by parts:

〈∇ f 〉(r) =
∫
Ω

f
(
r′)∇W

(
r′ − r

)
dV ′

+
∫

∂Ω

f
(
r′)W

(
r′ − r

)
n′ dS ′. (1.5)

In this expression, ∇ indicates in turn the derivatives with respect
to the variable r and n′ is a unitary normal vector of ∂Ω pointing
outward Ω . To obtain this equation, the antisymmetry property of
the kernel gradient (∇′W (r − r′) = −∇W (r − r′)) has been used.

With this reformulation of Eq. (1.4), the gradient of any generic
function can be accessible from the knowledge of the function it-
self; this is the key point of the SPH method. When the smoothing
procedure is applied to the differential operators of the governing
equations (1.1), shortening the notation 〈 f 〉(r) by 〈 f 〉, we get:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dρ

Dt
+ ρ〈∇ · u〉 = 0,

Du

Dt
= g − 〈∇p〉

ρ
,

p = F (ρ),

Dr

Dt
= u.

(1.6)

The consistency of system (1.6) for the modeling of Euler equa-
tions in the presence of solid boundaries and free surfaces has
been deeply investigated in Colagrossi et al. [8]. In practical SPH
methods, the following formulas are generally used for the diver-
gence of the velocity field and for the pressure gradient (see for
example [9] and [8]):
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Fig. 2. Left panel: sketch of the vector w = −∇Γ in the neighborhood of a spatial anisotropy. Right panel: sketch of the solid and fluid particles in the packing algorithm
framework.
〈∇ · u〉 =
∫
Ω

(
u′ − u

) · ∇W
(
r′ − r

)
dV ′, (1.7)

〈∇p〉 =
∫
Ω

(
p′ + p

) · ∇W
(
r′ − r

)
dV ′. (1.8)

When the SPH scheme is written at the discrete level, the fluid
domain is represented through Lagrangian fluid particles carrying
the main fluid properties (e.g. the velocity, pressure, density, etc.).
In this framework, the integrals in (1.7) and (1.8) are replaced by
summations over the fluid particles and the discrete SPH scheme
reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dρi

Dt
= −ρi

∑
j

(u j − ui) · ∇i W ij V j,

Dui

Dt
= g − 1

ρi

∑
j

(p j + pi)∇i W ij V j + T i,

pi = F (ρi),

Dri

Dt
= ui .

(1.9)

Here, the subscripts indicate the quantities associated with the i-th
and j-th fluid particle. In the specific, V i is the particle volume,
ρi = mi/V i , mi is the particle mass and ∇i indicates differentiation
with respect to the position ri . The term T i indicates an artificial
viscous force per unit of mass. This term is generally implemented
in the SPH schemes for stability reasons (see, for example, [4]).

The main difference with the continuous framework is that the
relation (1.3) is only approximately satisfied inside the fluid do-
main. This is due to local unevenness in the particle distribution.
For the analysis which follows, it is convenient to introduce the
following variables:

Γi =
∑

j

W ij V j, ∇Γi =
∑

j

∇i W ij V j . (1.10)

Variables Γi and ∇Γi give a “measure” of the unevenness in the
particle distribution. In fact, if the particle distribution is perfectly
uniform, Γi = 1 and ∇Γi = 0 otherwise Γi < 1 and ∇Γi 	= 0.

Further, the use of Γi and ∇Γi helps understand the conver-
gence of the discrete differential operators. In fact, two different
kinds of errors are made when the exact differential formulas are
substituted with the discrete smoothed formulas. One kind is due
to the interpolation procedure (errors proportional to the smooth-
ing length, h) while the other is caused by the approximation
of continuous integrals with finite summations (see, for example,
[10]). In the latter case the error decreases as the number of parti-
cles inside the kernel domain increases. Then, if the mean number
of particles in the kernel domain is large enough, this error can be
assumed to be smaller than O(h). Under this assumption and us-
ing the results obtained in Appendix A, the following expansions
hold true:

〈∇ · u〉i =
∑

j

(u j − ui) · ∇i W ij V j = Γi(∇ · u)i +O(h), (1.11)

〈∇p〉i =
∑

j

(p j + pi)∇i W ij V j

= Γi(∇p)i + 2pi∇Γi +O(h). (1.12)

Here, both Γi and ∇Γi are responsible for a deviation from the
exact differential operators. As shown in the following example,
the greatest issue is caused by the pressure gradient.

Let us assume we want to start a SPH simulation with hydro-
static conditions. Then, we assign ui = 0, ρi = ρ(ri) at t = t0 and
try to find the hydrostatic pressure. The continuity equation is sat-
isfied exactly while, as a consequence of (1.12), the momentum
equation gives:

Γi(∇p)i + 2pi∇Γi − ρi∇Φ = O(h), (1.13)

where Φ is the gravitational potential. This expression clearly
shows that, unless Γi = 1 and ∇Γi = 0, it is not possible to at-
tain any hydrostatic solution. In this context, Γi plays only a minor
role since it just causes an increase/decrease of the intensity of the
correct pressure gradient. On the contrary, ∇Γi is responsible for
an unbalance in both the intensity and the direction of the SPH
differential operator. Further, ∇Γi diverges like 1/h when the par-
ticle distribution is strongly irregular. Then, the only way to get a
good initialization of the SPH scheme is to reduce the magnitude
of ∇Γi as much as possible and recover the consistency of the SPH
pressure operator. This is the principal idea at the basis of the Par-
ticle Packing Algorithm described in the next section.

2. Particle Packing Algorithm

The Particle Packing Algorithm is built on a simple idea: to
use the SPH features highlighted in the previous section to ini-
tialize the particle distribution and minimize ‖∇Γ ‖. This is made
by observing that the vector w = −∇Γ always points in the di-
rection of the maximum lack of “mass” and maximum anisotropy
(see Fig. 2). Now, lets assume to use it to move particles during
the initialization. If the fluid domain is bounded and particles are
not allowed to escape from the boundaries, w tends to fill all the
asymmetries in the particle distribution and, at the same time,
decreases as a consequence of the more regular distribution of par-
ticles themselves. Then, the final distribution would be the most
regular possible and ‖w‖ (that is, ‖∇Γ ‖) would be minimized as
requested.

The first step to build the Particle Packing Algorithm is to close
the domain boundaries. As a consequence, this implies that the
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free surface has to be treated as a solid boundary. The domain
boundary is modeled through fixed solid particles, that is, par-
ticles with zero velocity and fixed positions. This approach can
be regarded as a special use of the frozen particles (for details
see [11]) or as a straightforward application of the fixed ghost
particle technique proposed by Marrone et al. [7]. A sketch of
this procedure is displayed in the right panel of Fig. 2. In prin-
ciple, the proposed packing algorithm may be modified to include
different techniques for the solid profile modeling (e.g., repellent
particles [12] or boundary surface forces [13]). However, the use of
fixed solid particles is straightforward and leads to important the-
oretical results (see Section 2.1). Note that particles do not need
any specific rule to be positioned inside the fluid domain nor in-
side the solid bodies.

The second step consists in assuming the density, the pressure
and the volumes constant all over the fluid domain. We indicate
them through symbols ρ0, p0 and V 0 respectively. Since volumes
are constant and the packing algorithm has to converge toward a
static solution, we neglect the continuity equation. Conversely, the
momentum equation of system (1.9) becomes:⎧⎪⎨
⎪⎩

Dui

Dt
= −β∇Γi + T (ζ )

i ,

Dri

Dt
= ui

(2.14)

where β = 2p0/ρ0 and Γi = ∑
j W ij V 0. The damping force can be

chosen independently from the adopted SPH scheme since T (ζ )

i is
just used to ensure the convergence of the Particle Packing Algo-
rithm (more details are given in Section 2.1 and in Appendix B).
Similarly to Monaghan [1], we choose a linear damping term:

T (ζ )

i = −ζ ui with ζ = α

√
β

V 1/d
0

(2.15)

where d is the spatial dimension and α is a free dimensionless
parameter. By numerical simulations, we heuristically found that a
good choice for α ranges between 1 · 10−3 and 5 · 10−3. Then, the
particle packing system becomes:⎧⎪⎨
⎪⎩

Dui

Dt
= −β∇Γi − ζ ui,

Dri

Dt
= ui .

(2.16)

The initial conditions for the Particle Packing Algorithm are ob-
tained by setting all the particle velocities to zero and V 0 =
V tot/Npart where V tot is the total fluid volume and Npart is the
total number of particles. The time-step adopted for the present
algorithm is:


t = CFL
V 1/d

0√
β

, (2.17)

where CFL = 1.
As discussed in detail in the following sections, system (2.16)

tends to converge as much as possible toward a steady state char-
acterized by ui = 0 and ∇Γi = 0. When the fluid system is suf-
ficiently close to this state, the packing algorithm is stopped and
the particle positions are used to initialize the SPH simulations.
Since the spatial distribution is very regular, the particle volumes
can be assumed to be identical. Then, the volume used for the ini-
tialization of the SPH is V ∗ = V 0. The initial particle pressure, p∗

i ,
is assigned by using the analytical expression for the hydrostatic
pressure and the particle positions. Then, inverting the state equa-
tion, the initial density ρ∗

i is computed and, finally, the particle
mass is obtained through m∗ = ρ∗V ∗ . During the SPH simulations,
i i
the particle masses are kept constant while the densities and the
volumes are updated using the continuity equation and the rela-
tion V i = mi/ρi .

2.1. The particle packing system as a Lagrangian system

Let us consider (2.14) and neglect the damping force T (ζ )

i . Un-
der this hypothesis, the particle packing system is a Lagrangian
system and its Lagrangian function is L = T − V where:

T =
∑

i

∗ ‖ui‖2

2
, V = β

2

∑
i

∗∑
j

∗
W ij V 0 + β

∑
i

∗∑
j

W ij V 0.

(2.18)

Here the starred series indicates the summation over the fluid par-
ticles while the barred one denotes the summation over the fixed
solid particles. Symbols T and V are the specific kinetic energy
and specific potential energy respectively. According to the theory
of dynamical systems, the total energy (that is, E = T + V ) keeps
constant during the evolution and the system has stable equilib-
ria at the points where the potential attains its local minima. The
addition of any dissipative term (like, for example, that in (2.15))
forces the dynamical system to converge toward the static (and
stable) solution ui = 0, ∇Γi = 0. This is a fundamental point since
it proves that for a given arbitrary geometry (modeled through
fixed ghost particles), the packing algorithm always converges to-
ward a stable particle configuration. All details on the Lagrangian
structure of the packing algorithm are given in Appendix B.

2.2. Stability and equilibria in R
2

Let us consider the system (2.16) in the two-dimensional
plane, R

2. In this case, there are no boundaries and, therefore,
for ζ 	= 0, the system has stable equilibria at the points where the
potential attains its local minima.

If the number of particles is finite, their spatial distribution can-
not be homogeneous nor isotropic and, therefore, ∇Γ 	= 1 some-
where in R

2. Since w = −∇Γ points outward the fluid domain
in the direction of maximum anisotropy, particles start going away
one from the other and their reciprocal distance grows. This im-
plies a decrease of W (‖r j − ri‖) and, consequently, a decrease of
the potential energy. The final configuration predicts particles es-
caping at infinity and corresponds to zero potential energy (that is,
a local and absolute minimum for the potential energy).

If the particle number is infinite, there exist only three regu-
lar tessellations of R2 which ensure ∇Γ = 0. These configurations
(which corresponds to local extrema for the potential energy and,
therefore, to equilibria of the particle system) are the triangular,
square and hexagonal tessellation of the plane. Note that they are
all invariant for rigid rotations and translations which, therefore,
represent “directions” of neutral stability.

From a practical and theoretical point of view, it is interest-
ing to study the stability of such equilibria. Since the theoretical
analysis is very prohibitive, this is made through numerical sim-
ulations. The first step consists in the construction of a bounded
fluid domain Ω using one of the tessellations mentioned above.
Such a domain has to be large enough to assume that the most in-
ner particles are not influenced by ∂Ω . The boundary is fixed and
modeled through fixed solid particles. Note that the presence of a
fixed boundary automatically eliminates the “directions” of neu-
tral stability (that is, rigid rotations and translations). After the
domain Ω and its boundary have been built, particles are per-
turbed from their equilibrium positions. Specifically, we put ζ = 0,
since we do not want the viscosity to influence the stability of
the tessellations under consideration. Under this hypothesis, sys-
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Fig. 3. Cartesian, triangular and hexagonal tessellations (left column, from top to bottom) and some snapshots of their evolution (right column, from top to bottom) for
h/dx = 1.4. The circumferences indicate the domains of the adopted kernel functions.
tem (2.16) is Lagrangian (that is, it preserves the total energy, E )
and, therefore, only two cases are possible: particles keep oscil-
lating around the equilibrium configuration or they move toward
other configurations. In the former case the equilibrium (and the
related tessellation) is said to be Liapunov stable (see, for exam-
ple, [14]) otherwise the equilibrium is unstable.
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Table 1
Stability of the tessellations. ‘S’ = Liapunov stable, ‘U’ = unstable.

h/dx = 0.8 h/dx = 1.4 h/dx = 2.0 h/dx = 2.6 h/dx = 3.2

Cartesian U S S U U
Triangular S U S S U
Hexagonal U U U U U
Fig. 4. Sketch of the trapezoidal tank.

Fig. 3 displays the tessellations (left column) along with differ-
ent supports of the kernel functions (circumferences). In all the
simulations we used a Wendland kernel function with h/dx = 0.8,
1.4, 2.0, 2.6, 3.2 and the particle positions have been perturbed
from their stable configuration using a noise of order dx/100. In
the right column, some snapshots of the evolutions of the different
tessellations have been drawn for h/dx = 1.4. In this specific case,
the Cartesian tessellation is Liapunov stable while the triangular
and the hexagonal ones are unstable. Table 1 briefly summarizes
the results obtained. We found that the hexagonal tessellation is
always unstable while the stability of the Cartesian and the tri-
angular tessellations cannot be established “a priori”. Note that
behavior of a tessellation generally depends on the specific ker-
nel used.

3. Applications

In the present section we show some applications of the par-
ticle packing algorithm. We first deal with the initialization of
hydrostatic conditions in complex geometrical configurations, then
we show a dynamical problem which evolves after the parti-
cle packing initialization. In all the simulations, the standard SPH
scheme (see [4] for more details) has been implemented using a
Wendland kernel. Further, a linear state equation has been adopted
(see, for example, [15]) and the solid profiles have been modeled
through the fixed ghost particles described in Marrone et al. [7].
Incidentally, we highlight that the qualitative results obtained in
the following sections also hold true for those SPH schemes that
implement frozen particles.

3.1. Trapezoidal tank

We first consider a trapezoidal tank like that drawn in Fig. 4
(H is the filling height) and study the influence of the particle
initialization on the capability of the SPH of simulating the hy-
drostatic solution. As stated in Section 2, the first step is to “close”
the fluid domain. This means that the free surface has to be substi-
tuted by a solid boundary and modeled accordingly. This procedure
is displayed in Fig. 5 where the fluid domain has been initialized
through a Cartesian grid (left panel) and using the packing algo-
rithm (right panel).

In the former case, the use of a Cartesian grid leads to the gen-
eration of large spatial anisotropies along the inclined plane. Here,
‖∇Γ ‖ = O(1) and, therefore, an intense particle resettlement is
expected during the early stages of the fluid evolution. Conversely,
the particle packing algorithm eliminates the spatial anisotropies
and drastically reduces the magnitude of ‖∇Γ ‖ (whose order
of magnitude is about 10−13 H). Incidentally, we note that it is
possible to derive SPH schemes which may reduce the spatial
anisotropies close to the solid profiles through the use of spe-
cial boundary conditions (see, for example, [16]). However, these
schemes are generally more complex than the standard SPH model
and leads to higher computational costs.

It is also interesting to analyze the dependence of the proposed
algorithm on the spatial resolution. In Fig. 6 the specific kinetic
energy of the packing scheme (that is, T ) is displayed for three
different spatial resolutions versus the number of iterations. The
overall behavior during the initial stages is similar for all the cases
and the specific kinetic energy rapidly decreases to 10−7β . This
heuristically shows that the Particle Packing Algorithm is weakly
influenced by the adopted spatial resolution. Then, a further de-
crease occurs for longer time depending on the specific resolution.
In any case, particles are practically motionless after 2500 itera-
tions when the order of magnitude of the specific kinetic energy
is less than 10−8β . This means that the equilibrium configuration
has been attained and that the packing algorithm can be stopped.
Obviously, the number of iterations required for the attainment of
equilibria may vary according to the specific problem at hand, to
the choice of the kernel function (i.e., Gaussian, cubic spline, quin-
tic spline, etc.) and to the adopted damping but is generally of
order 103.

When the particle initialization is complete, the hydrostatic so-
lution is assigned to the fluid domain (that is, hydrostatic pressure
field and zero initial velocity) and we start the simulation through
the standard SPH scheme [4].

As shown in the left panel of Fig. 7, the initialization through
the Cartesian grid, because of the high values of ‖∇Γ ‖ near the
sloping plane, leads to the generation of high spurious currents
(maxi |ui | � 0.1

√
g H at t = 10

√
H/g ). On the contrary, these are

completely absent when the simulations are initialized through the
particle packing algorithm (right panel of the same figure).

A global measure of the particle resettlement phenomenon is
easily obtained by inspecting the evolution of the maximum in-
tensity of velocity (that is, maxi |ui |) during the simulation of the
hydrostatic solution. As shown in Fig. 8, the maximum intensity of
velocity after the use of packing algorithm is at least two orders
of magnitude smaller than that predicted by the simulation which
starts on a Cartesian grid. In the latter case the particle motion still
persists at t = 100

√
H/g while the simulation after the packing al-

gorithm is practically motionless (see right panel of Fig. 7).

3.1.1. Particle Packing Algorithm versus initialization through SPH with
linear damping term

As already mentioned in the Introduction, an alternative solu-
tion to reduce particle resettlement is to start the SPH simulation
using a high numerical damping term and leave a long enough
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Fig. 5. Trapezoidal tank (H/dx = 25). Initialization using a Cartesian grid (left) and through the particle packing algorithm (right).

Fig. 6. Trapezoidal tank. Evolution of the specific kinetic energy during the initialization through the particle packing algorithm.

Fig. 7. Hydrostatic solution for the trapezoidal tank (H/dx = 50). Evolution using a Cartesian grid (left) and after the initialization through the particle packing algorithm
(right).
time to make particle self-resettle in equilibrium positions. The
actual numerical simulation starts after the equilibrium configu-
ration is attained. Here, we show that such a procedure (that is,
the initialization using the SPH scheme itself) only leads to minor
improvements.

Following Monaghan [1], we use the standard SPH scheme
with a linear damping term. By definition, this is identical to the
damping term adopted in the packing algorithm and, consequently,
its coefficient has been denoted by ζ . Apart from these similari-
ties, the physical meaning of the damping coefficient used in the
SPH simulations is slightly different from that of the ζ coefficient
adopted in the particle packing algorithm. In the latter case, the
damping term has to be regarded as an “inter-particle” dissipation
while in the former case it represents artificial dissipations. For
this reason, the ζ coefficient of the SPH simulations has been made
dimensionless using physical variables (specifically, the sound ve-
locity c0 and the filling height H).
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Fig. 8. Hydrostatic solution for the trapezoidal tank (H/dx = 50): time evolution of
the maximum intensity of velocity.

Fig. 9. Kinetic energy evolution during the initialization with the standard SPH
scheme for different values of the damping coefficient ζ .

Fig. 10. Evolution of the maximum intensity of velocity after the particle initial-
ization with the standard SPH scheme (case a: ζ = 1.0c0/H ; case b: ζ = 0.1c0/H ;
case c: ζ = 0.02c0/H) and with the particle packing algorithm (case d).

The evolution of the kinetic energy during the particle initial-
ization through the SPH scheme is displayed in Fig. 9 for different
values of ζ . Incidentally we highlight that it has not been possi-
ble to use values of ζ smaller than 0.02 since the SPH scheme
was unstable. The attainment of the equilibrium becomes faster
and faster as the magnitude of the damping coefficient increases.
However, this behavior does not correspond to a reduction of par-
ticle resettlement when the actual simulation is started but, on the
contrary, leads to the generation of larger spurious currents which
persist for very long times. This is briefly summarized in Fig. 10
where the evolution of the maximum intensity of velocity is dis-
played for the same cases of Fig. 9. It is also interesting to note
that the use of values of ζ smaller than 0.1 does not lead to any
significant improvement for long time evolution. Note that parti-
cles are still moving at t = 100

√
H/g since maxi |ui | � 0.01

√
g H .

Conversely, the initialization through the packing algorithm lead to
the correct equilibrium configuration and avoids any further reset-
tlement (see case d of Fig. 10).
Fig. 11. Sketch of the complex tank geometry.

3.2. A complex tank geometry

As a second example, we consider a complex geometry charac-
terized by bended profiles with different curvatures and by acute
and obtuse solid angles (see Fig. 11). Because of these features, the
particle initialization of such a geometry represents a very difficult
problem.

The top panel of Fig. 12 displays the fluid evolution under hy-
drostatic conditions after the initialization on a Cartesian grid. In
this case, the generation of spurious currents and vorticity near
corners and bended profiles is very strong and persists for long
times. On the contrary, the use of the particle packing algorithm
eliminates such an undesirable behavior and gives a uniform par-
ticle distribution which keeps stable for long times (middle panel
of Fig. 12). The evolution of the kinetic energy confirms the find-
ings above proving that, after the use of the proposed algorithm,
particles are almost motionless (bottom panel of Fig. 12).

3.3. A freely floating problem

Here we consider a ship hull section floating in hydrostatic con-
ditions. Under such a hypothesis, the hull section should remain
motionless. However, because of the particle resettlement, an un-
physical deviation of the ship hull from the initial position may be
observed.

Similarly to the test cases studied in the previous sections, we
initialize the fluid domain using a Cartesian grid (top left panel of
Fig. 13) and the packing algorithm (top right panel of the same
figure). The bottom panels display the related SPH simulations. In
this case, the spurious currents that generate in the neighborhood
of the hull because of the Cartesian grid force the ship hull to
move. Fig. 14 shows the motion of the mass center (top panels)
and the roll motion (bottom panel) of the ship hull. Because of the
reduction of the spurious currents, the packing algorithm drasti-
cally reduces the unphysical ship motion ensuring the attainment
of the correct hydrostatic solution.

3.4. Evolution of an elliptical drop

Let us consider a fluid domain Ω which at the initial time is a
two-dimensional ball of radius R , subjected to the velocity field:{

u0(x, y) = A0x,

v0(x, y) = −A0 y
⇒ ∇u0 =

(
A0 0

0 −A0

)
. (3.19)

The initial pressure field is derived using the Poisson equation [17]
and reads:

p0(x, y) = ρ0 A2
0

2

[
R2 − (

x2 + y2)]. (3.20)

Assuming the flow to be inviscid, Ω preserves an elliptical form
during the evolution and this form can be derived analytically



A. Colagrossi et al. / Computer Physics Communications 183 (2012) 1641–1653 1649
Fig. 12. Hydrostatic solution for a complex tank geometry. Top: evolution after initialization on a Cartesian grid. Middle: evolution after initialization through packing
algorithm. Bottom: time history of the kinetic energy.
(see [1] and [17] for details). This domain is initialized using
a Cartesian grid (left panel of Fig. 15) and the proposed parti-
cle packing algorithm (right panel of the same figure). Since the
SPH is a Lagrangian scheme, particles move along stream lines.
Consequently, when particles are initially set on a Cartesian grid,
the flow evolution given by (3.19) leads particles to clump along
straight lines (see top panel of Fig. 16). This partially prevents
the SPH solution to match with the analytical solution for the
domain boundary (dashed lines in Fig. 16). On the contrary, the
flow evolution after the use of the packing algorithm displays a
more uniform particle distribution and, consequently, leads to a
better agreement with the analytical solution (bottom panel of
Fig. 16).

4. Conclusions

Using some intrinsic features of the SPH scheme, a novel pack-
ing algorithm has been derived for the particle initialization. The
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Fig. 13. Freely floating of a ship hull section after initialization on a Cartesian grid (left column) and with the particle packing algorithm (right column).

Fig. 14. Freely floating of a ship hull. Top panels: motion of the mass center (left panel) and a detail of its evolution (right panel). Bottom panel: roll motion.
proposed algorithm has been validated against several test cases
proving to be robust, fast and reliable also for complex geometri-
cal configurations. As shown for the evolution of the elliptical drop,
the particle distribution obtained through the packing algorithm
may even avoid the formation of those filamentous structures that
are caused by the Lagrangian nature of the SPH.
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Appendix A. Interpolation formulas

Let us consider a generic scalar function f and the following
convolution integral:
〈∇ f 〉 =
∫
Ω

∇′ f ′W dV ′ (A.21)

where, for the ease of notation, f ′ = f (r′) and W = W (r′ − r).
Integrating by parts and using the divergence theorem, we get:

〈∇ f 〉 =
∫
Ω

∇′( f ′W
)

dV ′ −
∫
Ω

f ′∇′W dV ′

=
∫

∂Ω

f ′W n′ dV ′ +
∫
Ω

f ′∇W dV ′,

where n is the normal to ∂Ω . Note that the last integral has been
obtained using the identity ∇′W (r′ −r) = −∇W (r′ −r). Now, con-
sider the following expansion:

f ′ = f + ∇ f · (r′ − r
) +O

(∥∥r′ − r
∥∥2)

. (A.22)

Then, substituting into the first integral and noting that ‖r′ − r‖ =
O(h), we find:



A. Colagrossi et al. / Computer Physics Communications 183 (2012) 1641–1653 1651
Fig. 15. Evolution of an elliptical drop. Initialization using a Cartesian grid (left) and the particle packing algorithm (right).

Fig. 16. Evolution of an initially circular patch of fluid using a Cartesian grid (top) and the particle packing algorithm (bottom). Dashed lines indicate the analytical solution
for the domain boundary.
〈∇ f 〉 = f

∫
∂Ω

W n′ dV ′ + (∇ f )k

∫
∂Ω

(
r′ − r

)
k W n′ dV ′

+
∫
Ω

f ′∇W dV ′ +O(h).

Now, applying the divergence theorem once again and the property
∇′W (r′ − r) = −∇W (r′ − r), it follows:

〈∇ f 〉 = − f ∇Γ + (∇ f )k

∫
Ω

∇′[(r′ − r
)

k W
]

dV ′

+
∫
Ω

f ′∇W dV ′ +O(h)

= − f ∇Γ + ∇ f

∫
Ω

W dV ′ + ∇ f

∫
Ω

(
r′ − r

) ⊗ ∇′W dV ′

+
∫

f ′∇W dV ′ +O(h)
Ω

= − f ∇Γ + Γ ∇ f − ∇ f

∫
Ω

(
r′ − r

) ⊗ ∇W dV ′

+
∫
Ω

f ′∇W dV ′ +O(h).

This formula can be rewritten as follows:

〈∇ f 〉 =
∫
Ω

(
f ′ − f

)∇W dV ′ + Γ ∇ f

− ∇ f

∫
Ω

(
r′ − r

) ⊗ ∇W dV ′ +O(h). (A.23)

Then, using the expansion (A.22) once again, we finally obtain:

〈∇ f 〉 = Γ ∇ f +O(h). (A.24)

In a similar way, we get:

〈 f 〉 =
∫

f ′W dV ′ = f

∫
W dV ′ +O(h) = Γ f +O(h). (A.25)
Ω Ω
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Now, basing on (A.23), we can write:

∇〈 f 〉 =
∫
Ω

f ′∇W dV ′ = 〈∇ f 〉 + f ∇Γ − Γ ∇ f

+ ∇ f

∫
Ω

(
r′ − r

) ⊗ ∇W dV ′ +O(h).

Then, substituting (A.24) and (A.25), we finally get:∫
Ω

(
r′ − r

) ⊗ ∇W dV ′ = Γ 1 +O(h). (A.26)

Substituting this formula back into (A.23), we obtain a consistent
formulation for 〈∇ f 〉, that is:

〈∇ f 〉 =
∫
Ω

(
f ′ − f

)∇W dV ′ +O(h). (A.27)

The expansion (1.11) for the divergence of the velocity field comes
directly by applying (A.27) and (A.24) on each component of u.
Similarly, the expansion (1.12) for the pressure gradient is obtained
by summing 2 f ∇Γ to (A.27) and, then, using the relation (A.24).

Appendix B. Lagrangian structure of the particle packing system

To show the Lagrangian structure of the particle packing algo-
rithm, we first need to prove the following equation:

DW ij

Dt
= −(u j − ui) · ∇i W ij . (B.28)

Proof. Since W ij = W (si j,h) where si j = ‖r j − ri‖, we get:

DW ij

Dt
= ∂W

∂si j

Dsi j

Dt
= ∂W

∂si j

(u j − ui) · (r j − ri)

si j
, (B.29)

and the last equality has been obtained using Dri/Dt = ui . Then,
the equality in (B.28) is obtained by using the following identity:

∇i W ij = − (r j − ri)

si j

∂W

∂si j
. � (B.30)

Multiplying system (2.16) by ui , we find:

D

Dt

(‖ui‖2

2

)
= −β

∑
j

ui · ∇i W ij V 0 − ζ‖ui‖2. (B.31)

Then, applying the summation over the fluid particles (here indi-
cated by the starred summation), we get:

DT

Dt
= −β

∑
i

∗ ∑
j

ui · ∇i W ij V 0 − 2ζT , (B.32)

where T = ∑
i
∗‖ui‖2/2 is the specific kinetic energy. Denoting

the summations over the solid particles through a barred series,
the double summation on the right-hand side of (B.32) can be re-
arranged as follows:∑

i

∗ ∑
j

ui · ∇i W ij V 0

=
∑

i

∗[∑
j

∗
ui · ∇i W ij V 0 +

∑
j

ui · ∇i W ij V 0

]

=
∑∗∑∗

ui · ∇i W ij V 0 +
∑∗∑

ui · ∇i W ij V 0.
i j i j
The velocity inside the first double summation is rewritten as ui =
(ui +u j)/2+(ui −u j)/2. Conversely, the velocity inside the second
double summation can be rewritten as ui = ui − u j , since the solid
particles have null velocity (that is, u j = 0). Then, we obtain:

∑
i

∗ ∑
j

ui · ∇i W ij V 0 =
∑

i

∗∑
j

∗ (ui + u j)

2
· ∇i W ij V 0

+
∑

i

∗∑
j

∗ (ui − u j)

2
· ∇i W ij V 0

+
∑

i

∗∑
j

(ui − u j) · ∇i W ij V 0.

Because of its symmetry properties, the double summation con-
taining (ui + u j) is identically null. Then, using the identity (B.28),
we finally get:∑

i

∗ ∑
j

ui · ∇i W ij V 0

=
∑

i

∗∑
j

∗ (ui − u j)

2
· ∇i W ij V 0 +

∑
i

∗∑
j

(ui − u j) · ∇i W ij V 0

= D

Dt

[
1

2

∑
i

∗∑
j

∗
W ij V 0 +

∑
i

∗∑
j

W ij V 0

]
.

Substituting this equality into (B.32), we obtain the total energy
equation of the packing algorithm:

DE

Dt
= −2ζT , (B.33)

where E = T + V and

V = β

2

∑
i

∗∑
j

∗
W ij V 0 + β

∑
i

∗∑
j

W ij V 0 (B.34)

is the specific potential energy of the system. The first term on the
right-hand side represents the component coming from the fluid
domain while the second one accounts for the action of the solid
boundary. If the damping effects are neglected, the total energy of
the system is conserved during the evolution.
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