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Abstract. In this work a numerical analysis of heat transfer in elliptical microchannels heated 
at constant and uniform heat flux is presented. A gaseous flow has been considered, in laminar 
steady state condition, in hydrodynamically and thermally fully developed forced convection, 
accounting for the rarefaction effects. The velocity and temperature distributions have been 
determined in the elliptic cross section, for different values of aspect ratio, Knudsen number 
and Brinkman number, solving the Navier-Stokes and energy equations within the Comsol 
Multiphysics® environment. The numerical procedure has been validated resorting to data 
available in literature for slip flow in elliptic cross sections with Br =0 and for slip flow in 
circular ducts with Br >0. The comparison between numerical results and data available in 
literature shows a perfect agreement. The velocity and temperature distributions thus found 
have been used to calculate the average Nusselt number in the cross section. The numerical 
results for Nusselt number are presented in terms of rarefaction degree (Knudsen number), of 
viscous dissipation (Brinkman number), and of the aspect ratio. The results point out that the 
thermal fluid behavior is significantly affected by the viscous dissipation for low rarefaction 
degrees and for aspect ratios of the elliptic cross-section higher than 0.2. 

1.  Introduction 
The tendency of increasing power rating in electronic systems requires advanced technology in 

thermal management, and the introduction of microchannels into power cooling has significantly 
increased the need of more refined models to determine the thermal performance.  
Experimental results on single-phase flows in microchannels have evidenced that the conventional 
models, can no longer be considered able to predict pressure drop and convective heat transfer 
coefficients. Researchers justify this conclusion by invoking new micro-effects (such as viscous 
forces, rarefaction, compressibility, axial heat conduction, conjugate heat transfer, wall roughness and 
so on), which Herwig and Hausner [1] called “scaling effects with respect to a standard macro-
analysis”. In the analysis of microchannels, scaling effects are of paramount importance to describe 
the behavior of the fluid. 

With regards to the viscous forces, it is well-know that their influence on the heat transfer is 
significant for highly viscous fluids or for flows characterized by high velocity. However it has to be 
pointed out that the role of the viscous dissipation becomes significant also when the temperature 
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difference between the fluid and the wall is small and when the channel diameter is reduced (as it 
occurs in microscale) [2]. 

In the last years many researchers have investigated the combined effect of rarefaction and viscous 
dissipation on the fluid behavior in microducts featuring different cross-sections, as highlighted by 
Colin in a recent review [3]. In particular, the thermal problem in uniform heat flux (CHF) boundary 
conditions has been tackled by many researchers. By applying the integral transform technique, Tunc 
and Bayazitoglu [4] analytically investigated the influence of Knudsen number and Brinkman number 
on the convective heat transfer in microducts. They found that an increase in the Knudsen number 
leads to a decrease in the Nusselt number, due to the temperature jump. By including the contribution 
of the viscous dissipation, they observed that the Nusselt number decreases as the Brinkman number 
increases. It has to be pointed out that for CHF boundary conditions a positive value of the Brinkman 
number means that the fluid is being heated.  

The same problem has been theoretically investigated by Aydın and Avcı [5]. They found that for 
low values of the Brinkman number the Nusselt number decreases as the Knudsen number increases, 
while Nu presents a maximum for high values of Br. Their results show also that the influence of the 
Brinkman number becomes less relevant as the rarefaction effects become more pronounced because 
of the presence of the slip velocity which reduces the velocity gradient. These results have been 
confirmed by the analysis carried out by Jeong and Jeong [6] and by Çetin et al. [7] who have 
investigated the effect of rarefaction, viscous dissipation and axial conduction in microtubes by 
extending the classical Graetz problem. The same trend has been also observed by Sun et al. [8] who 
have performed a numerical investigation on slip flow in microducts accounting for rarefaction and 
viscous dissipation effects. The influence of viscous dissipation and rarefaction in micropipes has been 
also investigated by Hooman [9] who has extended the analysis to the Second Law presenting 
correlations for the dimensionless entropy generation number and for the Bejan number depending on 
the Brinkman and Knudsen numbers. 

Closed form solutions for temperature and Nusselt number have been derived by Sadeghi and Saidi 
[10] in a microannulus. They have also investigated the influence of viscous dissipation accounting for 
the rarefaction effects in microchannels bounded by parallel plate as well. The role of viscous forces in 
the latter geometry has been also analytically analyzed by Jeong and Jeong [11], Aydın and Avcı [12] 
and more recently by Zhang et al. [13]. 

Moreover the combined effect of viscous dissipation and rarefaction has been numerically 
investigated in other cross-section geometries, even considering uniform heat flux (CHF) boundary 
conditions. van Rij [14,15] and Sun and Jaluria [16] have analyzed convective heat transfer in 
rectangular microducts. Their results show that viscous heating significantly affects the fluid thermal 
behavior, leading to a decrease in the Nusselt number, when the fluid is being heated. The amount of 
this reduction depends on the rarefaction degree, the aspect ratio and on the value of the Brinkman 
number. The same conclusions have been stated by Kuddusi [17] who have performed a numerical 
investigation of slip flow in trapezoidal microchannels accounting for the viscous heating.  

Despite these important contributions, the influence of the viscous and rarefaction effect in elliptic 
microducts has not yet been investigated in literature, at least to the best knowledge of the authors. 

In this work convective heat transfer for a laminar and fully developed gaseous flow, through 
elliptical microchannels, is investigated by adopting a numerical approach. The momentum 
conservation and energy equations are solved within the Comsol Multiphysics® environment 
considering a constant and uniform heat flux and accounting for the rarefaction effects. The numerical 
procedure is validated by comparing the numerical results with the data available in literature for both 
elliptic and circular microducts. The numerical data for the Nusselt number are presented as a function 
of the main parameters that influence the fluid behavior, highlighting the role of the viscous forces, of 
the rarefaction degree and of the aspect ratio of the considered cross-section.  

The main goal of this work is to demonstrate that the problem of heat transfer enhancement in 
microdevices cannot be solved simply by indefinitely reducing the microchannel dimensions, because 
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the viscous dissipation effects shall offset the gains of high heat transfer coefficients associated with a 
reduction in the channel size. 

2.  Mathematical model 
Experimental investigations highlight that, within the slip flow regime, at a distance of 

approximately one mean free path from the wall the continuum hypothesis is still valid, hence the 
problem is commonly tackled using the Navier-Stokes and energy equations, but modifying the 
boundary conditions to account for the rarefaction effects in the channels. To represent these effects, 
Knudsen number, defined as the ratio of the molecular mean free path to the hydraulic diameter of the 
cross section, is invoked. According to Karniadakis et al. [18] a slip flow model can be used for  
0.001<Kn<0.1.  

By considering a Newtonian gas flowing in an elliptical microchannel (Fig. 1) and assuming that 
the physical properties are constant and the flow is laminar and fully developed, the Navier-Stokes 
equation can be written as follows: 

2 2

2 2
u u pµ

ζξ ψ

 ∂ ∂ ∂
+ =   ∂∂ ∂       (1) 

being µ, u  and ∂p/∂ζ, the fluid dynamic viscosity, the local velocity and the axial component of the 
pressure gradient, respectively. Due to low value of the Mach number, in the present analysis the 
compressibility effects are not considered [19].  

The temperature field can be found by the solution of the energy equation: 
2 2

2 2p
T T Tc uρ λ
ζ ξ ψ

 ∂ ∂ ∂
= + + Φ  ∂ ∂ ∂      (2) 

being ρ and λ the fluid density and thermal conductivity, respectively, and cp the specific heat at 
constant pressure. The last term in Equation (2) indicates the viscous dissipation function which is 
defined by: 

2 2u uµ
ξ ψ

    ∂ ∂ Φ = +   ∂ ∂     
    (3) 

 
In fully developed flow, dTb/dζ=∂T/∂ζ,  therefore the axial component of the temperature gradient 

can be evaluated by an overall energy balance for an elemental control volume: 

p P

A

Tc WA qL dAρ
ζ

∂
= + Φ

∂ ∫     (4) 

where W is the average fluid velocity, A indicates the cross-sectional area, q the wall heat flux and LP 
the heated perimeter of the cross-section. 
 

 
Figure 1. Sketch of the considered cross-section. 
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To obtain a general solution for the considered model, the following dimensionless coordinates are 
introduced: 

h h h
x y z

D D D
ξ ψ ζ

= = =     (5) 
together with the dimensionless functions listed below: 

2
h

h

D p u TP U
W W q D

λθ
µ ζ

∂
= − = =

∂    (6) 

By considering the above non-dimensional quantities, the Equations (1-2) can be rewritten as 
follow: 

2 2

2 2
U U P

x y
∂ ∂

+ =
∂ ∂       (7) 

2 2

2 2

*

* * * *
* P

A

U L Br dA Br
Ax y

θ θ
 

∂ ∂  + = + Φ − Φ ∂ ∂   
∫   (8) 

in which A* denotes the dimensionless cross-sectional area (A*=A/Dh
2), LP* is the dimensionless 

heated perimeter of the cross-section (LP*=LP/Dh), and Br indicates the Brinkman number defined by: 
2

h

WBr
qD
µ

=      (9) 
To take into account the rarefaction effects, for the dimensionless velocity at the wall the usual 

first-order slip boundary condition is considered, according to [20]: 
2 v

w
v w

UU U Kn
n

σ
σ

 − ∂
− =  ∂     (10) 

The energy equation is solved by considering a constant and uniform heat flux at the wall (i.e. H2 
boundary conditions), hence the thermal boundary condition in the non-dimensional form reads as: 

1
wn

θ ∂
= − ∂       (11) 

By considering the temperature jump at the wall, the non-dimensional wall temperature can be 
evaluated as follows: 

2 2( , ) ( , )
1 Pr

T
w w w w w

T

k Knx y x y
k

σθ θ
σ
−

= +
+    (12) 

The knowledge of the velocity and temperature fields enables to calculate the main physical 
parameters, such as the dimensionless bulk temperature and the average Nusselt number: 

*

1 *
*b

A

U dA
A

θ θ= ∫     (13) 

1
( )

h

w b

h DNu
λ θ θ

= =
−     (14) 

in which wθ indicates the non-dimensional average wall temperature.  

3.  Results and discussion 
The Navier-Stokes and energy equations in the non-dimensional form have been solved within the 

COMSOL Multiphysics® environment. To guarantee accurate solutions for the governing equations 
the convergence criterion has been set 1e-06.  
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The numerical runs have been performed considering air as working fluid (Pr=0.7, k=1.4) and 
assuming accommodation coefficients σv =σT =1, as usual in literature [3]. 

To obtain mesh-independent solutions, several numerical simulations have been carried out on 
different grid sizes by monitoring the value of the Nusselt number. For each analysed grid resolution 
the relative error in Nu has been calculated by comparing the value of Nusselt number for the tested 
mesh size with a reference value of Nu obtained adopting the finest mesh (i.e. for each value of the 
aspect ratio considered in the present study a reference grid characterized by at least 400000 elements 
has been chosen): 

ref
r

ref

Nu Nu
Nu

ε
−

=      (15) 

In Figure 2 the relative error (εr) in Nu as a function of the number of the grid elements (N) for    
β = 0.1 and for different values of the Knudsen and Brinkman numbers, is presented. It is evident that 
for a number of elements N higher than 2000 the value of the relative error tends to 0 which means 
that the numerical solution becomes independent on the grid resolution. The same trend has been also 
observed for the other values of the aspect ratio, therefore in all the numerical runs a grid consisting of 
at least 2000 elements has been adopted.  
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                       (a)                                                                             (b) 

   Figure 2. Relative error in Nusselt number as a function of the grid elements for different values of 
the Brinkman number: (a) Continuum flow (Kn=0); (b) Slip flow (Kn=0.1). 

 

The validation of the numerical procedure has been performed by comparing the numerical results 
with the data available in literature. For circular microducts (β =1) an excellent agreement with the 
analytical values of the Nusselt number obtained by applying the solutions proposed by Aydın and 
Avcı [5] and by Jeong and Jeong [6] has been found for all values of the Knudsen and Brinkman 
numbers analysed, as shown in Table 1. The maximum discrepancy between the numerical Nu and the 
analytical ones is less than 1e-05.  

To validate the numerical solution for the elliptical microchannels as well, a comparison between 
the present numerical results of the Nusselt number for Br =0 and other numerical values available in 
literature [2, 21] has been performed; as shown in Table 2; a perfect agreement has been found even in 
this case.  

Both benchmarks confirm that the numerical procedure adopted in the present analysis can be 
considered robust and accurate. 

To investigate the influence of the viscous dissipation and rarefaction degree in the considered 
cross-section, several numerical runs have been performed by considering different values of the main 
parameters that influence the fluid behavior. 
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Table 1. Comparison between numerical Nusselt numbers for circular ducts (β=1) and analytical ones. 
 Br 

0 0.005 0.01 0.05 0.1 
Kn [5] [6] Present 

work 
[5] [6] Present 

work 
[5] [6] Present 

work 
[5] [6] Present 

work 
[5] [6] Present 

work 
0 4.364 4.364 4.271 4.271 4.181 4.181 3.582 3.582 3.038 3.038 
0.02 4.071 4.071 4.017 4.017 3.964 3.964 3.589 3.589 3.209 3.209 
0.04 3.749 3.749 3.717 3.717 3.685 3.685 3.449 3.449 3.194 3.194 
0.06 3.439 3.439 3.419 3.419 3.399 3.399 3.248 3.248 3.078 3.078 
0.08 3.156 3.156 3.143 3.143 3.130 3.130 3.031 3.031 2.916 2.916 
0.10 2.904 2.904 2.895 2.895 2.887 2.887 2.820 2.820 2.741 2.741 

 
Table 2. Comparison between numerical Nusselt numbers for elliptic cross-section and data available 
in literature for Br=0. 
 Kn 
 0 0.04 0.06 0.1 
β [2] [21] Present 

work 
[21] Present 

work 
[21] Present 

work 
[21] Present 

work 
0.100 0.6562 0.656 0.656 0.710 0.710 0.720 0.720 0.724 0.724 
0.125 0.9433 0.943 0.943 0.999 0.999 1.003 1.003 0.988 0.988 
0.200 1.820 1.820 1.820 1.811 1.811 1.768 1.768 1.655 1.655 
0.250 2.333 2.333 2.333 2.246 2.246 2.161 2.161 1.973 1.973 
0.333 3.006 3.006 3.006 2.778 2.778 2.627 2.627 2.331 2.331 
0.500 3.802 3.802 3.802 3.362 3.362 3.121 3.121 2.678 2.678 
0.667 - 4.171 4.171 3.618 3.618 3.332 3.332 2.832 2.832 
0.750 - 4.266 4.266 3.683 3.683 3.385 3.385 2.868 2.868 
0.833 - 4.325 4.325 3.723 3.723 3.417 3.417 2.889 2.889 

 

With regards to the aspect ratio of the elliptic cross-section, the investigation has been carried out 
assuming the most common values of the aspect ratio, namely β = 0.10, β = 0.125, β = 0.20, β = 0.25, 
β = 0.333, β = 0.50, β = 0.667, β = 0.75, β = 0.833 and β = 1. It has to be pointed out that to keep the 
same value of the hydraulic diameter, for each value of aspect ratio both the semi-minor axis (b) and 
the semi-major axis (a) have been varied. The role of the viscous forces in the convective heat transfer 
has been investigated by varying the Brinkman number in the range 0÷0.1 while the rarefaction effects 
have been taken into account by changing the Knudsen number from 0 (continuum flow) up to 0.1. 

In Figure 3 the dimensionless fluid temperature as a function of the semi-minor axis of the ellipse 
(y) is depicted, for a shallow elliptical channel (β =0.1), for different values of the Brinkman number, 
namely Br =0.005, Br =0.01, Br =0.05 and Br =0.1, and for both continuum flow (Kn =0) and slip 
flow (Kn =0.1). It has to be pointed out that in H2 boundary conditions the temperature distribution is 
calculated apart from an arbitrary constant; the here presented results have been obtained by 
considering that the dimensionless temperature at the centre of the cross-section is zero. By observing 
Figure 3a, it can be noticed that the thermal fluid behavior is significantly affected by the viscous 
heating, when the rarefaction effects are disregarded (Kn =0); as the Brinkman number increases from 
0.005 to 0.1, the maximum of the non-dimensional fluid temperature, reached at the wall, increases by 
about 80%. On the contrary the influence of the viscous heating on the fluid behavior becomes less 
relevant in slip flow regime. It has been observed that as the rarefaction effects become more 
pronounced the influence of the Brinkman number is reduced. This effect is due to the presence of the 
slip velocity at the wall which leads to a reduction of the velocity gradient. This trend is evident in 
Figure 3b in which the non-dimensional temperature profiles as a function of the shorter axis of the 
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ellipse for Kn =0.1, are presented. An increase in the Brinkman number from 0.005 to 0.1 leads an 
increase in the  wall dimensionless temperature of about 19%. 
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   Figure 3. Non-dimensional temperature profile for β =0.1: (a) Continuum flow (Kn=0);                 
(b) Slip flow (Kn=0.1). 
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   Figure 4. Non-dimensional temperature profile for β =0.5: (a) Continuum flow (Kn=0);                 
(b) Slip flow (Kn =0.1). 

 

The same trends have been observed for each value of the aspect ratio considered in the present 
analysis. Figure 4 shows the non-dimensional temperature profiles for β =0.5, keeping the same values 
of the Brinkman and Knudsen numbers. However by comparing the graphs presented in Figure 3a 
with those in Figure 4a, it can be noticed that the influence of the Brinkman number becomes less 
pronounced as the aspect ratio increases. In fact by increasing Br from 0.005 up to 0.1 the 
dimensionless wall temperature increases by about 65%. On the contrary, within the slip flow regime 
the influence of the aspect ratio becomes less relevant (i.e. for Br changing from 0.005 to 0.1, the wall 
temperature increases by about 17%). 

The influence of the aspect ratio is more evident by observing the graphs shown in Figures 5 and 6. 
In Figure 5 the Nusselt number as a function of both Knudsen and Brinkman numbers is depicted for 
several values of the aspect ratio. With regards to the effect of the viscous heating, numerical results 
have pointed out that viscous dissipation degrades the heat transfer: the Nusselt number decreases as 
the Brinkman number increases for all values of the Knudsen number and of aspect ratio investigated 
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in the present study. Similar trends have been also observed by other researchers in different geometry 
cross-sections (see for instance Tunc and Bayazitoglu [4], Aydın and Avcı [5] and Jeong and Jeong [6] 
for circular ducts, van Rij et al.[14] for rectangular microducts and Kuddusi [17] for trapezoidal 
microchannels). 
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   Figure 5. Nusselt number as a function of Knudsen and Brinkman numbers for several values of 
aspect ratio: (a) β=0.1; (b) β=0.25; (c) β=0.5; (d) β=0.75. 

 

On the other hand the rarefaction effects may increase or decrease the Nusselt number depending 
on the value of the aspect ratio and of the Brinkman number. In fact for β ≥0.25 and for low values of 
the Brinkman number (i.e. Br ranges between 0.01 and 0.04, depending on the value of the aspect 
ratio), Nusselt number decreases as the Knudsen number increases, while for β ≥0.25 and for high 
values of the Brinkman number, Nusselt number presents a maximum for Kn ranging between 0.02 
and 0.04 (depending on the values of β and Br).  

For shallow microchannels the Nusselt number presents a maximum for all values of the Brinkman 
number considered in the present work; the value of the Knudsen number in which the maximum Nu 
occurs depends on the value of β and Br, as it can be noticed by observing Figures 5a and 5b. 
However, it is important to highlight that for very shallow elliptical microchannels the Nusselt number 
becomes lower than 1, which means that the convective heat transfer is less efficient than pure heat 
conduction.  
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To highlight the influence of the viscous dissipation on the heat transfer coefficient, a comparison 
between the Nusselt number obtained for Br > 0 and the corresponding values for Br = 0 computed by 
Vocale et al. [21], has been performed.  

The value assumed by the normalized Nusselt number (i.e. NuN=NuBr>0,Kn>0/NuBr=0,Kn=0) as a 
function of the aspect ratio β is shown in Figure 6 by taking several values of the Brinkman and 
Knudsen numbers. 

The analysis of the trends of the normalized Nusselt number (NuN) leads to the same conclusions as 
regards the combined effect of the rarefaction and the viscous dissipation, highlighting the influence of 
the aspect ratio. In fact by observing Figure 6 it can be noticed that for all values of the Knudsen and 
Brinkman numbers considered in this work, the influence of the viscous dissipation increases as the 
aspect ratio increases. Values of the normalized Nusselt number larger than 1 can be obtained in the 
slip flow regime for shallow elliptical channels (β <0.2); the maximum increase of the Nusselt number 
is obtained for β=0.1 when the rarefaction effects are more evident (Kn=0.1) and this increase is of the 
order of 10% independently from the value assumed by the Brinkman number. On the contrary, when 
the elliptic cross section tends to the circular geometry the normalized Nusselt number is always less 
than 1, which means that both rarefaction and viscous dissipation make worse the convective heat 
transfer, reducing the Nusselt number by about 30% for β =1 (i.e. circular microducts). 
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   Figure 6. Normalized Nusselt number as a function of the aspect ratio for several values of the 
Brinkman number: (a) Kn=0 (continuum flow); (b) Kn=0.02; (c) Kn=0.06; (d) Kn=0.1. 
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4.  Conclusions 
In this work the role of the viscous dissipation on the convective heat transfer for a laminar and 

fully developed gaseous flow, in elliptic microducts, has been numerically investigated. The governing 
equations, which have been solved within the Comsol Multiphysics® environment, have taken also 
into account the presence of rarefaction effects. The thermal problem has been tackled by considering 
a constant and uniform heat flux at the wall.  

The numerical results, validated against the data available in literature for circular and elliptical 
cross-sections, show that the viscous forces play a leading role in the convective heat transfer. In 
particular for high values of the aspect ratio and rarefaction degree, neglecting the viscous dissipation 
effect may lead to an overestimation of the Nusselt number up to about 59%. 

It has been demonstrated that for shallow elliptical microchannels with an aspect ratio β lower than 
0.2 the presence of rarefaction effects is beneficial for convective heat transfer and an increase of the 
Knudsen number determines an increase of the Nusselt number up to 10%. However, it is important to 
highlight that shallow elliptic channels having an aspect ratio lower than 1/8 are characterized by 
Nusselt numbers lower than 1 in fully developed laminar regime which means that, even in the case in 
which rarefaction effects and viscous dissipation effects are negligible, forced convection is 
ineffective with respect pure heat conduction.  

These results confirm that reducing the channel size is not enough to enhance the convective heat 
transfer coefficient; in fact the viscous dissipation effects shall offset the gains of high heat transfer 
coefficients associated with a reduction in the channel size.  
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