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� The theory of the atomic photoeffect is presented in a form suited for calculation.

� Explicit formulas are given for both ionization and excitation to bound levels.
� Simple calculation method for photoelectron angular distributions.
� Finite level widths can be included by convolution with a Lorentz profile.
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The so-called elementary theory of the atomic photoeffect is presented in a form that is suited for
practical numerical calculation of subshell cross sections and angular distributions of emitted photo-
electrons. Atomic states are described within the independent-electron approximation, with bound and
free one-electron orbitals that are solutions of the Dirac equation with the Dirac–Hartree–Fock–Slater
self-consistent potential of the ground-state configuration. Detailed derivations are given of subshell
cross sections for both excitation to discrete bound levels and ionization. In the case of ionization, the
cross section differential in the direction of the photoelectron is obtained for partially polarized photons,
with the polarization specified by means of the Stokes parameters. The theoretical formulas have been
implemented in a computer program named PHOTACS that calculates tables of excitation and ionization
cross sections for any element and subshell. Numerical calculations are practicable for excitations to final
states with the principal quantum number up to about 20 and for ionization by photons with energy up
to about 2 MeV. Elaborate extrapolation schemes for determining the subshell cross section for excitation
to bound levels with larger principal quantum numbers and for ionization by photons with higher en-
ergies are described. The effect of the finite width of atomic energy levels is accounted for by convolving
the calculated subshell cross-section with a Lorentzian profile.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the photoelectric effect, or photoeffect, a photon is absorbed
by a target atom and, as a result, an atomic electron is emitted or
promoted to a bound open orbital thus leaving the residual ion or
atom in an excited state. The latter subsequently decays to its
ground state through a cascade of radiative and non-radiative
transitions with emission of characteristic X-rays and Auger elec-
trons. For photons with intermediate and low energies, the pho-
toeffect dominates the transfer of energy from the photon field to
charged particles. The so-called elementary theory of the process
Ltd. This is an open access article u
has been described by Pratt et al. (1973) and by Scofield (1973). In
their formulation the states of the atom are approximated by a
model of independent electrons in a common central potential,
and the interaction between the target atom and the electro-
magnetic field is treated as a perturbation to first order. This ap-
proach neglects electron correlations, i.e., the collective character
of the response of atomic electrons to the external field. Correla-
tion effects have been studied by many authors using a variety of
theoretical methods such as the random-phase approximation
(Johnson and Lin, 1979), many-body perturbation theory (Chang
and Fano, 1976), R-matrix perturbation theory (Burke and Taylor,
1975), and the time-dependent local-density approximation
(Zangwill and Soven, 1980; Parpia and Johnson, 1983; Liberman
and Zangwill, 1984). Calculations with these methods are quite
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involved, and numerical results have been published only for
specific atoms and limited energy ranges.

Quantitative information on the photoeffect is required for
practical applications (e.g., X-ray fluorescence, X-ray photoelectron
spectroscopy), as well as for Monte Carlo simulation of photon
transport. Numerical tables of subshell cross sections (for ioniza-
tion and for excitation to bound levels) and atomic cross sections
are included in the Evaluated Photon Data Library (EPDL) (Cullen
et al., 1997). The XCOM program (Berger et al., 2005) gives atomic
cross sections for photoionization essentially equivalent to those in
the EPDL. Both the EPDL and XCOM databases are based on cal-
culations performed by Scofield (1973) using the independent-
electron model with the self-consistent Dirac–Hartree–Fock–Slater
(DHFS) potential. They are considered to be the most reliable
source of general information available to date; indeed, practically
all modern Monte Carlo codes for photon transport utilize the
EPDL. A systematic comparison of Scofield's cross sections with
experimental data has been made by Saloman et al. (1988). It is
worth mentioning that the theory, as well as the numerical tables
calculated from it, applies to free atoms. Differences are to be
expected for molecules and solids, particularly near absorption
edges, partly because of aggregation effects on the atomic poten-
tial and also because of the EXAFS effect (extended X-ray absorp-
tion fine structure) (Lee et al., 1981).

Calculations based on approximate independent-electron
models, such as the DHFS model, are affected by possible in-
accuracies of the adopted central potential. A simple strategy to
account for inaccuracies in the atomic potential is provided by the
normalization screening approximation of Pratt and co-workers
(Pratt, 1960a; Schmickley and Pratt, 1967; Pratt and Tseng, 1972;
Pratt et al., 1973). According to this approximation, the subshell
cross sections calculated from the DHFS potential and from a more
elaborate atomic model (e.g.., the multi-configuration Dirac–Fock
self-consistent model implemented in the program of Desclaux,
1975, 1977) differ essentially by a constant factor, which is equal to
the ratio of electron densities near the nucleus. That is, in princi-
ple, one can improve the DHFS cross sections by multiplying them
by an energy-independent factor, which is readily obtained from
atomic-structure calculations that are more elaborate than the
DHFS ones.

The angular distribution of photoelectrons is needed in X-ray
photoelectron spectroscopy, (Hemmers et al., 2004; Fujikawa et al.,
2007; Kövér, 2010), as well as in radiation transport calculations
(Fernández et al., 1993; Salvat, 2015). Surprisingly, information on
the angular distribution of photoelectrons, consistent with the
subshell cross sections, is quite limited, or unavailable (see, e.g.,
Trzhaskovskaya et al., 2006 and references therein). As a matter of
fact, most Monte Carlo photon transport codes still rely on the
Sauter (1931) formula, which gives the differential cross section for
the ground state of hydrogenic ions obtained from the plane-wave
Born approximation. The most elaborate tables of angular dis-
tributions available for all subshells of the elements are those gi-
ven by Trzhaskovskaya et al. (2001, 2002, 2006), which were cal-
culated within the quadrupole approximation and parameterized
using the formulas proposed by Cooper (1990, 1993). These tables
apply to unpolarized and linearly polarized photons and cover the
energy range from 100 eV to 5 keV. Theoretical studies of angular
distributions for soft-X-ray absorption by Derevianko et al. (2000)
and Amusia et al. (2001) revealed the importance of higher-mul-
tipole corrections.

The present paper describes the elementary theory of the
photoeffect in a concise but complete form, organized so as to
allow systematic evaluations of cross sections for both ionization
and excitation to bound levels. Following Scofield and others, we
consider a model of independent electrons in the DHFS self-con-
sistent potential. Although Scofield's numerical results are known
to be fairly accurate, the size of his database is moderate and, in
some energy ranges, the grid energies are too widely spaced to
ensure that interpolation errors are less than the numerical ac-
curacy of the tabulated data. Nowadays, instead of interpolating
from a limited database, subshell ionization cross sections can be
calculated interactively, even on modest personal computers,
using numerical algorithms that are highly accurate. We have
written a robust, flexible Fortran program, named PHOTACS, which
calculates subshell cross sections for arbitrary atomic potentials.
The calculations converge for excitation to levels with principal
quantum number up to about 20 and for ionization by photons
with energies up to about 2 MeV. Results from the program do
confirm the accuracy of Scofield's data, but also reveal near-
threshold features that are invisible in Scofield's database because
of the large spacing of its energy grid. PHOTACS includes tables of
theoretical and empirical atomic level widths and allows the cal-
culated subshell cross section (excitation plus ionization) to be
transformed into a continuous function of the photon energy,
through a convolution with a Lorentzian line profile. Once the
photoemission cross section for a given photon energy is calcu-
lated, the angular distribution of photoelectrons can be obtained
with little additional effort because radial integrals, which take
most of the numerical work, were already computed to obtain the
cross section. The code PHOTACS optionally calculates the angular
distribution of photoelectrons emitted as a result of the absorption
of partially polarized photons in a given subshell. Arbitrary photon
polarization is described by means of the density matrix expressed
in terms of the Stokes parameters.

The paper is organized as follows. Section 2 presents an over-
view of the theory of the photoeffect. We describe a systematic
extrapolation scheme to account for excitations to bound levels
near the ionization threshold, as well as an analytical formula for
extrapolating the photoionization cross section to arbitrarily high
energies. Finally, the effect of the finite width of atomic energy
levels and the normalization screening correction are considered.
To lighten the Theory Section, notation conventions and relevant
mathematical formulas are summarized in Appendix A. In Section
3 we derive general formulas for the angular distribution of pho-
toelectrons released by photons with arbitrary polarizations.
Photon polarization is described by means of the density matrix
and the associated Stokes parameters, following the conventions
presented in Appendix B. The practical calculation of cross sections
and photoelectron angular distributions is considered in Section 4,
which contains a brief presentation of the program PHOTACS and
results from several illustrative calculations. Finally, in Section 5
we provide some concluding comments.
2. Theory

We consider here the elementary theory of the photoelectric
effect as described by Pratt et al. (1973) and by Scofield (1973). The
states of the target atom are represented as single Slater de-
terminants, built with one-electron orbitals n mψ κ (see Section A.1
in Appendix A) that are solutions of the Dirac equation for a
central potential V(r). This potential is set equal to the self-con-
sistent DHFS potential for the ground-state configuration (see
Section A.2), which gives one-electron energy eigenvalues close to
the experimental binding energies. As mentioned above, the the-
ory assumes that the interaction between the atom and the elec-
tromagnetic field is weak and, therefore, it can be treated as a
perturbation to first order. Consequently, the theory is able to
describe the process in which a single photon of energy W ħω= is
absorbed. Multiple photon absorption which occurs, for instance,
in highly focused laser beams will not be considered.
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Conventional time-dependent perturbation theory (Baym,
1974; Akhiezer and Berestetskii, 1965) leads to results equivalent
to the one-active-electron approximation. That is, in calculations
of the photoeffect we may assume that the active electron jumps
from a bound orbital a n ma a a

ψ ψ= κ of energy aϵ to a final orbital bψ
with energy Wb aϵ ϵ= + . The other (non-active) atomic electrons
are treated as mere spectators; their only effect is to screen the
nuclear charge, which is accounted for by the atomic potential
V(r). The same potential is used to describe both the initial and
final states and, consequently, all the orbitals involved in the cal-
culations are mutually orthogonal. It is worth mentioning here
that independent-electron models are not expected to yield ac-
curate results for excitation to bound levels, because the adopted
excitation energies (determined from energy eigenvalues of Dirac's
one-electron wave equation) may differ largely from their actual
values. Nonetheless, these models provide a fairly accurate de-
scription of photoionization, as well as useful insight into the gross
features of the excitation spectrum of free atoms.

Let us start by considering a beam of photons with energy
W ħω= and wave vector k (k c/ω= ), in a pure polarization state ζ ,
incident on a target atom at the origin of coordinates. The ab-
sorption of a photon causes the transition of the active electron
from the initial orbital aψ with energy 0aϵ < , and ionization en-
ergy Ea aϵ≡ , to an excited orbital with energy Wb aϵ ϵ= + , which
may be either bound (when W Ea< , excitation) or free (if W Ea> ,
ionization). To simplify calculations, we assume that photons
propagate along the direction of the z-axis. This implies that the
polarization vector lies on the x-y plane and, hence, the state ζ can
be represented as (see Appendix B)

cos /2 sin /2 exp i , 11 2( )( ) ( )ζ ϵ ϵα α β= ^ + ^ ( )

where the unit vectors 1ϵ̂ and 2ϵ̂ represent, respectively, states of
linear polarization in the directions of the x and y axes. The cases

0β = , π and /2πβ = ± correspond to linear and circular polar-
izations, respectively. We would like to point out that the spherical
components of the polarization vector [ ξ ζζ = ·ν ν , see Eq. (A.35)] are
such that 00ζ = (transverse field) and 11

2
1
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The formulas (A.40) in Appendix A allow the calculation of the
spherical components of the vector Gexc as sums of products of
radial integrals and matrix elements of Racah tensors [see also
(A.44)].

The delta distribution in Eq. (2) indicates that absorption is
possible only at resonance, i.e., when the excitation energy b aϵ ϵ−
coincides with the energy of the photon. A finite absorption cross
section, which varies continuously with the photon energy, is
obtained when the energy width of atomic levels is taken into
account (see Section 2.5).

In the case of ionization, the final orbital belongs to the con-
tinuum spectrum ( 0bϵ > ). The differential cross section (DCS) for
absorption of a photon, with emission of the active electron with
spin m bS , linear momentum kbħ , and direction of motion within
the solid angle element kd b
^ about the direction kb

^ , is (Pratt et al.,
1973; Scofield, 1973)
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where the transition matrix element
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(−)

is to be evaluated on the energy shell, i.e., with Wb aϵ ϵ= + . The
result (5) is obtained from Fermi's golden rule (see, e.g., Baym,
1974), with the final state of the electron represented by a dis-
torted plane wave (DPW), Eq. (A.15), with incoming spherical dis-
tortion, b mk ,b bS

ψ ψ= (−) , and normalized in the form (A.17), so that the

density of states per unit volume in k spaceb ‐ is unity. Inserting the
expansion (A.15) of the DPW, the matrix element becomes
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where

m mG k r, ; , exp i , 8b b a a m n m
ion

b b b a a a( ) ( )ακ κ ψ ψ= · ( )͠κ κϵ

are matrix elements of the operator k rexp iα ( · )͠ in the basis of
spherical waves, analogous to those of excitation, Eq. (4). The
spherical components of Gion can be calculated by means of for-
mulas (A.44) in Appendix A.
2.1. Cross sections of closed subshells

In practice, target atoms are randomly oriented and the mea-
surable quantity is the cross section for photoabsorption by the
electrons of a subshell na a

qaκ( ) with qa electrons. Calculations are
easier in the case of closed subshells, with q 2a aκ= electrons,
because of various sum rules obeyed by the angular integrals in
transition matrix elements. For open subshells, with q 2a aκ< , the
average over atomic orientations is equivalent to assuming that
the individual orbitals in the subshell have a fractional occupation
number equal to q /2a aκ ; the resulting partial cross section is then

equal to that of the closed subshell times q /2a aκ .
In the case of excitation, the measured cross section includes

transitions to any state of the final energy level bϵ . Generally, the
final level is empty (qb¼0), although occasionally it may corre-
spond to an open subshell nb b

qbκ( ) filled with qb ( q0 2b bκ< < )
electrons. Hence, the cross section for one-electron excitation from
the subshell na a

qaκ( ) to a bound level bϵ by absorption of a photon
of polarization ζ is given by

W
q q

W

W W

2
2

2
,

, 9

ba
a

a

b b

b m m
n m n m

n a b a

exc
;

exc,1

;
exc

a b
b b b a a a

b b

( )σ ( )

( ) ( )

∑ ∑

σ

ζκ
κ

κ σ

δ ϵ ϵ

=
−

= − − ( )

κ κ

κ

where we have introduced the “reduced” cross section, Wba
excσ ( ),

defined by
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is the sum of squared transition-matrix elements over orbitals of
the initial and final energy levels, which is given by Eq. (A.47),
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The quantities n
J
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e,m

b b a aκ κϵ are defined by Eqs. (A.43) with radial

integrals n
J

;
m

b b a aκ κϵ evaluated for the final bound orbital n mb b b
ψ κ .

Note that the reduced cross section (10) is independent of the
polarization of the absorbed photon. Naturally, this result is a di-
rect consequence of the spherical symmetry of closed subshells.

Let us now consider the observed DCS for ionization of a sub-
shell na a

qaκ( ) . In addition to the assumption that the target atom is
randomly oriented, we suppose that the final spin state of the
emitted photoelectron is not measured. The observed DCS is thus
obtained by summing over degenerate initial states and over final
spin states, m bS ,
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Inserting the expansion (7), we have
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where the sum in square brackets is equal to the 2�2 unit matrix.
The total cross section for ionization of the subshell na a

qaκ( ) is
obtained by integrating the DCS over the directions of the emer-
ging photoelectron:
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is the sum of squared transition-matrix elements over the orbitals
of the active subshell and over the spherical waves with the final
energy, which is given by Eq. (A.47),
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with the quantities n
J
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e,m

b b a aκ κϵ defined by Eqs. (A.43). We see that,
as in the case of excitation, the total cross section is independent
of the polarization of the absorbed photon.

2.2. The dipole approximation

The calculation of cross sections for both excitation and ioni-
zation by photons with low energies, such that the wavelength

k2 /πλ = is much larger than the average radial distance of the
electrons in the active subshell, can be simplified by using the
dipole approximation. In this approximation, the quantity k r· is
assumed to be much less than unity, and the exponential in the
matrix elements (4) and (8) is replaced by unity:
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Using the commutation relation of the Dirac Hamiltonian, Eq. (A.1),
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we get the familiar “length” form of the matrix elements in the
dipole approximation:
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Recalling that the spherical components of the vector r are
r r C r1,= (^)ν ν , the angular integrals of these matrix elements reduce
to matrix elements of the Racah tensors. We have
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Within the dipole approximation, the quantities (12) and (18) re-
duce to
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Although the dipole approximation yields realistic values of the
total cross section for long-wavelength photons (see Section 4), the
DCS (i.e., the angular distribution of photoelectrons) obtained from
this approximation is qualitatively correct only for photon energies
near the ionization threshold (see Fig. 5).

2.3. Near-edge excitation cross section

Because of memory and time constraints, our computer pro-
gram PHOTACS calculates reduced excitation cross sections,

Wn a;
exc
b b

( )σ κ , for bound levels with principal quantum number nb up

to n 18cut = . The numerical value of the quantity ,b a
dip( )κ κ , Eq.

(24), qualifies the levels nb bϵ κ . Cross sections of dipole-forbidden
levels [with , 0b a

dip( )κ κ = ] have values that are typically several
orders of magnitude smaller than those of dipole-allowed levels
[with , 0b a

dip( )κ κ ≠ ]. To reduce the size of the tables, and to
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simplify further calculations, PHOTACS delivers cross-section values
only for excitations to dipole-allowed levels. Cross sections for
transitions to dipole-forbidden levels are calculated and added to
the cross section of the nearest dipole-allowed level. In other
words, the reduced cross section Wn a;

exc
b b

( )σ κ given by the program
is the cross section of the allowed level nb bϵ κ plus small con-
tributions of excitations to neighbouring forbidden levels.

For a given value of bκ , there exists an infinite series of bound
levels nb bϵ κ , whose energies increase monotonically with the
principal quantum number nb and have an accumulation point at
zero energy. To account for the cross sections for excitation to
levels with nb larger than 18, we rely on the fact that, regarding the
bound levels with energies close to zero as a quasi-continuum, the
cross section for excitation continuously joins the ionization cross
section at the edge, W Ea= (see, e.g., Watanabe, 1965; Fano and
Cooper, 1968). Explicitly, from the cross sections for excitation to
the levels nb bϵ κ , we define the following step function

S W
W

W; if ,
25

a b
n a

n n
n a n a

;
exc

1
1

b b

b b
b b( ) ( )κ

σ
ϵ ϵ ϵ ϵ ϵ ϵ=

−
− < ≤ −

( )
κ

−
−

where nbϵ are the midpoints of the energy intervals between
successive energy levels:

2
. 26n

n n 1,
b

b b b bϵ ϵ ϵ
=

+
( )

κ κ+

That is, the excitation cross section is spread over the energy in-
terval that is closest to the final level. Numerical results confirm
that the step function S W;a b( )κ does smoothly join the ionization
cross section at the edge (see Fig. 3 below). The smooth matching
of the discrete and the continuum is due to the fact that, for a
given angular momentum bκ and for not too large radii, the radial
functions of bound orbitals with very large nb differ from those of
free orbitals with very small kinetic energies only by a normal-
ization factor. When free-state orbitals are normalized on the
energy scale

rd , 27m m m m∫ ( )ψ ψ δ δ δϵ ϵ= ′ − ( )κ κ κ κϵ ϵ′ ′ ′
†

′ ′

and bound orbitals are normalized to unity, Eq. (A.11), the radial
functions of bound and free states with energies close to zero are
such that

⎛
⎝⎜

⎞
⎠⎟

P r

P r
1

28n n n

2

1

b b

b b b bϵ ϵ
( )
( )

=
− ( )

κ

κ

ϵ

−

for sufficiently small radii r, large nb, and small bϵ . This quantity,
which coincides with the “spread factor” in the definition (25), can
be regarded as the number of discrete levels per unit energy in-
terval, the analogue to the density of states of the continuum.

In calculations of excitation to bound levels each series of
(optically-allowed) levels nb bϵ κ , with bκ fixed, is considered sepa-
rately. Let n b0 κ( ) denote the principal quantum number of the first
level in the series. We describe the first three levels in the series
[with n n n n, 1, 2b b b b0 0 0κ κ κ= ( ) ( ) + ( ) + ] as discrete resonances.
The levels with n n 2b b0 κ> ( ) + are treated as a quasi-continuum,
which extends from a certain cut-off energy Wa

cut
bκ to W Ea= , with

the excitation cross section expressed as a cubic polynomial in
E Wa − :

W A A E W A E W

A E W

;

. 29

a b a a

a

exc
,0 ,1 ,2

2

,3
3

b b b

b

( ) ( ) ( )
( )

σ κ = + − + −

+ − ( )

κ κ κ

κ

The coefficients of this polynomial are determined from a least-
squares fit to a table of values of the step function (25) at the
excitation energies of the levels, S, ;n a b n ab b b b{ ( )}κϵ ϵ ϵ−κ κ with
n n 3b b0 κ= ( ) + to 18. The cut-off energy Wa

cut
bκ is fixed so that the
integral of the analytical approximation (29) over W in the interval
from Wa

cut
bκ to the upper limit of the subinterval of the nb¼18 level

equals the sum of excitation cross sections of the levels nb bϵ κ with
n n 3b b0 κ= ( ) + to 18. We assume that this polynomial represents
the quasi-continuum faithfully and, hence, that it does account for
excitations to levels with nb greater than 18. These considerations
can be verified numerically using our computer programs. A gra-
phical analysis of the case of excitations from the K shell of argon
atoms is given below in Fig. 3.

Note that pseudo-continua of series with different bκ extend
over different intervals. The cross section for excitations to bound
levels is then given by

W W W

W W W E W; ,
30

a
n

n a b a

a b a a

exc
;

exc

exc cut

b b
b b

b
b( )

( ) ( ) ( )

( ) ( )

∑

∑

σ σ δ

σ κ Θ Θ

ϵ ϵ= − −

+ − −
( )

κ
κ

κ
κ

where xΘ ( ) is the unit step function (¼1 if x 0≥ , ¼0 otherwise).
The first summation is over discrete resonances (excitations to the
three lowest levels of each bκ series), and the second summation
accounts for excitations to levels in the pseudo-continua.
2.4. Ionization cross sections at high energies

The convergence rate of the series (16) decreases when the
energy of the photon increases. Therefore, the program PHOTACS is
able to compute the ionization cross section Wa

ion ( )σ for photons
with energy W up to a certain maximum value Wa

cut. Cross sections
for photons with energies higher than Wa

cut can be obtained by
extrapolating the calculated numerical cross sections using the
approximate formula given by Pratt (1960a) (see also Pratt et al.,
1973) for K-shell electrons, which combines Pratt's high-energy
limit with the general energy dependence determined by Gavrila
(1959). The formula for the cross section per electron in the K shell
of an atom of atomic number Z reads

⎡⎣ ⎤⎦

W
W c

a a

a

M a N M R a

/m

exp 2 / arccos

1 / , 31
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( ) ( )

( ) ( ) ( )

( )

( )π

σ σ βγ β

β β β

=
[ − ]

× + + ( )

ξ

where a Zα= [ e c/ 1/1372α ħ= ( ) ≃ is the fine-structure constant],

a1 1 2ξ = − − , β is the velocity of the photoelectron in units of c

W E W E c

W E c

2m

m
,
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γ β≡
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The quantity 0σ is the high-energy cross section per electron, given
by

a a
c

W
2

m
. 340 0

2 5 3 e
2

πσ α= ( )

The functions M ( )β and N ( )β are defined by
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and
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Finally, the quantity R(a) is defined so as to reproduce Pratt's high-
energy limit of the total cross section (per electron) for the pho-
toeffect in the K shell, which is given by Pratt (1960a) and Pratt
et al. (1973).
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Consistency of Eq. (31) with this high-energy limit implies that
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exp 2 cos
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1
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( )ξ
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Values of the function F(a) calculated numerically by Pratt, with an
estimated accuracy of 0.1 %, are given in Table I of Pratt (1960a).
Numerical values of R(a) are also given by Pratt et al. (1973) in their
Table 6.1. Unfortunately, the latter table contains several erroneous
signs. To determine an accurate analytical approximation to R(a),
we have calculated the function F(a) for a dense grid of a values by
computing the double integral (38) using an adaptive Gauss–Le-
gendre quadrature method, which allows control of numerical
errors, to an accuracy of about 10 7− . The calculated table extends
from a¼0.01–0.8, corresponding to Z up to 109, and agrees with
Pratt's values (Pratt, 1960a) within the claimed accuracy of the
latter. A least-squares fit of our tabulated values leads to the ap-
proximation

R a a a a a0.00372 0.16326 0.94375 0.71732 , 402 3 4( ) = − + − ( )

which, when inserted into expression (39), approximates the nu-
merical values of F(a) with relative error less than 0.01%.

As indicated by Pratt et al. (1973) the ratios of cross sections of
different subshells are nearly energy independent. Hence, al-
though the formula (31) was derived for the K shell, it can be
employed to extrapolate the DHFS cross sections of other subshells
for energies above their numerical cut-off Wa

cut. In our calculations
we set

W
W

W
W

41
a

a a

a

ion
ion cut

K
Pratt cut K

Pratt( )
( )( ) ( )σ

σ
σ

σ=
( )

for W Wa
cut> . In practice, this extrapolation scheme works very

well for inner subshells with binding energies larger than about
100 eV, for which the extrapolation matches the numerical cross
sections in a wide energy interval, and not so well for outer shells
with E 100 eVa ≲ because the slopes of the numerical and the
extrapolation curves at W Wa

cut= are slightly different. However,
the relative contributions of the outer subshells are less than about
10 5− and, consequently, the error introduced by the extrapolation
has no practical effects. A similar extrapolation method was
employed by Hubbell et al. (1980), and also by Cullen et al. (1997),
who used a semiempirical formula that reproduces Pratt's high-
energy values for the K shell.

2.5. Finite level widths and experimental ionization energies

Up to this point we have been assuming that excited states are
stationary. This assumption leads to the delusive delta function in
the excitation cross section, Eq. (9). In reality, excited states decay
by radiative and non-radiative transitions and, consequently, have
a finite mean life bτ and a natural level width /b bΓ ħ τ= . Assuming
that excited estates decay exponentially with time, it is concluded
that absorption lines have a Lorentz profile centred at the re-
sonance energy, with full width at half-maximum equal to bΓ (see,
e.g., Sakurai, 1967). Consequently, results from measurements of
the energy E of an excited level bϵ are expected to follow the
Lorentz distribution

L E
E

;
1 /2

/2
.

42
b b

b

b b
2 2( ) ( )

( ) ( )πΓ Γ
Γ

ϵ
ϵ

− =
− + ( )

In addition, the cross section for excitation of an electron from the
level aϵ (corresponding to the ground state) to a level bϵ by ab-
sorption of photons with energy W should be calculated as the
integral over the continuous level profile:

W W E W L E E

W L W

; d

; . 43

ba n a a b b
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b b
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σ σ δ Γ

σ Γ

ϵ ϵ

ϵ ϵ

= − − −

= − − ( )

κ
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∞

This result differs from the expression (9) for stationary levels only
in that the Lorentz distribution replaces the delta resonance.

As noted by Richtmyer et al. (1934), in the case of excitations
that produce a single vacancy in an inner subshell na aκ( ), the first
stage of the subsequent decay of the atom is the filling of that
vacancy by electrons from nearest subshells, a process practically
independent of the condition of the excited electron. Conse-
quently, all excited levels with a vacancy in subshell na aκ( ) have
approximately the same level width, aΓ , the so-called “core-level
width”. Calculated values of core-level widths of free atoms are
given in the EADL (Perkins et al., 1991). Campbell and Papp (2001)
give a complete set of recommended widths for K to N7 levels of
atoms obtained from consideration of available experimental data.
Typically, the core-level widths increase with the binding energy
of the subshell, and are of the order of 0.1 eV or less for weakly
bound subshells, and reach values of the order of 100 eV for K
shells of transuranic elements.

Assuming that the level width is a characteristic of the active
subshell na a

qaκ( ) where the vacancy is created, its influence on the
photoeffect can be accounted for by convolving the calculated
cross section with the Lorentzian distribution (42). That is to say
[cf. Eq. (30)],
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κ
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κ

where again, the first summation is over discrete resonances with
excitation energies less than the corresponding cut-off Wa

cut
bκ . The

integrals of the second term on the right-hand side, with
W;a b

exc ( )σ κ expressed by the polynomial approximation (29), can
be evaluated analytically. The last term can be evaluated similarly
when the ionization cross section Wa

ion ( )σ is obtained from a pre-
calculated table of values, at suitably spaced energies, by means of



Fig. 1. Relative reduction of the subshell cross sections introduced by the nor-
malization screening correction, obtained from electron density ratios resulting
from MCDF and DHFS self-consistent atomic calculations.
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cubic spline interpolation.
There is a further empirical correction to be considered. Al-

though the DHFS eigenvalues, Ea, are quite close to the experi-
mental subshell ionization energies Ea

exp (Salvat and Fernández-
Varea, 2009), the differences induce appreciable shifts of the ab-
sorption edges (typically, of a few eV). We can correct the calcu-
lated cross sections for this discrepancy, by simply shifting the
energy scale and setting

W W E E . 45a a a a
es exp( ) ( )σ σ= + − ( )

The post-processing program PHOTACS-PP (see below) allows this
energy shift to be applied automatically. The default experimental
ionization energies Ea

exp have been taken from the compilation of
Carlson (1975), which covers all the subshells of the elements from
Z¼1–106. Alternatively, the program allows ionization energies to
be used from the more updated compilation by Williams (2011),
which is mostly based on X-ray photoelectron measurements on
samples prepared in ultra-high vacuum conditions.

2.6. Normalization screening approximation

A primary ingredient of the calculations is the DHFS potential,
which provides only a rough approximation to the atomic wave
functions. More elaborate atomic structure calculations employ
the multi-configuration Dirac–Fock (MCDF) method (Desclaux,
1975). Unfortunately, the theoretical scheme underlying this
method does not permit easy calculation of photoelectric cross
sections, because the MCDF equations involve a non-local poten-
tial that is different for each subshell.

A simple method for estimating how the use of more accurate
wave functions would affect the cross section for the photoeffect is
provided by Pratt's normalization screening approximation, which
is presented by Pratt (1960b) and discussed by Schmickley and
Pratt (1967), Pratt and Tseng (1972), and Pratt et al. (1973). The key
idea under this approximation is that, for photon energies a few
keV above the ionization threshold, the dominant contributions to
the transition matrix elements come from radial distances
of the order of the reduced electron Compton wavelength,

c/m 3.8616 10 me e
13ƛ ħ= = × − . In other words, from distances

that are substantially larger than the radius of the nucleus but
much smaller than the average radial distance of electrons in
bound orbitals. At radii important for photoabsorption, the only
effect of screening is a change in the normalization of bound
states. It then follows that the photoelectric cross sections for the
screened atomic potential (scr) and for the Coulomb potential of
the bare nucleus (Coul) differ by an energy-independent factor

W W , 46a a a
scr 2 Coul( ) ( )σ Ξ σ= ( )

where a
2Ξ is the ratio of electron densities at r¼0. This ratio is

determined by the normalization of the bound-state wave func-
tions:
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The accuracy of the normalization screening approximation can be
practically assessed by running our program with the DHFS po-
tential and with the (unscreened) Coulomb potential. It should be
noted, however, that the proportionality (46) only holds when a
point nucleus is considered in the DHFS calculation. Otherwise, the
radial functions for the DHFS potential and for the Coulomb po-
tential have different shapes, a fact that complicates the theore-
tical analysis. Indeed, the approximation is found to work very
well for photons with energies larger than the DHFS ionization
energies. We may expect that it will perform even better for
“similar” screened potentials. Schmickley and Pratt (1967) went a
step further and suggested that the normalization screening ap-
proximation can be effectively employed to relate cross sections
calculated with different atomic models. Scofield (1973), more
explicitly, stated that “the approximation probably holds for an
atom as a whole, if the single-particle model is given up.” Con-
sistently, he calculates cross sections for all the elements with the
DHFS potential and lists the normalization ratios a

2Ξ for orbitals
obtained from the DHFS code and from restricted relativistic
Hartree-Fock calculations for Z¼1–54.

Following Scofield, we have evaluated a
2Ξ for all subshells of

the ground-state configuration of the elements Z¼1–99 using
wave functions obtained from calculations with our DHFS program
and with the MCDF program of Desclaux (1975, 1977). The re-
sulting density ratios for the K shell and the L, M and N subshells
of the elements are represented in Fig. 1. Because density ratios are
less than, and close to unity, the displayed quantity is the differ-
ence 1 /a aMCDF,

2
DHFS,
2Ξ Ξ− . We see that the effect of the normal-

ization screening correction is a reduction of the cross section of
the order of a few percent or less, except for outer subshells with
small binding energies, where it can rise up to about 30 percent.
Furthermore, the correction is larger for the outer subshells and,
consequently, its effect is most visible for photons with relatively
low energies. We can thus apply the normalization screening
correction to the photoionization cross sections obtained from
DHFS calculations

W W ,
48

a
a

a
a

scr MCDF,
2

DHFS,
2

DHFS( ) ( )σ Ξ
Ξ

σ=
( )

to get better estimates of cross sections, whose accuracy is ex-
pected to be comparable to that of the MCDF model.
3. Angular distribution of photoelectrons

Although the polarization of the photon does not affect the
total cross section, it does have an effect on the angular distribu-
tion of photoelectrons which, classically, accelerate in the direction
of the electric field of the incident electromagnetic wave. The DCS
for ionization, Eq. (14), can be expressed as
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where we have introduced the emission amplitude (spinor)
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and [see Eq. (A.44a)]

G m m j j m m J; 1 i , , , , 1

i , 52

b b a a
j m

J

J
a b a b

J J

1
ion

1

;
e

;
m

a a

b b a a b b a a{ }
( ) ∑κ κ = ( − ) − ∓

× ± ( )κ κ κ κϵ ϵ ϵ ϵ

±
−

=

∞

with [see Eqs. (A.43b) and (A.43c)]
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The value of the component G0
ion is irrelevant here because the

polarization vector is on the x-y plane, i.e., 00ζ = .
Evidently, the DCS (49) is more difficult to compute than the total

cross section, Eq. (16), because of the dependence of the emission
amplitude on the magnetic quantum numbers of the initial and final
states. As we will see, the DCS can be effectively computed from Eq.
(49). Of course, the resulting DCS is consistent with the total cross (16),
that is, when the emission amplitude is calculated using the same
number of bκ terms as in expression (16), numerical evaluation of the
integral (15) should yield the same result as Eq. (16).

To obtain a more explicit expansion of the DCS in terms of Le-
gendre functions (similar, e.g., to that derived by Scofield, 1989 for
linearly polarized photons), we introduce the expression (A.6) of the
spherical spinors, and make use of the orthogonality of the unit spi-
nors χμ, to write

⎜ ⎟ ⎜ ⎟

⎡⎣ ⎤⎦

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

W e c
W

k q

G m m G m m

m j m m j m

Y Y

k

k k

d ,

d

2
2

1

i exp i

, ; , , ; ,

, , , , , , , ,

.

1
2

1
2

a

b

b

b

a

a ma

b b

b b
b b

mbmb

b b a a b b a a

b b b b b b b b

b mb b
b mb

b

ion 2 2

, ,

( )
( ) ( )

( ) ∑ ∑

∑ ∑

∑

π
π

ζσ ħ
κ

δ δ

κ κ κ κ

μ μ μ μ

ϵ ζ ζ^ = ( ) ( − ) *

× −

× * ′ ′

× ℓ − ℓ′ ′ − ′ ′

× ^ * ^

κ κ
κ κ

μ μ

νν

ν ν
ν ν

μ

ν ν

′

+ ′
′

′

ℓ′ −ℓ
′

′
− − ′

ℓ − ℓ′ ′ −

Introducing the Clebsch–Gordan series for the spherical harmonics,
and after rather lengthy transformations using conventional angular
momentum recoupling algebra (Rose, 1995; Edmonds, 1960; Var-
shalovich et al., 1988), the DCS can be written in the form (cf. Scofield,
1989)
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where :::( ) and :::{ } are, respectively, Wigner's 3j and 6j symbols
(Rose, 1995; Edmonds, 1960; Varshalovich et al., 1988). A convenient
simplification is obtained by using the formula
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From the symmetry properties of the 3j and 6j symbols, it follows that
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In addition, because of the parity factor in the reduced matrix element
of the Racah tensor, Eq. (A.29), the vector coupling coefficients in (57)
have reinforced symmetries which imply that

A A A Aand . 591, 1 1, 1 1, 1 1, 1= = ( )+ +
ℓ

− −
ℓ

+ −
ℓ

− +
ℓ

The right-hand side of Eq. (54) can be reduced further by ex-
pressing the spherical harmonics in terms of Legendre functions
(Edmonds, 1960; Varshalovich et al., 1988). We have



Fig. 2. Cross section for ionization of the K shell of argon atoms by absorption of
photons, as a function of the photon energy W. The solid curve, which extends from
threshold up to about 2 MeV, is the numerical result calculated from expression
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are associated Legendre functions of order 2. Finally, the DCS (54)
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where the coefficients Aℓ and Bℓ are real. It is worth noticing that
the DCS is invariant under inversion of the polarization vector

(ζ ζ^ → − ^
). Evidently, expressions of the coefficients Aℓ and Bℓ are

quite involved and hard to compute because of the abundance of
vector coupling coefficients. In practice, it is more efficient to
calculate the DCS from the less elaborate formula (49) and the
expansion (50) of the emission amplitude.

For linear polarization along the x axis, xζ̂ = ^ ( 1/ 21ζ = −+ ,

1/ 21ζ =− ), the DCS takes the form obtained by Scofield (1989):
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In the case of circular polarization, which corresponds to 1ζ ξ= − +

( 11ζ = −+ , 01ζ =− , right handed) or 1ζ ξ= − ( 01ζ =+ , 11ζ =− , left
handed), Eq. (61) becomes
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As expected, in this case the angular distribution of photoelectrons
is axially symmetrical, i.e., independent of the azimuthal angle ϕ
of the direction kb

^ . We also note that the DCSs for right- and left-
handed circular polarizations are identical, and equal to the DCS
for unpolarized photons (see Section 3.1).

Sauter (1931) derived an analytical expression of the DCS for io-
nization of the K shell of atoms by photons linearly polarized along
the x-axis from the Born approximation, i.e., from the above for-
mulation with hydrogenic initial orbital and the photoelectron dis-
torted plane waves replaced by Dirac plane waves. The normalized
probability distribution function of the photoelectron direction ob-
tained by Sauter reads (Sauter, 1931; Bethe and Salpeter, 1957)
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where β and γ are defined by Eqs. (32) and (33), respectively. The
angular distribution for unpolarized photons is obtained by aver-
aging over polarization directions (or, equivalently, over the azi-
muthal angle ϕ), which gives
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Sauter's distribution is used in the majority of high-energy Monte
Carlo radiation codes. It gives fairly realistic results for the K shell of
elements with small and moderate atomic numbers, say up to
Z 30∼ . However, the corresponding total cross section is less accu-
rate than Pratt's high-energy formula (31).

3.1. Partially polarized photons

Pure polarization states can be described by the Poincaré vec-
tor, P P PP , ,1 2 3= ( ), whose components are the Stokes parameters
(see Appendix B). The Poincaré vector of pure states has unit
length and can be expressed in polar form [see Eq. (B.8)]

P sin cos , sin sin , cos . 66( )α β α β α= ( )

The corresponding polarization vector is [see Eq. (B.10)]

P cos /2 sin /2 exp i , 671 2( )( ) ( ) ( )ζ ϵ ϵα α β= ^ + ^ ( )

with spherical components [ ξ ζζ = ·ν ν , see Eqs. (A.35) and (A.33)]
(16). The dashed curve (red online) is the prediction of the extrapolation formula
(41). The dotted curve (blue online) was obtained from the dipole approximation.
Diamonds represent data from the EPDL (Cullen et al., 1997).
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Consequently, the DCS (61) can be written as
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Let us now consider the angular distribution of photoelectrons
for photons with arbitrary polarization represented by the Poin-
caré vector, P P PP , ,1 2 3( )= . The polarization density matrix can be
expressed as [see Eq. (B.15)]
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P P P/i i′ = . The latter quantities are the Stokes parameters of a pure
state with polarization vector
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Eq. (71) means that the photon beam can be regarded as the in-
coherent superposition of two partial beams: an unpolarized beam
with relative intensity P1( )− , and a fully polarized beam with
Fig. 3. Left: cross section for absorption in the K shell of argon atoms as a function of th
the left panel is the cross section given by PHOTACS-PP, including contributions from excita
the energies and relative contributions (not to scale) of the lowest excited levels, which ar
polynomial approximation (29) (solid curve, red online) to the excitation quasi-continuum
of the references to colour in this figure caption, the reader is referred to the web vers
Poincaré vector PP P/′ = and relative intensity equal to the degree
of polarization. On the other hand, the unpolarized beam is
equivalent to the superposition of two polarized beams with op-
posing polarizations, P′ and P− ′, and equal intensities. This implies
that the DCS for photons with polarization P can be calculated as a
weighted average of the DCSs for photons with pure polarizations
P′ and P− ′,
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is the polarization vector corresponding to the Poincaré vector P− ′
[see Eq. (B.10)]. The DCS (74) can be expressed as a Legendre series
in terms of the Stokes parameters:
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4. Numerical calculation of cross sections

Our Fortran program PHOTACS calculates cross sections for ioni-
zation and excitation of subshells of free atoms and ions using the
theory presented above (Section 2). The structure and numerical
e photon energy W in a narrow interval around the edge energy. The solid curve in
tions to bound levels and accounting for the finite level width. Diamonds represent
e treated as discrete resonances. Right: Magnified view of the step function (25), the
, and a part of the photoionization cross section (dashed curve). (For interpretation

ion of this paper.)



Fig. 4. Cross sections for photoabsorption (excitation and ionization) in the sub-
shells of argon atoms as functions of the photon energy W (thin solid curves),
calculated by PHOTACS-PP using experimental level widths. The thick solid curve (red
online) represents the total atomic cross section. Dashed curves (blue online) are
cross sections obtained from the dipole approximation. (For interpretation of the
references to colour in this figure caption, the reader is referred to the web version
of this paper.)

Fig. 5. Differential cross sections for ionization of the K shell of argon atoms by
unpolarized photons of the indicated energies. Solid curves represent partial-wave
numerical results. Dashed curves (blue online) are results from the dipole ap-
proximation. Dot-dashed curves (red online) correspond to the Sauter distribution,
Eq. (65), multiplied by the numerical total cross section calculated from Eq. (16).
(For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)
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algorithms adopted in the program are similar to those employed
in the programs developed by Bote and Salvat (2008) and Salvat
and Bote (2011) to compute cross sections for inelastic collisions of
charged particles with atoms. PHOTACS calculates the radial func-
tions of initial and final electron states by means of an updated
version of the subroutine package RADIAL (Salvat et al., 1995), which
allows strict control of numerical round-off errors. The RADIAL

subroutines are also used in the self-consistent calculation of the
DHFS potential. Vector-coupling coefficients and reduced matrix
elements of the Racah tensors are calculated from their analytical
formulas (Rose, 1995; Varshalovich et al., 1988) using a subroutine
package that performs arithmetic operations at a high level of
precision, well beyond Fortran double precision, by working in
radix (base) 1000.

The program reads the potential V(r) felt by the active electron
from an input file; the information to be provided in that file is a
table of values of the function rV(r), for a dense enough grid of
radii to allow accurate interpolation by natural cubic splines. The
function rV(r) is required to be finite for all r, but is otherwise
arbitrary. Optionally, the program also allows the unscreened
Coulomb potential of the bare point nucleus to be used. As in-
dicated above, in the calculations we normally use the DHFS po-
tential described in Section A.2. For the evaluation of the integrals
(A.42), the radial functions are calculated for a non-uniform radial
grid, with 16 points in a wavelength, from which the integrals are
evaluated using the 6-point Lagrange quadrature formula. The
stability of the calculations was verified by using denser radial grid
with 25 points/wavelength; cross sections computed with the two
radial grids differ by less that 10 6− .

The reduced cross section for excitation, Wba
exc ( )σ , is computed

according to Eq. (10). The difficulty of the calculation increases
with the principal quantum number nb of the final level because
the radial functions of the final state extend to larger radii. We
only need values of the radial functions of the final level for
computing the radial integrals (A.42) for the relatively small radii
at which the radial functions of the initial state take appreciable
values. However, the radial equations of the final state still need to
be integrated up to large radii to determine the energy and nor-
malization of the state. As indicated in Section 2.3, the program
effectively computes the reduced cross sections for excitations to
discrete levels with n 18b ≤ .

The calculation of ionization cross section Wa
ion ( )σ , Eq. (16), is

performed by adding the grouped contributions from b bκ κ= ±
in increasing order of bκ . The summation is discontinued at the
first term which becomes less than 10 6− times the accumulated
sum. Our program allows values of bκ to be considered up to

200∼ . The number of terms Nκ| | needed to get convergence of the
series (16) increases with the energy of the photon, and it is fairly
independent of atomic number of the target atom and the con-
sidered subshell. Typical values of Nκ| | are about 5, 7, 10, 15, 35, and
150 for photons with energies of 100 eV, 1 keV, 10 keV, 100 keV,
1 MeV, and 10 MeV, respectively. An analysis of the variation of the
calculated ,b a

ion κ κ( ) values with bκ indicates that the relative
numerical errors of the computed ionization cross sections are
usually less than about 10 5− .

The ionization cross section Wa
ion ( )σ can be calculated for

photon energies W from threshold (W Ea= ) up to a cut-off energy
Wa

cut for which the spacing of the radial grid where wave functions
are tabulated is insufficient to reproduce the fast oscillations of the
integrands in Eqs. (A.42). Typically, the cut-off energy is larger
than about E500 a, where Ea aϵ= − is the ionization energy of the
active shell. It is worth mentioning that, despite our superior
computer power, PHOTACS does not allowmuch higher energies than
Scofield's calculations to be reached.

The computer program generates a table of Wa
ion ( )σ for a grid

of energies extending from threshold up to the cut-off energy. This
table contains a nearly logarithmic grid, with 15 points per decade,
plus a number of additional energies that are set by means of a
self-adaptive method. The resulting energy grid is such that linear
log–log interpolation errors are kept below some prescribed limit,
which in the program was set equal to 0.05 %. For elements with
atomic numbers near 19, 37, 55, and 87 (i.e., near the alkalies), this
procedure reveals near-edge structures that were partially over-
looked in Scofield's tables. Otherwise, our results agree closely
with those of Scofield, typically to within about 0.05 %, the dif-
ferences being mostly attributable to the different numerical
methods employed to solve the radial Dirac equations.

Fig. 2 displays the cross section for photoionization (W Ea> ) of
the K shell of argon atoms as a function of the photon energy. The
solid line represents results calculated from the general formula
(16), and extends over the energy interval where calculations with
PHOTACS are feasible, i.e., from the ionization threshold up to Wa

cut,
which in the present case is 2 MeV. For comparison purposes, we



Fig. 6. DCSs for ionization of the K shell of Ar atoms by absorption of 50 keV photons, in barn ( 10 24= − cm2), as functions of the polar angle θ and the azimuthal angle ϕ of the
direction of the emitted photoelectron, both in degrees. The plots correspond to photons linearly polarized along the x-axis [ P 0, 0, 1= ( ), top], along the y-axis
[P 0, 0, 1= ( − ), middle], and along the direction x y / 2ζ̂ = (^ + ^) , at 45° from the x-axis [P 1, 0, 0= ( ), bottom].
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have included cross-section data from the EPDL (Cullen et al.,
1997), which were calculated by Scofield using the DHFS potential.
The close agreement between our results and those of Scofield,
which were generated using different computer codes, provides a
clear indication of the accuracy of the numerical algorithms. No-
tice that the extrapolation formula (41) agrees well with the nu-
merical results in a wide interval, differences are less than 2%
down to about 200 keV.

Because excitation to bound levels is limited to a narrow energy
interval, it is neglected in most of the existing databases and
Monte Carlo simulation codes. Furthermore, the finite width of
atomic levels is usually disregarded. These two effects become
significant for describing the penetration and dosimetry of photon
beams with energies near absorption edges. A situation where
these effects are observed is in experimental measurements of the
photon mass energy-absorption coefficient of air (Büermann et al.,
2006). The values of the coefficient predicted by Monte Carlo
codes, although in fairly good agreement with experiment, fail to
reproduce the structure displayed by the measured coefficient
near the energy of the K absorption edge of argon.

The contribution from excitation to bound levels (Section 2.3),
the effect of the atomic-level width (Section 2.5), and the nor-
malization screening correction (Section 2.6) are accounted for by
a post-processing program, named PHOTACS-PP, which reads the ta-
bles of numerical cross sections generated by PHOTACS. This program
determines the polynomial approximation (29) for the excitation
pseudo-continua, extrapolates the ionization cross section to high
energies using the formula (41), and performs a convolution with
the Lorentzian profile (42) [see Eq. (44)]. The result from PHOTACS-PP
is a realistic photoelectric cross section, which varies continuously
with energy and exhibits excitation structures that are in quali-
tative agreement with measurements in gases. Fig. 3 displays this
cross section for absorption in the K shell of argon atoms of pho-
tons with energies near the edge (using the original DHFS energies
calculated by PHOTACS). The right panel is a magnified view of the
step function (25) which describes the contribution of excitations
to bound levels with n 18b ≤ , and the polynomial approximation
(29) to the quasi-continuum. Notice that, as we have already
mentioned, the excitation and ionization cross sections match at
the edge. Fig. 4 shows calculated cross sections for the subshells of
argon and their sum, the atomic cross section. Interestingly, the
dipole approximation is seen to predict subshell cross sections
quite accurately for photon energies up to about 10 keV.

Optionally, the program PHOTACS can calculate the DCS for ioni-
zation, i.e., the photoelectron angular distribution, for a photon
beam with energy W and polarization defined by the Stokes
parameters P [see Eq. (74)]. The calculation starts by computing
the ionization cross section Wa

ionσ ( ), Eq. (15), as described above.
The quantities Je,m

;b b a aκ κϵ ϵ [see Eqs. (53)] computed at this stage
are stored in memory. The DCSs for pure polarization states can be
calculated either from Eq. (49), which involves a minimum of
angular momentum algebra, or from the more elaborate expres-
sion (61), which requires lengthier preliminary calculations. The

DCS is calculated and tabulated for a dense grid of directions kb
^ of

the photoelectron, defined by the polar and azimuthal angles, θ
and ϕ, respectively. The DCSs obtained from the two schemes [i.e.,
from Eqs. (49) and (61)] are identical because we are using exact
(double precision) values of vector coupling coefficients. The
amount of work needed to sum the series (57) increases quickly
with photon energy. Consequently, for photon energies well above
the absorption edge, the calculation from Eq. (49) is much faster
than from Eq. (61). The accuracy of the results can be verified by
comparing the cross section Wa

ionσ ( ) calculated previously with
the value obtained by numerical integration of the DCS table for
non-polarized photons. The numerical values resulting from the
two calculations normally agree to more than 5 digits.
Fig. 5 shows calculated DCS for ionization of the K shell of ar-

gon by unpolarized (or circularly polarized) photons. For compar-
ison purposes, we have also included results from the dipole ap-
proximation, i.e., DCS calculated from the emission amplitude (50)
with the G± coefficients given by Eq. (22). It is seen that the dipole
approximation works much better for the total cross section than
for the DCS. The dipole DCS agrees reasonably with the partial-
wave results only for energies near the ionization threshold; it fails
to describe the progressive decrease of the most probable emis-
sion angle when the photon energy increases. Interestingly, the
Sauter distribution, Eq. (65), renormalized to reproduce the cal-
culated cross section, provides quite an accurate description of the
angular distribution for all energies because the example falls
within the domain of applicability of Sauter's theory (K shell,
moderate atomic number). For other subshells and for heavier
elements the approximation is much less satisfactory.

Fig. 6 displays DCSs of the K shell of argon for 50 keV photons
with linear polarizations along the x and y axes. The sum of these
two distributions, with weights equal to 1

2
, is the DCS for an un-

polarized photon beam [see Eq. (74)], the numerical results agree
with those obtained for a circularly polarized beam, which are
independent of the azimuthal angle ϕ [cf. Eq. (63)], to more than
5 digits. The DCS for linear polarization at 45° from the x-axis,
which corresponds to the Poincaré vector P 1, 0, 0= ( ), is also
displayed. Evidently, the maxima in the DCS are at directions with
the azimuthal angle coinciding with that of the electric field; the
polar angle of the maxima is close to 90° at small energies and
decreases when the photon energy increases (Fig. 5) because
photoelectrons do absorb part of the linear momentum of the
photon.
5. Concluding comments

We have presented a detailed formulation of the theory of the
photoeffect, within the one-active-electron approximation, in a
form that is suitable for implementation in a computer program,
complemented with extrapolation schemes to cover the full en-
ergy range of interest. Because of the robustness of the numerical
methods (exact vector-coupling coefficients, highly accurate and
densely tabulated radial functions), the program PHOTACS provides
reliable results for any atomic (or ionic) target and for any photon
energy below the practical cut-offs. It allows generating cross
section tables of subshell cross sections for the elements with
unprecedented detail, including excitation to bound levels and
angular distributions of photoelectrons for arbitrary photon po-
larizations. Although in the present calculations we have adopted
the DHFS self-consistent potential, the program can also work
with other screened potential models, e.g., to study the influence
of the electron vacancy left after photoabsorption.

The post-processing program PHOTACS-PP uses elaborate extra-
polation models to determine subshell cross sections for highly-
excited discrete levels and for photons with energies above the
calculation cut-offs. It can also account for the effect of the finite
width of atomic levels, which yields the cross section as a con-
tinuous function of the photon energy.

These programs have been used to generate a complete data-
base of photoionization cross sections for the inner subshells (up
to the N7 subshell) of the ground state configurations of the ele-
ments Z¼1–99, for photon energies from the ionization threshold
up to 1 GeV. The provided cross-section tables were built from the
numerical cross sections calculated by PHOTACS (with the DHFS po-
tential), which were extrapolated to energies higher than the
calculation cut-off by means of Pratt's extrapolation formula,



L. Sabbatucci, F. Salvat / Radiation Physics and Chemistry 121 (2016) 122–140 135
shifted in energy to have the absorption edges coinciding with the
experimental subshell ionization energies given by Carlson (1975),
and renormalized using MCDF/DHFS density ratios. This database,
which has already been adopted in the Monte Carlo code PENELOPE

(Salvat, 2015), is available under request.
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Appendix A. Wave functions and matrix elements

We describe here various notations and mathematical formulas
used in the present calculations of the photoeffect. These calcu-
lations are based on a model of independent electrons in a central
potential. In other words, states of the target atom are represented
as single Slater determinants, built with orbitals that are eigen-
functions of the one-electron Dirac Hamiltonian for a central po-
tential V(r) (Rose, 1961)

c c V rp m , A.1e
2α β= · + + ( ) ( )͠͠

where p iħ= − ∇ is the momentum operator, and α͠ , β∼ are the
Dirac 4�4 matrices in the spinor representation:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

I
I

0
0

,
0

0
.

A.2
2

2
α σ

σ β= =
− ( )

͠͠

The 2�2 matrices σ are the Pauli matrices:

⎛
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⎞
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⎞
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⎛
⎝⎜

⎞
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0 1
1 0

, 0 i
i 0

, 1 0
0 1

.
A.3

1 2 3σ σ σ= = − =
− ( )

A.1. Electron wave functions

The spherical orbitals are simultaneous eigenfunctions of the
Dirac Hamiltonian and the total angular momentum J L S= + ,
where L ri= − × ∇ is the orbital angular momentum and S is the
spin angular momentum (all angular momenta in units of ħ).
These eigenfunctions are the so-called spherical waves, and have
the form (Rose, 1961; Grant, 1965)

⎛

⎝
⎜⎜⎜
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( )
( )

ψ
Ω

Ω
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( ) ^

( ) ^
( )

κ
κ κ

κ κ
ϵ

ϵ

ϵ −

where rm,Ω (^)κ are spherical spinors, and P r( )κϵ and Q r( )κϵ are the
large- and small-component radial functions, respectively, which
satisfy the coupled differential equations

P
r r

P
V c

c
Q

Q
r

V
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r

Q

d
d

2m
,

d
d

. A.5

e
2κ

ħ

ħ
κ

ϵ

ϵ

= − + − +

= − − + ( )

κ
κ κ

κ
κ κ

ϵ
ϵ ϵ

ϵ
ϵ ϵ

where ϵ is the electron energy, exclusive of its rest energy. The
spherical spinors are eigenfunctions of the total angular
momentum of Pauli's theory, i.e., simultaneous eigenfunctions of
the operators L2, SP

2, JP
2 and J zP with eigenvalues 1ℓ(ℓ + ), 3/4,

j j 1( + ) and m, respectively. Here SP
1
2
σ= denotes the two-di-

mensional Pauli spin operator and J L SP P= + . We have (Rose,
1995; Varshalovich et al., 1988)

m j m Y

r r

r, , , , .
A.6

1
2

m j m
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1/2
,

( ) ( )
( )∑

Ω Ω

μ μ χ

^ ≡ ^

= ℓ − ^
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κ

μ
μ μ

ℓ

=±
ℓ −

The quantities j j m m j m,1 2 1 2 are Clebsch–Gordan coefficients,

Y rm (^)ℓ are spherical harmonics, and χμ are the Pauli unit spinors,

i.e., the eigenstates of SP
2 and SP3 with eigenvalues 3/4 and

1
2

μ = ± , respectively. More explicitly,
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To simplify notation, it is customary to use the relativistic angular
momentum quantum number

j j2 1 , A.8( )( )κ = ℓ − + ( )

which specifies both the total angular momentum, j, and the
parity, 1( − )ℓ of the Dirac spherical wave:

⎧⎨⎩
⎫⎬⎭j j

1
2

,
2

if 0
1 if 0

.
A.9

κ κ
κ

κ κ
κ κ
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It is also convenient to consider the quantum number

⎧⎨⎩
⎫⎬⎭

if 0
1 if 0

,
A.10

κ κ
κ κ

κ
κℓ ≡ − <

− >
= ℓ −

( )

which is the value of ℓ corresponding to κ− .
In the case of bound orbitals ( 0ϵ < ), each discrete energy level

is characterized by the principal quantum number n and the re-
lativistic quantum number κ . Bound orbitals calculated by the
RADIAL subroutines are normalized to unity and, consequently, sa-
tisfy the orthonormality relation:

r r rd . A.11n m n m n n m m∫ ψ ψ δ δ δ( ) ( ) = ( )κ κ κ κ′ ′ ′
†

′ ′ ′

Free spherical waves (with 0ϵ > ) are normalized in such a way
that the large-component radial function asymptotically oscillates
with unit amplitude

⎜ ⎟⎛
⎝

⎞
⎠P r kr krsin

2
ln 2 ,

A.12r

π η δ( ) ∼ − ℓ − +
( )κϵ κ→∞

where

k c c2m A.13
1

e
2( )ħ ϵ ϵ= ( ) + ( )−

is the wave number, rV r klim m /r e
2η ħ= [ ( )] ( )→∞ is the Sommerfeld

parameter, and δκ is the phase shift. Free spherical waves nor-
malized in the form (A.12) satisfy the orthogonality relation

k
r r rd . A.14m m m m∫ ( )πψ ψ δ δ δϵ ϵ ϵ( ) ( ) = ′ − ( )κ κ κ κϵ ϵ′ ′ ′

†
′ ′

The state of a free electron with definite spin projection can be
represented as a distorted plane wave (DPW), i.e., a solution of the
Dirac equation that asymptotically behaves as a plane wave plus
an outgoing (þ) or incoming (� ) spherical wave. A DPW is char-
acterized by the wave vector k of the asymptotic plane wave and
the spin projection μ; it can be expanded in the basis of spherical
waves as (see, e.g., Rose, 1961; Pratt et al., 1973; Akhiezer and
Berestetskii, 1965)
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where

c k c cm m A.16
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e
2 2

e
2( )ħϵ = ( ) + − ( )

is the kinetic energy of the particle. The expansion (A.15) is known
as the partial-wave series. It can be easily verified that, with the
adopted normalization for free spherical waves, DPWs satisfy the
orthogonality relation

⎡⎣ ⎤⎦r r r k kd . A.17k k∫ ( )ψ ψ δ δ( ) ( ) = ′ − ( )μ μ μ μ′ ′
(±) † (±)

′

A.2. The DHFS potential

The DHFS potential of an atom or ion of atomic number Z with
N bound electrons is determined by the ground-state electron
density, rρ ( ), which is obtained self-consistently (see, e.g., Liber-
man et al., 1965, 1971). It is given by

V r V r V r V r . A.18DHFS nuc el ex( ) = ( ) + ( ) + ( ) ( )

The term V rnuc ( ) is the nuclear potential (i.e., the electrostatic in-
teraction energy of an electron at r with the nucleus, which is
assumed to be spherical). For a point nucleus,

V r Ze r/ . A.19nuc
2( ) = − ( )

The effect of the finite size of the nucleus can be accounted for by
using simple models for the nuclear charge distribution. A con-
venient parameterization of the proton density is provided by the
Fermi distribution (Hahn et al., 1956)
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ρ
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with

R A z1.07 fm, and 0.546 fm, A.21n
1/3= = ( )

where A is the mass number, which is usually replaced by the
atomic weight (mean relative atomic mass) of the element. The
constant 0ρ , which equals twice the proton density at r Rn= , is to
be determined by normalization. The nuclear potential for the
Fermi distribution has to be calculated numerically:
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The second term in expression (A.18) is the electronic potential
(i.e., the interaction energy of an electron at r with the atomic
electron cloud)
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and the last term is the local approximation to the exchange po-
tential. We use the Slater–Latter potential given by
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3/ . A.25ex
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is the exchange potential derived by Slater (1951), and the cut-off
radius rLatter is the outer root of the equation:

⎡⎣ ⎤⎦r V r V r V r Z N e1 . A.26nuc el ex
Slater 2( )α( ) + ( ) + ( ) = − − + ( )

The modification (A.24) of Slater's potential for r rLatter> , which
ensures the correct behaviour of V(r) at large radii, is known as
Latter's tail correction (Latter, 1955).
A.3. Matrix elements of Racah tensors

The calculation of the matrix elements (3) and (7) is performed
by expanding the plane wave in terms of the Racah functions

C
L

Yr r
4

2 1
,

A.27LM LM( ) ( )π^ ≡
+

^
( )

to allow analytical evaluation of the spin and angular parts. We
recall that the L2 1+ functions C rLM (^) constitute an irreducible
tensor of rank L, C L( ). By virtue of the Wigner–Eckart theorem (see,
e.g., Edmonds, 1960), the matrix elements of Racah tensors for
eigenstates mΩκ of the total angular momentum J L SP= + of a
spin 1

2
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pression (see, e.g., Grant, 1961)
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accounts for the parity selection rule.
Matrix elements of spin operators can be evaluated by using

the identity

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭ A.31

J
J

C

J
J J

C

J
J

C

r r

Y r

Y r

Y r

1
4

1

2 1
4 1

1
4 1

1 ,

m m

J M

M
m JM m J M

J

m JM m J M
J

m JM m J M
J

1 1 2 2

,

1 2
1, 1 2, 2 ,

1

1 2 1, 1 2, 2 ,

1 2
1, 1 2, 2 ,

1

( ) ( )
( )

( )

( )
( ) ( )

∑

σΩ Ω

π

π

π

κ κ Ω Ω

κ κ Ω Ω

κ κ Ω Ω
( )

^ ^

= ( − ) + − ^

+ +
+

− ^

+ + +
+

+ ^

κ κ

κ κ

κ κ

κ κ

†

− −
−

−

− −
+

where the functions Y rJM
L ( )^ are the vector spherical harmonics,

defined by (see, e.g., Varshalovich et al., 1988; Akhiezer and Be-
restetskii, 1965)
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where ξν are the spherical unit vectors:
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Calculations are easier when vectors G are expressed in the
spherical basis

GG 1 ,
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ν
ν ν−

where

G G A.35ξ= · ( )ν ν

are the spherical components, which constitute an irreducible
tensor operator (Rose, 1995; Edmonds, 1960). The dot product of
two vectors, ζ and G, is given by

G GG 1 ,
A.36
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where G,i iζ and G,ζν ν are, respectively, the Cartesian and spherical
components of the vectors.

A.4. One-electron transition-matrix elements

The matrix elements (3) and (7) are of the type

M G G k rwith exp i , A.37ba m mb b b a a a( )ζ αψ ψ= · = · ( )͠κ κϵ ϵ

where, in general, the polarization vector ζ may be complex. To
calculate the spherical components of G, Eq. (A.35), we introduce
the Rayleigh expansion of the plane wave
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where j krJ ( ) are spherical Bessel functions. The formulas become
simpler if we consider a reference frame with the z-axis parallel to the

direction k̂ of the photon. In such a frame, C kJM M0( ) δ* ^ = , and we can

write
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The matrix elements in this expression can be evaluated on the basis
of Eq. (A.31), by a method similar to the one adopted by Mann and
Johnson (1971) for a related problem. After a rather tedious calculation
we find the following expressions for the spherical components of G
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with the radial integrals
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A.41b
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1
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;
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=
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and

F G , A.41c
J

a b
J Jm

; ; ;b b a a b b a a b b a a( )κ κ= ( + ) + ( )κ κ κ κ κ κϵ ϵ ϵ ϵ ϵ ϵ

where

F P r Q r j kr rd , A.42a
J

J;
0b b a a b b a a∫ ( )≡ ( ) ( ) ( )κ κ κ κϵ ϵ ϵ ϵ

∞

G Q r P r j kr rd . A.42b
J

J;
0b b a a b b a a∫ ( )≡ ( ) ( ) ( )κ κ κ κϵ ϵ ϵ ϵ

∞

The superscripts “l”, “e” and “m” in the integrals (A.41) stand for
“longitudinal”, “electric” and “magnetic”, respectively, because these
radial integrals also arise in an alternative treatment based on the
multipole expansion of the radiation field (see, e.g., Scofield, 1975,
1978).

We recall that the matrix elements Cm J m, , ,b b a aΩ Ωκ κν vanish
unless m mb a ν= + . Moreover, at least one of the elements

Cm J m, , ,b b a aΩ Ωκ κν and Cm J m, , ,b b a aΩ Ωκ κν − vanishes because the
values of aℓ for aκ and aκ− differ by one unit and, therefore, the
parity factor J, ,b aυ ( ℓ ℓ ) is null for one of these matrix elements.
Hence, the two terms in curly braces on the right-hand side of Eqs.
(A.40a) and (A.40b) cannot be both different from zero.

More compact formulas are obtained by introducing the
quantities

J j jC2 1 ,
A.43a

1
2

1
2

J
b b

L
a a

J
;

l
;

l
b b a a b b a a≡ + ℓ ℓ ( )κ κ κ κϵ ϵ ϵ ϵ

( )

J
J J

j jC
2 1

2 1
,

A.43b
1
2

1
2

J
b b

L
a a

J
;

e
;

e
b b a a b b a a( )≡ +

+
ℓ ℓ

( )
κ κ κ κϵ ϵ ϵ ϵ

( )

J
J J

j jC
2 1

2 1
,

A.43c
1
2

1
2

J
b b

L
a a

J
;

m
;

m
b b a a b b a a( )≡ +

+
ℓ ℓ

( )
κ κ κ κϵ ϵ ϵ ϵ

( )

where aℓ is the orbital angular momentum quantum number
corresponding to aκ− . Considering the symmetry properties of
Clebsch–Gordan coefficients we can write

G j j m m J1 i , , , , 1

i A.44a

j m

J

J
a b a b

J J

1
1

;
e

;
m

a a

b b a a b b a a{ }
∑= ( − ) − ∓

× ± ( )κ κ κ κϵ ϵ ϵ ϵ

±
−

=
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and

G j j m m J1 i , , , , 0 .
A.44b

j m

J

J
a b a b

J
0

0
;

la a
b b a a∑= ( − ) −

( )
κ κϵ ϵ

−

=

∞

The cross section for photoabsorption by the electrons in a
closed subshell na a

2 aκ( ) κ| | is proportional to the sum of squared
transition-matrix elements over magnetic quantum numbers, Eqs.
(10) and (17),

M G G1 .
A.45

ba
m m

ba
m m,

2

, ,a b a b

∑ ∑ ∑ζ ζ≡ = ( − ) * *
( )ν ν

ν ν
ν ν ν ν

′

+ ′
− − ′ ′

Since the photon polarization vector ζ is perpendicular to the
wave vector kk z= ^ and normalized to unity, we have 00ζ = and

11
2

1
2ζ ζ+ =− + . We note that the only dependence on the quan-

tum numbers ma and mb is through the Clebsch–Gordan coeffi-
cients j j m m J, , , ,a b a b ν− . The summation over these quantum
numbers is performed easily by using the orthogonality property
of these coefficients. We thus obtain,

G G 0,
A.46am m,

1 1
a b

∑ * =
( )

± ∓

and
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⎨
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G G ,
A.46bm m J

J J
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1
;

e 2
;

m 2

a b
b b a a b b a a∑ ∑* = +

( )
κ κ κ κϵ ϵ ϵ ϵ± ±

=

∞

Therefore, the quantity (A.45) is given by

⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎫
⎬
⎭

.
A.47

ba
J

J J
;

e 2
;

m 2

b b a a b b a a∑= +
( )

κ κ κ κϵ ϵ ϵ ϵ

Appendix B. Photon polarization

The polarization of photon beams that propagate in the direc-

tion of the z-axis can be described in terms of the basis ,1 2{ }ϵ ϵ^ ^

of linear polarization states along the x and y axes. Pure polar-
ization states can be expressed in the form

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

cos /2 sin /2 exp i

cos /2

sin /2 exp i

0 B.1

1 2( )

( )

( ) ( )
( )

( )

ζ ϵ ϵα α β

α
α β

= ^ + ^

=

( )

with 0, πα ∈ [ ] and ,π πβ ∈ ( − ]. There is a one-to-one corre-
spondence between polarization states ζ and polarization vectors

of electromagnetic waves, 1 1 2 2ζ ϵ ϵζ ζ= ^ + ^ . The electric field of the
polarized wave is given by

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

t

t

r

k r

, Re cos /2 sin /2 exp i

exp i . B.2

1 2{
}

( )( ) ( ) ( )
( )

ϵ ϵα α β

ω χ

= ^ + ^

× · − + ( )

In the following, we simplify the notation by writing ζ and iϵ̂ instead

of ζ and iϵ̂ , i.e., we use the same symbol to designate the quantum

polarization states and the unit polarization vectors. States with
0β = correspond to linear polarization in a direction that makes an

angle /2α with 1ϵ̂ . If /2πβ = ± and /2πα = , we have right-handed
(r) and left-handed (l) circularly polarized photons,1
1 We consider “natural” right-handed polarization, which is opposite to the
convention adopted in optics (Born and Wolf, 2002).
1
2

i ,

1
2

i ,
B.3

r
1 2 1

l
1 2 1

( )
( )

ϵ ϵ ϵ ξ

ϵ ϵ ϵ ξ

= ^ + ^ = −

= ^ − ^ =
( )

( )
+

( )
−

where 1ξ+ and 1ξ− are the vectors of the spherical basis, Eq. (A.33).
Usually, real beams are partially polarized, that is, their photons

are in various states nζ of pure polarization with corresponding

probabilities pn. The states nζ are only assumed to be normalized
to unity, their number and nature are arbitrary. The probabilities
pn are positive and add to unity. Polarization features of real beams
can be described by using the density matrix formalism (Falkoff
and MacDonald, 1951; Fano, 1954, 1957; McMaster, 1954). The
density operator for such a radiation beam is

p .
B.4n

n n n∑ ζ ζρ ≡
( )

The matrix of this operator in the basis of states of linear polar-
ization ,1 2ϵ ϵ{^ ^ } is Hermitian and has unit trace. It can be expressed
as a linear combination of the Pauli matrices σ , Eq. (A.3), and the
2�2 identity matrix, I2, with real coefficients:

⎛
⎝⎜

⎞
⎠⎟I P P P

P P P
P P P

1
2

1
2

1 i
i 1

.
B.5

2 1 1 2 2 3 3
3 1 2

1 2 3
( )ρ σ σ σ= + + + =

+ −
+ − ( )

The coefficients Pi are the Stokes parameters; they provide a com-
plete description of the polarization of a beam and can be mea-
sured experimentally (Fano, 1954). We have P Tri iρσ= or, more
explicitly,

P P P, i , . B.61 12 21 2 12 21 3 11 22ρ ρ ρ ρ ρ ρ= + = ( − ) = − ( )

It is worth mentioning that in optics the Pauli matrices, as well as
the Stokes parameters, are usually considered in a different order,
namely, , ,3 1 2σ σ σ{ }. We prefer the ordering (A.3) employed in
quantum mechanics because the formalism is thus parallel to that
of polarization of spin- 1

2
particles.

The Stokes parameters can be regarded as the components of a
vector, P P PP , ,1 2 3≡ ( ), the Poincaré vector, which is analogous to
the direction of spin of a spin- 1

2
particle, although it transforms

differently under rotations (see Fano, 1957, 1954). For a pure state
of the type (B.1) the density matrix takes the form

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

B.7

cos /2 cos /2 sin /2 exp i

cos /2 sin /2 exp i sin /2
,

2

2

( )
( )

( ) ( ) ( )
( ) ( ) ( )

ρ
α α α β

α α β α ( )
=

−

and the associated Stokes parameters are

P P Psin cos , sin sin , cos . B.81 2 3α β α β α= = = ( )

Note that α and β are the polar and azimuthal angles of the
Poincaré vector P, respectively, and that P¼1. In the opposite si-
tuation, when the Stokes parameters vanish, P¼0, the density

matrix takes the form I1
2 2ρ = , which represents unpolarized

photons. The magnitude P of the Poincaré vector measures the
degree of polarization; it can take values from 0 (unpolarized
photons) to 1 (pure polarization states).

In the case of pure states (P¼1), inverting the relations (B.8), we
obtain the state angles ,α β( ) from the Stokes parameters:

P
P P

P
arccos , exp i

i

1
.

B.9
3

1 2

3
2

( )α β= = +
− ( )

The pure states corresponding to the Poincaré vectors P and P− ,
with respective directions ,α β( ) and ,π πα β( − + ), are
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⎛

⎝
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⎞

⎠

⎟⎟⎟
⎛
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⎜⎜⎜

⎞

⎠
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P

P

cos /2

sin /2 exp i

0
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sin /2

cos /2 exp i

0
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B.10

( )

( )

( )
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( )
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( )

ζ

ζ

α
α β

α
α β

=

− = −

( )

Note that these states are orthogonal:

P P 0. B.11( ) ( )ζ ζ − = ( )

Hence, by reversing the signs of the Stokes parameters of a pure
state, we obtain its orthogonal state (except for, possibly, an irre-
levant phase factor). Thus, the state angles ,α β( ), the Poincaré

vectors and the density matrices of the states ,1 2ϵ ϵ{^ ^ } of the linear-
polarization basis are
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Similarly, for the states of the basis of circular polarization, we
have
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ρ
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=
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( )
−

The intensity of a photon beam is defined as the number of
photons that cross a unit surface perpendicular to the direction of
the beam per unit time. Let us consider two photon beams with
intensities I1 and I2 and respective density matrices 1ρ and 2ρ . The
incoherent admixture of these two beams gives a beam with in-
tensity I I I1 2= + and density matrix

I
I

I
I

. B.14a
1

1
2

2ρ ρ ρ= + ( )

The corresponding Stokes parameters are

I
I

I
I

P P P , B.14b
1

1
2

2= + ( )

where P1 and P2 are the Poincaré vectors of the initial beams.
Notice that an unpolarized beam can be considered as the ad-
mixture of two completely polarized beams with equal intensities
and “opposite” polarizations, P and P− , whatever the direction of
P.

A partially polarized beamwith Stokes parameters P (P 1< ) can
be regarded as an incoherent admixture of an unpolarized beam
and a completely polarized beam. To characterize these beams, we
define the reduced Stokes parameters P P P/i i′ ≡ . The matrix density
of the partially polarized beam P can then be expressed as
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ B.15

P P P
P P P

P P
P P P

P P P

1
2

1 i
i 1

1
1
2

1 0
0 1

1
2

1 i

i 1
.

3 1 2

1 2 3

3 1 2

1 2 3
( )

ρ

( )

=
+ −
+ −

= − +
+ ′ ′ − ′

′ + ′ − ′

Hence, the original beam is equivalent to the mixture of an un-
polarized beam and a completely polarized beam (with Poincaré
vector PP P/′ = , P 1′ = ), having relative intensities P1( − ) and P,
respectively.
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