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We study a family of closed connected orientable 3-manifolds obtained by Dehn surgeries with rational coefficients along the
oriented components of certain links. This family contains all the manifolds obtained by surgery along the (hyperbolic) 2-bridge
knots. We find geometric presentations for the fundamental group of such manifolds and represent them as branched covering
spaces. As a consequence, we prove that the surgery manifolds, arising from the hyperbolic 2-bridge knots, have Heegaard genus 2
and are 2-fold coverings of the 3-sphere branched over well-specified links.

1. Manifolds Obtained by Dehn Surgeries

As well known, any closed connected orientable 3-manifold
can be obtained by Dehn surgeries on the components of an
oriented link in the 3-sphere (see [1, 2]). If such a link is hyper-
bolic, then the Thurston-Jorgensen theory [3] of hyperbolic
surgery implies that the resultingmanifolds are hyperbolic for
almost all surgery coefficients. Another method for studying
a closed orientable 3-manifold is to represent it as a branched
covering of a link in the 3-sphere (see, e.g., [4]). If such a
link is hyperbolic, then the construction yields hyperbolic
manifolds for branching indices sufficiently large. In the
context of current research in 3-manifold topology, many
classes of closed orientable hyperbolic 3-manifolds have been
constructed by considering branched coverings of links or
by performing Dehn surgery along them (see, e.g., [5–10]).
This paper relates these methods to study a new class of
hyperbolic orientable 3-manifolds via combinatorial tools.
More precisely, for any positive integer 𝑛, let L

2𝑛+1
be the

oriented link with 2𝑛 + 1 components 𝐿
0
, 𝐿
𝑖
, and 𝐾

𝑖
, 𝑖 =

1, . . . , 𝑛, in the oriented 3-sphere S3 depicted in Figure 1.This
link can be obtained as a belted sum of Borromean rings, as
remarked in [11, p. 8]; thus, it is hyperbolic for any 𝑛 ≥ 1.
Let us consider the closed connected orientable 3-manifolds

𝑀
𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘) obtained by Dehn surgery on S3 along

the oriented linkL
2𝑛+1

such that the surgery coefficients 𝑟
𝑖
/𝑠
𝑖
,

𝑝
𝑖
/𝑞
𝑖
, and ℎ/𝑘 correspond to the oriented components 𝐿

𝑖
,𝐾
𝑖
,

and 𝐿
0
, respectively, where 𝑖 = 1, . . . , 𝑛. Of course, we always

assume that gcd(𝑟
𝑖
, 𝑠
𝑖
) = 1, gcd(𝑝

𝑖
, 𝑞
𝑖
) = 1, and gcd(ℎ, 𝑘) = 1.

Here we will show that our family of manifolds contains all
closed manifolds obtained by Dehn surgeries on 2-bridge
knots. Such manifolds and their geometries were studied in
a nice paper of Brittenham and Wu, where the exceptional
Dehn surgeries on 2-bridge knots were completely classified
(see [5]). This fact gives a further motivation for the study of
our surgery manifolds. Recall that a nontrivial Dehn surgery
on a hyperbolic knot in the oriented 3-sphere is said to
be exceptional if the resulting manifold is either reducible,
toroidal, or a Seifert fibered manifold whose orbifold base is
the 2-sphere with at most three exceptional fibers (called a
small Seifert fibered space).Thus an exceptional Dehn surgery
is not hyperbolic. Moreover, it can be shown that a nonexcep-
tional surgery on a 2-bridge knot is hyperbolic (see [5]). Now
we determine a geometric presentation for the fundamental
group of the surgery manifold𝑀

𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘). A group

presentation is said to be geometric if it arises from aHeegaard
diagram of a closed connected (orientable) 3-manifold. If
so, then the presentation also corresponds to a spine of the
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Figure 1: Dehn surgery description of the 3-manifold
𝑀
𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘) and the generators of a Wirtinger presentation

of 𝜋(L
2𝑛+1

).

considered manifold. A Wirtinger presentation of the link
group 𝜋(L

2𝑛+1
) = 𝜋
1
(S3 \L

2𝑛+1
) has generators 𝑥

0
, 𝑥
𝑖
, and

𝑦
𝑖
, for every 𝑖 = 1, . . . , 𝑛 (see Figure 1).
The meridians m

𝑖
and 𝜇

𝑖
and the longitudes ℓ

𝑖
and 𝜆

𝑖
of

the components 𝐿
𝑖
and𝐾

𝑖
, respectively, ofL

2𝑛+1
are

m
𝑖
= 𝑥
𝑖
, ℓ

𝑖
= 𝑦
−1

𝑖−1
𝑥
−1

𝑖−1
⋅ ⋅ ⋅ 𝑦
−1

1
𝑥
−1

1
𝑦
1
⋅ ⋅ ⋅ 𝑦
𝑛
𝑥
0
𝑦
−1

𝑛
⋅ ⋅ ⋅ 𝑦
−1

1

𝑥
1
𝑦
1
⋅ ⋅ ⋅ 𝑥
𝑖−1
𝑦
𝑖−1
𝑥
−1

𝑖−1
⋅ ⋅ ⋅ 𝑥
−1

1
𝑥
−1

0
𝑥
1
⋅ ⋅ ⋅ 𝑥
𝑖−1
,

𝜇
𝑖
= 𝑦
𝑖
, 𝜆

𝑖
= 𝑦
𝑖
⋅ ⋅ ⋅ 𝑦
𝑛
𝑥
−1

0
𝑦
−1

𝑛
⋅ ⋅ ⋅ 𝑦
−1

𝑖
𝑥
−1

𝑖
𝑦
−1

𝑖−1
⋅ ⋅ ⋅ 𝑥
−1

2
𝑦
−1

1
𝑥
−1

1

𝑦
1
⋅ ⋅ ⋅ 𝑦
𝑛
𝑥
0
𝑦
−1

𝑛
⋅ ⋅ ⋅ 𝑦
−1

1
𝑥
1
𝑦
1
𝑥
2
⋅ ⋅ ⋅ 𝑦
𝑖−1
𝑥
𝑖
,

(1)

where [m
𝑖
, ℓ
𝑖
] = 1 and [𝜇

𝑖
,𝜆
𝑖
] = 1 for every 𝑖 = 1, . . . , 𝑛.

The meridian m
0
and the longitude ℓ

0
of the component 𝐿

0

ofL
2𝑛+1

are

m
0
= 𝑥
0
, ℓ

0
= 𝑦
−1

𝑛
⋅ ⋅ ⋅ 𝑦
−1

1
𝑥
1
𝑦
1
⋅ ⋅ ⋅ 𝑥
𝑛
𝑦
𝑛
𝑥
−1

𝑛
⋅ ⋅ ⋅ 𝑥
−1

1
.

(2)

To determine the formulae for longitudes ℓ
𝑖
, 𝜆
𝑖
, and ℓ

0
,

we have used the following procedure. Fix an orientation
and an initial point for each component of the link L

2𝑛+1
.

Starting from the initial point, we run along the component
in the sense of the fixed orientation and write in order only
the generators encountered at the undercrossings. At each
undercrossing we write the generator (represented by the
oriented arc running over the undercrossing) with positive
(resp., negative) exponent if the sense of percorrence is equal
(resp., opposite) to the orientation of the named arc. The
obtained longitude is homologous to zero in the complement
of the considered component if the exponent sum is equal to
zero.

A finite presentation for the fundamental group of the
surgery manifold 𝑀

𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘) is obtained from that

of 𝜋(L
2𝑛+1

) by adding the relations

m𝑟𝑖
𝑖
ℓ
𝑠𝑖

𝑖
= 1, 𝜇

𝑝𝑖

𝑖
𝜆
𝑞𝑖

𝑖
= 1, mℎ

0
ℓ
𝑘

0
= 1, (3)

for 𝑖 = 1, . . . , 𝑛. Since the integers of the pairs (𝑝
𝑖
, 𝑞
𝑖
), (𝑟
𝑖
, 𝑠
𝑖
),

and (ℎ, 𝑘) are coprime, there are integers 𝛼
𝑖
, 𝛽
𝑖
, 𝛾
𝑖
, 𝛿
𝑖
, 𝜉, and 𝜂

such that

𝑞
𝑖
𝛼
𝑖
− 𝑝
𝑖
𝛽
𝑖
= 1,

𝑠
𝑖
𝛾
𝑖
− 𝑟
𝑖
𝛿
𝑖
= 1,

𝑘𝜉 − ℎ𝜂 = 1.

(4)

Let us define

𝑎
𝑖
:= m𝛾𝑖
𝑖
ℓ
𝛿𝑖

𝑖
,

𝑏
𝑖
:= 𝜇
𝛼𝑖

𝑖
𝜆
𝛽𝑖

𝑖
,

𝑐 := m𝜉
0
ℓ
𝜂

0
,

(5)

for 𝑖 = 1, . . . , 𝑛.
Then we have

𝑎
𝑠𝑖

𝑖
= (m𝛾𝑖
𝑖
ℓ
𝛿𝑖

𝑖
)

𝑠𝑖

= m
𝑖
m𝑟𝑖𝛿𝑖
𝑖
ℓ
𝛿𝑖𝑠𝑖

𝑖
= m
𝑖
(m𝑟𝑖
𝑖
ℓ
𝑠𝑖

𝑖
)

𝛿𝑖
= m
𝑖
= 𝑥
𝑖
,

𝑏
𝑞𝑖

𝑖
= (𝜇
𝛼𝑖

𝑖
𝜆
𝛽𝑖

𝑖
)

𝑞𝑖

= 𝜇
𝑖
𝜇
𝑝𝑖𝛽𝑖

𝑖
𝜆
𝑞𝑖𝛽𝑖

𝑖
= 𝜇
𝑖
(𝜇
𝑝𝑖

𝑖
𝜆
𝑞𝑖

𝑖
)

𝛽𝑖
= 𝜇
𝑖
= 𝑦
𝑖
,

𝑐
𝑘
= (m𝜉
0
ℓ
𝜂

0
)

𝑘

= m
0
mℎ𝜂
0
ℓ
𝑘𝜂

0
= m
0
(mℎ
0
ℓ
𝑘

0
)

𝜂

= m
0
= 𝑥
0
,

𝑎
−𝑟𝑖

𝑖
= (m𝛾𝑖
𝑖
ℓ
𝛿𝑖

𝑖
)

−𝑟𝑖

= m−𝑟𝑖𝛾𝑖
𝑖
ℓ
−𝑠𝑖𝛾𝑖

𝑖
ℓ
𝑖
= (m𝑟𝑖
𝑖
ℓ
𝑠𝑖

𝑖
)

−𝛾𝑖
ℓ
𝑖
= ℓ
𝑖
,

𝑏
−𝑝𝑖

𝑖
= (𝜇
𝛼𝑖

𝑖
𝜆
𝛽𝑖

𝑖
)

−𝑝𝑖

= 𝜇
−𝑝𝑖𝛼𝑖

𝑖
𝜆
−𝑞𝑖𝛼𝑖

𝑖
𝜆
𝑖
= (𝜇
𝑝𝑖

𝑖
𝜆
𝑞𝑖

𝑖
)

−𝛼𝑖
𝜆
𝑖
= 𝜆
𝑖
,

𝑐
−ℎ
= (m𝜉
0
ℓ
𝜂

0
)

−ℎ

= m−ℎ𝜉
0
ℓ
−𝑘𝜉

0
ℓ
0
= (mℎ
0
ℓ
𝑘

0
)

−𝜉

ℓ
0
= ℓ
0

(6)

for 𝑖 = 1, . . . , 𝑛. We have the following result.

Theorem 1. The fundamental group of the surgery 3-dimen-
sional manifold𝑀

𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘) admits the finite balanced

presentation with 2𝑛 + 1 generators 𝑎
𝑖
, 𝑏
𝑖
, and 𝑐, 𝑖 = 1, . . . , 𝑛,

and 2𝑛 + 1 relations:

𝑎
𝑟𝑖

𝑖
𝑏
𝑞𝑖

𝑖
⋅ ⋅ ⋅ 𝑏
𝑞𝑛

𝑛
𝑐
𝑘
𝑏
−𝑞𝑛

𝑛
⋅ ⋅ ⋅ 𝑏
−𝑞𝑖

𝑖
𝑐
−𝑘
= 1,

𝑏
𝑝𝑖

𝑖
𝑐
−𝑘
𝑎
−𝑠𝑖

𝑖
⋅ ⋅ ⋅ 𝑎
−𝑠1

1
𝑐
𝑘
𝑎
𝑠1

1
⋅ ⋅ ⋅ 𝑎
𝑠𝑖

𝑖
= 1,

𝑐
ℎ
𝑏
−𝑞𝑛

𝑛
⋅ ⋅ ⋅ 𝑏
−𝑞1

1
𝑎
𝑠1

1
𝑏
𝑞1

1
⋅ ⋅ ⋅ 𝑎
𝑠𝑛

𝑛
𝑏
𝑞𝑛

𝑛
𝑎
−𝑠𝑛

𝑛
⋅ ⋅ ⋅ 𝑎
−𝑠1

1
= 1.

(7)

The closed manifold 𝑀
𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘) admits a Hee-

gaard diagram of genus 2𝑛+1 inducing the above presentation,
which is thus geometric. Furthermore, the Heegaard genus of
𝑀
𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘) is at most 2𝑛 + 1.

Proof. Substituting the above relations in the relators of the
Wirtinger presentation of 𝜋(L

2𝑛+1
) and using the previous

formulae for the longitudes ℓ
𝑖
, 𝜆
𝑖
, and ℓ

0
, we get the relations

of the statement. More precisely, substituting ℓ
1
= 𝑎
−𝑟1

1
, 𝑦
𝑖
=

𝑏
𝑞𝑖

𝑖
, and 𝑥

0
= 𝑐
𝑘 into

ℓ
1
= 𝑦
1
⋅ ⋅ ⋅ 𝑦
𝑛
𝑥
0
𝑦
−1

𝑛
⋅ ⋅ ⋅ 𝑦
−1

1
𝑥
−1

0
(8)
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we get

𝑎
−𝑟1

1
= 𝑏
𝑞1

1
⋅ ⋅ ⋅ 𝑏
𝑞𝑛

𝑛
𝑐
𝑘
𝑏
−𝑞𝑛

𝑛
⋅ ⋅ ⋅ 𝑏
−𝑞1

1
𝑐
−𝑘 (9)

or, equivalently,

𝑎
𝑟1

1
𝑏
𝑞1

1
⋅ ⋅ ⋅ 𝑏
𝑞𝑛

𝑛
𝑐
𝑘
𝑏
−𝑞𝑛

𝑛
⋅ ⋅ ⋅ 𝑏
−𝑞1

1
𝑐
−𝑘
= 1 (10)

which is the first relation of the statement for 𝑖 = 1. Then we
have

𝑏
−𝑝1

1
= 𝜆
1
= (𝑦
1
⋅ ⋅ ⋅ 𝑦
𝑛
𝑥
−1

0
𝑦
−1

𝑛
⋅ ⋅ ⋅ 𝑦
−1

1
) 𝑥
−1

1

× (𝑦
1
⋅ ⋅ ⋅ 𝑦
𝑛
𝑥
0
𝑦
−1

𝑛
⋅ ⋅ ⋅ 𝑦
−1

1
) 𝑥
1

= (ℓ
1
𝑥
0
)
−1

𝑥
−1

1
(ℓ
1
𝑥
0
) 𝑥
1

= 𝑐
−𝑘
𝑎
𝑟1
𝑎
−𝑠1

1
𝑎
−𝑟1

1
𝑐
𝑘
𝑎
𝑠1

1

= 𝑐
−𝑘
𝑎
−𝑠1

1
𝑐
𝑘
𝑎
𝑠1

1

(11)

or, equivalently,

𝑏
𝑝1

1
𝑐
−𝑘
𝑎
−𝑠1

1
𝑐
𝑘
𝑎
𝑠1

1
= 1 (12)

which is the second relation of the statement for 𝑖 = 1. From
the expression of ℓ

2
we get

𝑎
−𝑟2

2
=ℓ
2
=𝑦
−1

1
𝑥
−1

1
(𝑦
1
⋅ ⋅ ⋅𝑦
𝑛
𝑥
0
𝑦
−1

𝑛
⋅ ⋅ ⋅𝑦
−1

1
) 𝑥
1
𝑦
1
𝑥
−1

1
𝑥
−1

0
𝑥
1

= 𝑏
−𝑞1

1
𝑎
−𝑠1

1
(ℓ
1
𝑥
0
) 𝑎
𝑠1

1
𝑏
𝑞1

1
𝑎
−𝑠1

1
𝑐
−𝑘
𝑎
𝑠1

1

= 𝑏
−𝑞1

1
𝑎
−𝑠1

1
𝑎
−𝑟1

1
𝑐
𝑘
𝑎
𝑠1

1
𝑏
𝑞1

1
𝑎
−𝑠1

1
𝑐
−𝑘
𝑎
𝑠1

1

= 𝑏
−𝑞1

1
𝑎
−𝑟1

1
(𝑎
−𝑠1

1
𝑐
𝑘
𝑎
𝑠1

1
) 𝑏
𝑞1

1
(𝑎
−𝑠1

1
𝑐
−𝑘
𝑎
𝑠1

1
)

= 𝑏
−𝑞1

1
𝑎
−𝑟1

1
𝑐
𝑘
𝑏
−𝑝1

1
𝑏
𝑞1

1
𝑏
𝑝1

1
𝑐
−𝑘

= 𝑏
−𝑞1

1
𝑎
−𝑟1

1
𝑐
𝑘
𝑏
𝑞1

1
𝑐
−𝑘

= 𝑏
−𝑞1

1
(𝑏
𝑞1

1
⋅ ⋅ ⋅ 𝑏
𝑞𝑛

𝑛
𝑐
𝑘
𝑏
−𝑞𝑛

𝑛
⋅ ⋅ ⋅ 𝑏
−𝑞1

1
𝑐
−𝑘
) 𝑐
𝑘
𝑏
𝑞1

1
𝑐
−𝑘

= 𝑏
𝑞2

2
⋅ ⋅ ⋅ 𝑏
𝑞𝑛

𝑛
𝑐
𝑘
𝑏
−𝑞𝑛

𝑛
⋅ ⋅ ⋅ 𝑏
−𝑞2

2
𝑐
−𝑘

(13)

or, equivalently,

𝑎
𝑟2

2
𝑏
𝑞2

2
⋅ ⋅ ⋅ 𝑏
𝑞𝑛

𝑛
𝑐
𝑘
𝑏
−𝑞𝑛

𝑛
⋅ ⋅ ⋅ 𝑏
−𝑞2

2
𝑐
−𝑘
= 1 (14)

which is the first relation of the statement for 𝑖 = 2. From the
expression of 𝜆

2
we get

𝑏
−𝑝2

2
= 𝜆
2
= (𝑦
2
⋅ ⋅ ⋅ 𝑦
𝑛
𝑥
−1

0
𝑦
−1

𝑛
⋅ ⋅ ⋅ 𝑦
−1

2
) 𝑥
−1

2
𝑦
−1

1
𝑥
−1

1

× (𝑦
1
⋅ ⋅ ⋅ 𝑦
𝑛
𝑥
0
𝑦
−1

𝑛
⋅ ⋅ ⋅ 𝑦
−1

1
) 𝑥
1
𝑦
1
𝑥
2

= (𝑏
𝑞2

2
⋅ ⋅ ⋅ 𝑏
𝑞𝑛

𝑛
𝑐
−𝑘
𝑏
−𝑞𝑛

𝑛
⋅ ⋅ ⋅ 𝑏
−𝑞2

2
) 𝑎
−𝑠2

2
𝑏
−𝑞1

1
𝑎
−𝑠1

1

× (𝑏
𝑞1

1
⋅ ⋅ ⋅ 𝑏
𝑞𝑛

𝑛
𝑐
𝑘
𝑏
−𝑞𝑛

𝑛
⋅ ⋅ ⋅ 𝑏
−𝑞1

1
) 𝑎
𝑠1

1
𝑏
𝑞1

1
𝑎
𝑠2

2

= 𝑐
−𝑘
𝑎
𝑟2

2
𝑎
−𝑠2

2
(𝑏
−𝑞1

1
𝑎
−𝑠1

1
𝑎
−𝑟1

1
𝑐
𝑘
𝑎
𝑠1

1
𝑏
𝑞1

1
) 𝑎
𝑠2

2

= 𝑐
−𝑘
𝑎
−𝑠2

2
𝑎
𝑟2

2
𝑎
−𝑟2

2
𝑎
−𝑠1

1
𝑐
𝑘
𝑎
𝑠1

1
𝑎
𝑠2

2

= 𝑐
−𝑘
𝑎
−𝑠2

2
𝑎
−𝑠1

1
𝑐
𝑘
𝑎
𝑠1

1
𝑎
𝑠2

2

(15)

or, equivalently,

𝑏
𝑝2

2
𝑐
−𝑘
𝑎
−𝑠2

2
𝑎
−𝑠1

1
𝑐
𝑘
𝑎
𝑠1

1
𝑎
𝑠2

2
= 1 (16)

which is the second relation of the statement for 𝑖 = 2. Going
on like this, we get by finite iteration the first and second
relations of the statement for 𝑖 = 1, . . . , 𝑛. Substituting ℓ

0
=

𝑐
−ℎ, 𝑦
𝑖
= 𝑏
𝑞𝑖

𝑖
, and 𝑥

𝑖
= 𝑎
𝑠𝑖

𝑖
into

ℓ
0
= 𝑦
−1

𝑛
⋅ ⋅ ⋅ 𝑦
−1

1
𝑥
1
𝑦
1
⋅ ⋅ ⋅ 𝑥
𝑛
𝑦
𝑛
𝑥
−1

𝑛
⋅ ⋅ ⋅ 𝑥
−1

1
(17)

we get

𝑐
−ℎ
= 𝑏
−𝑞𝑛

𝑛
⋅ ⋅ ⋅ 𝑏
−𝑞1

1
𝑎
𝑠1

1
𝑏
𝑞1

1
⋅ ⋅ ⋅ 𝑎
𝑠𝑛

𝑛
𝑏
𝑞𝑛

𝑛
𝑎
−𝑠𝑛

𝑛
⋅ ⋅ ⋅ 𝑎
−𝑠1

1
(18)

which gives the last relation of the statement. To show that
the presentation in Theorem 1 is geometric, it suffices to
draw a suitable RR-system (Rail-Road system) which induces
precisely the above presentation (see Figure 2).The hexagons
represent the generators, and the three curves labelled by 1,
2, or 3 arrows correspond to the relations in the statement of
Theorem 1. For the theory of RR-systems we refer the reader
to [12, 13].

We also note that the first integral homology group of
𝑀
𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘) is isomorphic to⨁𝑛

𝑖=1
(Z
|𝑟𝑖|
⊕Z
|𝑝𝑖|
)⊕Z
|ℎ|
.

For example, if 𝑟
𝑖
= 𝑝
𝑖
= ℎ = 0, 𝑖 = 1, . . . , 𝑛, then the

Heegaard genus of our surgery manifolds is exactly 2𝑛 + 1.
As remarked in [11, p. 8], the link L

2𝑛+1
is hyperbolic

in the sense that it has a hyperbolic complement. So the
Thurston-Jorgensen theory [3] of hyperbolic surgery gives the
following result.

Theorem 2. For any integer 𝑛 ≥ 1 and for almost all pairs of
surgery coefficients 𝑟

𝑖
/𝑠
𝑖
, 𝑝
𝑖
/𝑞
𝑖
, and ℎ/𝑘, the closed connected

orientable 3-manifolds𝑀
𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘) are hyperbolic.

If 𝑟
𝑖
= 𝑝
𝑖
= 1 for every 𝑖 = 1, . . . , 𝑛, then the surgery 3-

dimensional manifold 𝑀
𝑛
(1/𝑠
𝑖
; 1/𝑞
𝑖
; ℎ/𝑘) is homeomorphic

to the closed orientable 3-manifold 𝐾
𝛼/𝛽
(ℎ/𝑘) obtained by

ℎ/𝑘Dehn surgery on the 2-bridge knot𝐾
𝛼/𝛽

corresponding to
the Conway parameters [−2𝑠

1
, 2𝑞
1
, . . . , −2𝑠

𝑛
, 2𝑞
𝑛
], as shown

in Figure 3. Note that our parameterization is coherent with
that used by Rolfsen [4, p. 303], by setting 𝑐

1
= −2𝑠

1
, 𝑐
2
= 2𝑞
1
,

and so on. The 𝑐
𝑖
in Rolfsen notation indicate the number

of crossings and are negative if the sense of the crossings is
reversed. This implies that our picture in Figure 3 is slightly
different to that drawn in Rolfsen [4, p. 303], as 𝑐

𝑖
and 2𝑠

𝑖
have

opposite signs for 𝑖 odd. In particular, 𝑐
𝑖
is negative for 𝑖 odd

since 𝑠
𝑖
≥ 1. We always assume that 𝑘 ̸= 0; that is, the surgery

on 𝐾
𝛼/𝛽

is nontrivial. See [14] for the Conway notation of 2-
bridge knots. Here 𝛼 and 𝛽 are coprime integers given by the
continued fraction

𝛼

𝛽

= −2𝑠
1
+

1

2𝑞
1
+ ⋅ ⋅ ⋅ + 1/ (−2𝑠

𝑛
+ 1/2𝑞

𝑛
)

, (19)

where 𝛼 > 0, −𝛼 < 𝛽 < 𝛼, and 𝛼 (resp., 𝛽) is odd (resp., even),
and 𝑠
𝑖
, 𝑞
𝑖
≥ 1 for 𝑖 = 1, . . . , 𝑛.

Since every 2-bridge knot admits a Conway representa-
tion with an even number of even parameters (see exercise
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Figure 2: An RR-system of genus 2𝑛 + 1 inducing the presentation of 𝜋
1
(𝑀
𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘)).

1

s1

1

sn

1

q1

1

qn

L2n+1

h/k

· · ·

· · ·

(a)

h/k

1

1

1
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· · · 2s1

2q1

2sn
K𝛼/𝛽

2qn

(b)

Figure 3: Two equivalent surgery descriptions of the surgery manifold 𝐾
𝛼/𝛽
(ℎ/𝑘), where 𝛼/𝛽 = [−2𝑠

1
, 2𝑞
1
, . . . , −2𝑠

𝑛
, 2𝑞
𝑛
].

2.1.14 of [15, p. 26]), we have that our family of surgery
manifolds 𝑀

𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘) contains all closed manifolds

obtained by (nontrivial) Dehn surgeries on 2-bridge knots.
Recall that a 2-bridge knot𝐾

𝛼/𝛽
is nonhyperbolic if and only if

𝛼 = 1, in which case it is the torus knot of type (2, 𝛽) (see, e.g.,
[5]). Since the surgery on torus knot is well understood (see
[9]), we restrict our attention to hyperbolic 2-bridge knots.
Ochiai proved that such manifolds have Heegaard genus 2
(see [10]). The following also gives a different proof of the
Ochiai result together with an explicit 2-generator 2-relator
geometric presentation of the fundamental group.

Theorem3. Let𝐾
𝛼/𝛽
(𝛾), 𝛾 = ℎ/𝑘 ̸=∞, be the closed orientable

3-manifold obtained by 𝛾 Dehn surgery on the hyperbolic 2-
bridge knot 𝐾

𝛼/𝛽
, where 𝛼/𝛽 = [−2𝑠

1
, 2𝑞
1
, . . . , −2𝑠

𝑛
, 2𝑞
𝑛
].

Then the fundamental group of 𝐾
𝛼/𝛽
(𝛾) admits a geometric

presentation with generators 𝑎
1
and 𝑐 and two relators deduced

from the recurrence formulae:

𝑎
𝑖+1

= 𝑐
𝑘
𝑏
−𝑞𝑖

𝑖
𝑐
−𝑘
𝑎
𝑖
𝑏
𝑞𝑖

𝑖
,

𝑏
𝑖+1

= 𝑎
−𝑠𝑖+1

𝑖+1
𝑏
𝑖
𝑐
−𝑘
𝑎
𝑠𝑖+1

𝑖+1
𝑐
𝑘

(20)

for 𝑖 = 1, . . . , 𝑛 − 1, where 𝑏
1
= 𝑎
−𝑠1

1
𝑐
−𝑘
𝑎
𝑠1

1
𝑐
𝑘. In particular, the

surgery manifold 𝐾
𝛼/𝛽
(𝛾) has Heegaard genus 2.

Proof. By Theorem 1, the fundamental group of 𝐾
𝛼/𝛽
(𝛾) has

a presentation with generators 𝑎
𝑖
, 𝑏
𝑖
, and 𝑐, 𝑖 = 1, . . . , 𝑛, and

relations

𝑎
−1

𝑖
= 𝑏
𝑞𝑖

𝑖
⋅ ⋅ ⋅ 𝑏
𝑞𝑛

𝑛
𝑐
𝑘
𝑏
−𝑞𝑛

𝑛
⋅ ⋅ ⋅ 𝑏
−𝑞𝑖

𝑖
𝑐
−𝑘
,

𝑏
−1

𝑖
= 𝑐
−𝑘
𝑎
−𝑠𝑖

𝑖
⋅ ⋅ ⋅ 𝑎
−𝑠1

1
𝑐
𝑘
𝑎
𝑠1

1
⋅ ⋅ ⋅ 𝑎
𝑠𝑖

𝑖
,

𝑐
−ℎ
= 𝑏
−𝑞𝑛

𝑛
⋅ ⋅ ⋅ 𝑏
−𝑞1

1
𝑎
𝑠1

1
𝑏
𝑞1

1
⋅ ⋅ ⋅ 𝑎
𝑠𝑛

𝑛
𝑏
𝑞𝑛

𝑛
𝑎
−𝑠𝑛

𝑛
⋅ ⋅ ⋅ 𝑎
−𝑠1

1
.

(21)

This presentation is geometric; that is, it is induced by a
genus 2𝑛 + 1Heegaard diagram of𝐾

𝛼/𝛽
(𝛾). We can eliminate

the generator 𝑏−1
1

= 𝑐
−𝑘
𝑎
−𝑠1

1
𝑐
𝑘
𝑎
𝑠1

1
to get a balanced presenta-

tion of 𝜋
1
(𝐾
𝛼/𝛽
(𝛾)) with 2𝑛 generators. We see that the curve

of the diagram represented by the relator 𝑏
1
𝑐
−𝑘
𝑎
−𝑠1

1
𝑐
𝑘
𝑎
𝑠1

1
has

exactly one point in commonwith the curve (on theHeegaard
surface) represented by the generator 𝑏

1
. Then the pair of

such curves determines a reducible handle in the diagram.
Cancelling it yields a newHeegaard diagram of𝐾

𝛼/𝛽
(𝛾) (with
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genus 2𝑛) inducing the above 2𝑛-balanced presentation for
𝜋
1
(𝐾
𝛼/𝛽
(𝛾)). The recurrence formulae of the statement are

obtained as follows:

𝑎
−1

𝑖+1
= 𝑏
𝑞𝑖+1

𝑖+1
⋅ ⋅ ⋅ 𝑏
𝑞𝑛

𝑛
𝑐
𝑘
𝑏
−𝑞𝑛

𝑛
⋅ ⋅ ⋅ 𝑏
−𝑞𝑖+1

𝑖+1
𝑐
−𝑘

= 𝑏
−𝑞𝑖

𝑖
𝑏
𝑞𝑖

𝑖
𝑏
𝑞𝑖+1

𝑖+1
⋅ ⋅ ⋅ 𝑏
𝑞𝑛

𝑛
𝑐
𝑘
𝑏
−𝑞𝑛

𝑛
⋅ ⋅ ⋅ 𝑏
−𝑞𝑖+1

𝑖+1
𝑏
−𝑞𝑖

𝑖
𝑏
𝑞𝑖

𝑖
𝑐
−𝑘

= 𝑏
−𝑞𝑖

𝑖
𝑎
−1

𝑖
𝑐
𝑘
𝑏
𝑞𝑖

𝑖
𝑐
−𝑘
,

𝑏
−1

𝑖+1
= 𝑐
−𝑘
𝑎
−𝑠𝑖+1

𝑖+1
𝑎
−𝑠𝑖

𝑖
⋅ ⋅ ⋅ 𝑎
−𝑠1

1
𝑐
𝑘
𝑎
𝑠1

1
⋅ ⋅ ⋅ 𝑎
𝑠𝑖

𝑖
𝑎
𝑠𝑖+1

𝑖+1

= 𝑐
−𝑘
𝑎
−𝑠𝑖+1

𝑖+1
𝑐
𝑘
𝑏
−1

𝑖
𝑎
𝑠𝑖+1

𝑖+1

(22)

for 𝑖 = 1, . . . , 𝑛 − 1. Using these relations we can successively
eliminate the generators 𝑎

𝑖+1
and 𝑏

𝑖+1
for 𝑖 = 1, . . . , 𝑛 − 1

(together with 𝑏
1
= 𝑎
−𝑠1

1
𝑐
−𝑘
𝑎
𝑠1

1
𝑐
𝑘). The Tietze moves on the

obtained presentations for the group 𝜋
1
(𝐾
𝛼/𝛽
(𝛾)) correspond

geometrically to cancel reducible handles in the current
Heegaard diagrams (of decreasing genus) inducing those
presentations. So 𝐾

𝛼/𝛽
(𝛾) can be represented by a Heegaard

diagram of genus 2. Such a diagram induces a geometric
presentation for 𝜋

1
(𝐾
𝛼/𝛽
(𝛾)) with two generators 𝑎

1
and 𝑐

and two relators obtained by applying the above recurrence
algorithm. This shows that the genus of 𝐾

𝛼/𝛽
(𝛾) is at most 2.

Now we claim that the genus is exactly 2. This follows from
the fact that 2-bridge knots have tunnel number equal to one
and no lens space surgeries (see, e.g., [5]).

To complete the section we write explicitly the geo-
metric presentations for 𝜋

1
(𝐾
𝛼/𝛽
(𝛾)) with 𝛼/𝛽 = [−2𝑠

1
,

2𝑞
1
, . . . , −2𝑠

𝑛
, 2𝑞
𝑛
] for 𝑛 = 1, 2.

Corollary 4. The fundamental group of the surgery manifold
𝐾
𝛼/𝛽
(𝛾), 𝛾 = ℎ/𝑘 and 𝛼/𝛽 = [−2𝑠

1
, 2𝑞
1
] = (−4𝑞

1
𝑠
1
+1)/(2𝑞

1
),

has the geometric presentation:

𝜋
1
(𝐾
𝛼/𝛽

(𝛾)) = ⟨𝑎
1
, 𝑐 : 𝑎
1
[𝑎
−𝑠1

1
, 𝑐
−𝑘
]

𝑞1

[𝑎
−𝑠1

1
, 𝑐
𝑘
]

𝑞1

= 1,

𝑐
ℎ
[𝑐
−𝑘
, 𝑎
−𝑠1

1
]

𝑞1

[𝑐
−𝑘
, 𝑎
𝑠1

1
]

𝑞1

= 1⟩ ,

(23)

where [𝑥, 𝑦] = 𝑥𝑦𝑥−1𝑦−1.

Corollary 5. The fundamental group of the surgery manifold
𝐾
𝛼/𝛽
(𝛾), 𝛾 = ℎ/𝑘, 𝛼/𝛽 = [−2𝑠

1
, 2𝑞
1
, −2𝑠
2
, 2𝑞
2
], that is, 𝛼 =

16𝑞
1
𝑞
2
𝑠
1
𝑠
2
− 4(𝑞
1
𝑠
1
+ 𝑞
2
𝑠
1
+ 𝑞
2
𝑠
2
) + 1 and 𝛽 = −8𝑞

1
𝑞
2
𝑠
2
+

2(𝑞
1
+ 𝑞
2
), has the geometric presentation with generators 𝑎

1

and 𝑐 and relations 𝑎
2
[𝑏
𝑞2

2
, 𝑐
𝑘
] = 1 and

𝑐
ℎ
𝑏
−𝑞2

2
𝑏
−𝑞1

1
𝑎
𝑠1

1
𝑏
𝑞1

1
𝑎
𝑠2

2
𝑏
𝑞2

2
𝑎
−𝑠2

2
𝑎
−𝑠1

1
= 1, (24)

where

𝑏
1
= [𝑎
−𝑠1

1
, 𝑐
−𝑘
] , 𝑎

2
= [𝑎
−𝑠1

1
, 𝑐
𝑘
]

𝑞1

𝑎
1
[𝑎
−𝑠1

1
, 𝑐
−𝑘
]

𝑞1

,

𝑏
2
= ([𝑎

−𝑠1

1
, 𝑐
𝑘
]

𝑞1

𝑎
1
[𝑎
−𝑠1

1
, 𝑐
−𝑘
]

𝑞1

)

−𝑠2

[𝑎
−𝑠1

1
, 𝑐
−𝑘
] 𝑐
−𝑘

× ([𝑎
−𝑠1

1
, 𝑐
𝑘
]

𝑞1

𝑎
1
[𝑎
−𝑠1

1
, 𝑐
−𝑘
]

𝑞1

)

𝑠2

𝑐
𝑘
.

(25)

From Theorem 3 and [5] we also have the following
consequence (for 𝑛 = 1 see [6]).

Corollary 6. Let 𝐾
𝛼/𝛽

be a hyperbolic 2-bridge knot, where
𝛼/𝛽 = [−2𝑠

1
, 2𝑞
1
, . . . , −2𝑠

𝑛
, 2𝑞
𝑛
] and 𝑛 ≥ 2. Then the surgery

manifolds 𝐾
𝛼/𝛽
(𝛾), 𝛾 ̸=∞, are hyperbolic and have Heegaard

genus 2.The volumes of suchmanifolds can be made arbitrarily
large.

Proof. As done in [16, p. 725], for a slightly different link (see
also [11, 17]), it follows that the links L

2𝑛+1
are hyperbolic

with volume approximately (2𝑛 − 1)(7.32772 . . .). Further-
more, L

2𝑛+1
is amphicheiral and its symmetry group is

isomorphic to Z
2
× 𝐷
4
, where 𝐷

4
is the dihedral group

of order 8. On choosing a framing for each unknotted
component of L

2𝑛+1
, we can perform 1/𝑛 Dehn surgery on

each of the unknotted components of L
2𝑛+1

. This produces
the hyperbolic 2-bridge knot K

𝑛
= 𝐾
𝛼/𝛽

, where 𝛼/𝛽 =

[−2𝑛, 2𝑛, . . . , −2𝑛, 2𝑛]. Thurston’s hyperbolic Dehn surgery
theorem [3] in this context says that K

𝑚
has a 2𝑛-long

continued fraction consisting of 2𝑚’s with volumes of S3 \
K
𝑚
converging to that of S3 \ L

2𝑛+1
as 𝑚 goes to infinity.

Since these are getting arbitrarily large, the result follows. In
fact, the volumes of the surgery hyperbolic manifolds K

𝑛
(𝛾),

𝛾 ̸=∞ and 𝑛 ≥ 2, become arbitrarily large as 𝑛 goes to infinity.
The fact that the volumes of thesemanifolds can be arbitrarily
large is also a consequence of work by Lackenby on volumes
of hyperbolic alternating links (see [18]). (See, e.g., [19, 20]
for interesting estimates of volumes for hyperbolic manifolds
arising from right-angled Coxeter polyhedra.)

2. Covering Properties

In this section we study covering properties of our surgery
manifolds. Using Montesinos’ trick [8], we prove that such
manifolds are 2-fold branched covers of a connected sum of
lens spaces. Moreover, it follows that a very large subclass of
our surgery manifolds are 2-fold coverings of the 3-sphere
branched over well-specified clearly depicted links. Finally,
we show explicitly what the branched cover looks like for the
surgeries on a large class of links including 2-bridge knots as
very particular case.

Theorem 7. Suppose that 𝑟
𝑖
is odd for every 𝑖 = 1, . . . , 𝑛.

Then the surgery manifold 𝑀
𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘) is 2-fold

branched covering of the connected sum of 𝑛 lens spaces
𝐿(𝑟
1
, 2𝑠
1
)# ⋅ ⋅ ⋅ #𝐿(𝑟

𝑛
, 2𝑠
𝑛
).

Proof. As shown in Figure 4(a), there is an orientation-
preserving involution 𝜌 in S3 which induces an involution
with two fixed points (resp., without fixed points) in each
component 𝐿

0
and 𝐾

𝑖
(resp., 𝐿

𝑖
) of L

2𝑛+1
, for 𝑖 = 1, . . . , 𝑛.

Here we will assume 𝑛 ≥ 2. For 𝑛 = 1 see [6]. Let L be
the link consisting of those components of L

2𝑛+1
for which

the number of fixed points of 𝜌 is different from two. Let
𝑝 : S3 → S3 be the 2-fold cyclic branched covering
of the 3-sphere S3 defined by 𝜌. By Theorem 2 of [8] the
manifold obtained by doing surgery on L

2𝑛+1
is a 2-fold
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Figure 4: The 2-symmetric planar projections of the linksL
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= L
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1
, . . . , 1/𝑠

𝑛
).

cyclic covering branched over a manifold obtained by doing
surgery on 𝑝(L). But 𝑝(L) is a trivial link. Now the result
follows from the fact that surgery on a trivial link produces a
connected sum of lens spaces. This yields a representation of
our surgery manifolds as branched coverings of a connected
sum of lens spaces.

LetL
𝑛+1

be the oriented link inS3 with 𝑛+1 components
(whichwe denote by 𝐿

0
and𝐾

𝑖
for 𝑖 = 1, . . . , 𝑛) obtained from

L
2𝑛+1

by doing 1/𝑠
𝑖
Dehn surgeries on its 𝐿

𝑖
components, 𝑖 =

1, . . . , 𝑛. The linkL
𝑛+1

is strongly invertible (see Figure 4(b));
that is, there is an orientation-preserving involution of S3,
also denoted by 𝜌, which induces in each component of
L
𝑛+1

an involution with two fixed points. We remark that
in Figure 4(b) the last string has 2𝑠

𝑛
− 1 crossings instead of

2𝑠
𝑛
(𝑠
𝑛
≥ 1) because we have shifted the subarc (at the final

crossing) of the link from the bottom to the top.This permits
losing a crossing. Now we recall the statement of Theorem
1 from [8]: let 𝑀 be a closed orientable 3-manifold that is
obtained by doing surgery on a strongly-invertible link 𝐿 of
𝑛 components. Then 𝑀 is a 2-fold cyclic covering of the 3-
sphere branched over a link of atmost 𝑛+1 components.Thus
Theorem 1 of [8] applies to our case, and we can state that the
manifolds 𝑀

𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘) with 𝑟

𝑖
= 1, 𝑖 = 1, . . . , 𝑛, are

2-fold coverings of S3 branched over a link of at most 𝑛 + 2
components. Now we apply the Montesinos algorithm, given

in [8], to describe explicitly the branch sets of the above 2-
fold branched coverings. LetL

𝑟
(𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘), where 𝑟 = 2𝑠

1
+

⋅ ⋅ ⋅+2𝑠
𝑛
, denote the branch set of the 2-fold branched covering

𝑀
𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘), with 𝑟

𝑖
= 1 for 𝑖 = 1, . . . , 𝑛, of S3 which

corresponds to the involution 𝜌 shown in Figure 4(b) (recall
that 𝑠

𝑖
≥ 1 for 𝑖 = 1, . . . , 𝑛). Let m

𝑖
= 𝑦
𝑖
be the meridians

of the components 𝐾
𝑖
of L
𝑛+1

and m
0
= 𝑥
0
the meridian of

the component 𝐿
0
of L
𝑛+1

. The pair (m
𝑖
, ℓ
𝑖
), where ℓ

𝑖
is the

longitude of 𝐾
𝑖
, is a preferred frame; that is, ℓ

𝑖
∼ 0 in the

exterior space S3 \ 𝐾
𝑖
and 𝑙𝑘(m

𝑖
, ℓ
𝑖
) = 1 for 𝑖 = 1, . . . , 𝑛. The

pair (m
0
, ℓ


0
), where ℓ

0
is the longitude of𝐿

0
, is not a preferred

frame since ℓ
0
∼ −(𝑟−1)m

0
inS3\𝐿

0
, where 𝑟 = 2𝑠

1
+⋅ ⋅ ⋅+2𝑠

𝑛
.

To have a preferred frame, we take the pair (m
0
, ℓ
0
), where

ℓ
0
= ℓ


0
+ (𝑟 − 1)m

0
. Let𝑉 be a regular neighbourhood of the

link L
𝑛+1

in S3. Without loss of generality, we can choose
𝑉, the meridiansm

𝑖
, and the longitudes ℓ

𝑖
, 𝑖 = 0, 1, . . . , 𝑛, to

be invariant under the involution 𝜌. The quotient space of S3
under 𝜌 is illustrated in Figure 5. The image of 𝑉 under the
projection 𝜋 : S3 → S3/𝜌 consists of 𝑛 + 1 disjoint 3-balls;
𝐵
0
, 𝐵
1
, . . . , 𝐵

𝑛
, say. To obtain the branch set L

𝑟
(𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘),

where 𝑟 = 2𝑠
1
+ ⋅ ⋅ ⋅ + 2𝑠

𝑛
, via the Montesinos algorithm, we

isotopy the𝐵
𝑖
’s along the images𝜋(ℓ

𝑖
) of the longitudes ℓ

𝑖
and

replace them by an ℎ/𝑘 rational tangle for 𝑖 = 0 and by 𝑝
𝑖
/𝑞
𝑖

rational tangles, for 𝑖 = 1, . . . , 𝑛, as in Figure 6.
Summarizing, we have proven the following main result.
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(1/3, 1/4; ℎ/𝑘).

Theorem 8. Let M = 𝑀
𝑛
(𝑟
𝑖
/𝑠
𝑖
; 𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘), 𝑟

𝑖
= 1 and

𝑠
𝑖
≥ 1, for 𝑖 = 1, . . . , 𝑛, be the closed connected orientable

3-manifold obtained by Dehn surgeries on the components of
the link L

2𝑛+1
. Then M is the 2-fold covering of the 3-sphere

branched over the linkL
𝑟
(𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘), where 𝑟 = 2𝑠

1
+⋅ ⋅ ⋅+2𝑠

𝑛
,

pictured in Figure 6.

Theorem 9. Let 𝐾
𝛼/𝛽
(𝛾), 𝛾 = ℎ/𝑘 ̸=∞, be the closed

connected orientable 3-manifold obtained by 𝛾 Dehn surgery
on the hyperbolic 2-bridge knot 𝐾

𝛼/𝛽
, where 𝛼/𝛽 =

[−2𝑠
1
, 2𝑞
1
, . . . , −2𝑠

𝑛
, 2𝑞
𝑛
]. Then 𝐾

𝛼/𝛽
(𝛾) is the 2-fold covering

of the 3-sphere branched over the link L
𝑟
(𝑝
𝑖
/𝑞
𝑖
; ℎ/𝑘), where

𝑟 = 2𝑠
1
+ ⋅ ⋅ ⋅ + 2𝑠

𝑛
and 𝑝

𝑖
= 1 for every 𝑖 = 1, . . . , 𝑛.

For example, 𝐾
𝛼/𝛽
(𝛾), 𝛾 = ℎ/𝑘 ̸=∞, where 𝛼/𝛽 =

[−4, 6, −6, 8], hence 𝛼 = 1049, and 𝛽 = −274, is the 2-
fold covering of the 3-sphere S3 branched over the link
𝐿
10
(1/3, 1/4; ℎ/𝑘) as shown in Figure 7.
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