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Abstract

We develop a method to give an estimate on the number of functionally independent
constants of motion of a nonholonomic system with symmetry which have the so called ‘weakly
Noetherian’ property [22]. We show that this number is bounded from above by the corank of
the involutive closure of a certain distribution on the constraint manifold. The effectiveness
of the method is illustrated on several examples.
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1 Introduction

How many (functionally independent) constants of motion does a nonholonomic system with sym-
metry have? In these terms, this question is certainly too vague to be answered. For holonomic
systems with symmetry, a natural answer is provided by the conservation of the energy–momentum
map, which implies a lower bound on the number of constants of motion. In the nonholonomic case,
instead, the situation is not as clear even in the simplest case of systems with linear constraints,
natural Lagrangians (= kinetic minus potential energies) and lifted actions, which is the case that
we consider in this paper. There are two opposite reasons for this:
• On the one hand, only certain components of the momentum map are constants of motion,

and their number may be difficult to assess. In fact, a component of the momentum map is
conserved if and only if its infinitesimal generator is a section of a certain distribution, the
so–called reaction–annihilator distribution R◦, see [23].
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• On the other hand, the class of constants of motion of nonholonomic systems with symmetry
may be larger than just the components of the momentum map. In particular, this class
may include functions linear in the momenta known as “gauge momenta”. These are, roughly
speaking, constants of motion generated by certain vector fields which are tangent to the
group orbits but are not infinitesimal generators of the group action, see [5, 35, 22]. There
are different ways of characterizing the vector fields which produce conserved gauge momenta
[30, 16, 41, 22], but here too, no general way of assessing their number is known.

In this situation, it is very difficult to answer in full generality the question raised above. Therefore,
in this paper we try to provide a first, very partial answer to it, by producing a bound from above
on the number of all functionally independent constants of motion with a certain property—the
so–called weak Noetherian property identified in [22].

In order to appreciate the origin of this class of constants of motion recall that, in Hamiltonian
mechanics, one of the fundamental properties of the link symmetries–conservation laws is the fact
that the momentum map of a Hamiltonian action depends only on the group action. Therefore, the
conservation of the momentum map provides conserved quantities for all systems with invariant
Hamiltonian. This property is sometimes called the “Noetherian” property (or condition) of the
momentum map [37].

In nonholonomic mechanics, however, which components of the momentum map are conserved
quantities depends on the Hamiltonian (and on the constraint manifold), and the Noetherian
property is broken. In fact, it is not even completely clear what a ‘Noetherian constant of motion’
should be in the nonholonomic context (see the Remark at the end of Section 3.1). Among functions
linear in the momenta, some conserved components of the momentum map (particularly those with
‘horizontal’ infinitesimal generators, if they exist) do have the Noetherian property, but in general
gauge momenta do not. However, certain gauge momenta—particularly those with horizontal
generators—have a weaker property: they are conserved quantities of all nonholonomic systems
with fixed constraint manifold and fixed kinetic energy, but any invariant potential energy [22].
This is the “weak Noetherian” property.

In [22], this property was defined only for constants of motion which are linear in the momenta,
which is the case of the momentum maps of lifted actions and is most commonly met in examples.
In this article, we consider instead all weakly Noetherian constants of motion (even the nonlinear
ones, if they exist) with the aim of establishing a technique which can give some information on
the number of them which are functionally independent. The reason why our method does not
apply to the linear weakly Noetherian constants of motion alone will become clear later.

Specifically, we will show that, under a certain smoothness hypothesis, the number of function-
ally independent smooth local weakly Noetherian constants of motion of a nonholonomic system
whose Hamiltonian is invariant under a lifted action is given by the corank of the involutive closure
∆∞ of a certain distribution ∆ on the constraint manifold. We will give a complete description of
∆ in the case of free and proper actions, and we will recall a standard technique to compute the
corank of ∆∞ if ∆ is real analytic. In order to show the feasibility of the procedure, we will apply
it to a few sample cases in which this corank can be determined analytically (a vertical disk with
various symmetry groups) and to a more complex case where the analysis has to be carried over
using symbolic manipulation software (a heavy ball which rolls on a surface of revolution).

The number of local weakly Noetherian constants of motion gives of course only an upper bound
on the number of globally defined constants of motion, which are those significant for the dynamics.
Nevertheless, knowing this bound can give some informations on the system, but also, can confirm
whether all constants of motion with this property have been determined. We will analyze this
situation on the examples.

Our study uses in an essential way the Hamiltonian formulation of nonholonomic mechanics,
which is shortly reviewed in Section 2. In Section 3 we introduce the notion of weakly Noetherian
constants of motion and we shortly review the case of gauge momenta. After this background
material, in Section 4 we relate the existence of local weakly Noetherian constants of motion to the
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corank of the distribution ∆∞, and in Section 5 we give explicit expressions for the distribution
∆ in the case of a free and proper lifted action. Sections 6 and 7 are devoted to the examples.
A section of conclusions and perspectives follows; in particular, we outline there the use of our
method in a different context—that of non symplectic symmetry groups of Hamiltonian systems.

2 Nonholomic systems

2.1 Lagrangian formulation.

As already mentioned, we shall consider only the case of systems subject to linear noholonomic
constraints. For general references, see [36, 12, 14, 7, 9] and references therein.

As a starting point, consider a holonomic mechanical system with n–dimensional configuration
manifold Q and kinetic energy T (vq) = 1

2aq(vq, vq), where a is a Riemannian metric on TQ,
subject to forces described by a potential energy which is the lift of a function V on Q. Then, the
Lagrangian of the holonomic system is L = T −V ◦πQ, where πQ : TQ→ Q is the tangent bundle
projection.

For greater clarity, we resort to a coordinate description whenever appropriate. In doing so, we
denote by (q, q̇) ∈ Rn × Rn (local) bundle coordinates on TQ and by a dot the inner product in
Rn and we use the symbol loc= to stress that the right–hand–side of an equality is an expression
for a local representative of the left–hand–side. Thus, the kinetic energy is locally written

T (q, q̇) loc=
1
2
q̇ ·A(q)q̇

for a symmetric and positive definite n× n matrix A(q).
A linear nonholonomic constraint is given by a non–integrable distribution D on Q, that we

assume to have constant rank r, 2 ≤ r < n. The distribution D is called the constraint distribution
and can be locally defined as the kernel of k := n − r linearly independent differential 1–forms
τ1, . . . , τk on Q, so that its fibers are

Dq = ker
{
τ1(q), . . . , τk(q)

}
. (1)

In bundle coordinates (q, q̇) in TQ, the fibers of D can be written as

Dq
loc= {q̇ ∈ Rn : S(q)q̇ = 0}

for a k × n matrix S(q) with rank k, which depends smoothly on q. The constraint distribution
can also be thought of as a submanifold D of TQ of dimension 2n−k, which in bundle coordinates
is given by

D
loc= {(q, q̇) ∈ R2n : q ∈ Q , q̇ ∈ Dq}

and will be called the (Lagrangian) constraint manifold.
D’Alembert’s principle assumes that the reaction force exerted by the nonholonomic constraint

annihilates the fibers of (an appropriate jet extension of) the distribution D and leads to a dy-
namical system on the submanifold D, which is described by Lagrange equations with multipliers.
Eliminating the multipliers gives the reaction force as a function of the kinematical state vq ∈ D
and leads to a vector field on the constraint manifold D, which gives the equations of motion. In
bundle coordinates, the equations of motion have the form

d

dt

∂L

∂q̇
− ∂L

∂q
= R (2)

where R = R(q, q̇) is the reaction force exerted by the nonholonomic constraint.
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The expression of R in bundle coordinates can be found, e.g., in [1, 23, 6]. We recall this
expression because we will use it in the examples of Section 6. Let Π(q) be the A(q)−1–orthogonal
projector onto the orthogonal subspace of Dq = kerS(q), that is

Π = ST
[
SA−1ST

]−1
SA−1 ,

and define the vectors β(q, q̇) ∈ Rn, V ′(q) ∈ Rn and γ(q, q̇) ∈ Rk as having components

βi =
∑
j,h

(
∂Aij
∂qh

− 1
2
∂Ajh
∂qi

)
q̇j q̇h , V ′i =

∂V

∂qi
, γa =

∑
j,h

∂Saj
∂qh

q̇j q̇h

(i, j, h = 1, . . . , n, a = 1, . . . , k). Then,

R = Πβ − ST
[
SA−1ST

]−1
γ + ΠV ′ . (3)

2.2 Local Hamiltonian formulation.

We pass now to the Hamiltonian formulation of nonholonomically constraint systems, see [42, 4, 34]
for general references. We begin by giving a local description of this formulation, in Darboux coor-
dinates (q, p) on T ∗Q. We will use such local formulation for the computation of the distribution
∆ in Section 5 and in the examples of Sections 6 and 7.

The Legendre transformation Λ : TQ → T ∗Q relative to the Lagrangian L = T − V ◦ πQ is a
diffeomorphism and the image M := Λ(D) of the submanifold D of TQ is a submanifold (and a
subbundle) of T ∗Q of dimension 2n−k, which will be called the (Hamiltonian) constraint manifold.
In Darboux coordinates

Λ(q, q̇) loc= (q, A(q)q̇)

and
M

loc= {(q, p) ∈ R2n : q ∈ Q , A(q)−1p ∈ Dq} .

The equations of motion of the nonholonomic system are Hamilton equations with the reaction
force. The Hamiltonian is H = T ◦ Λ−1 + V ◦ π∗Q, where π∗Q : T ∗Q → Q is the cotangent bundle

projection. In Darboux coordinates, H(q, p) loc= 1
2 p ·A(q)−1p+ V (q) and the equations of motion

are
q̇ =

∂H

∂p
(q, p) , ṗ = −∂H

∂q
(q, p) +R

(
q, A(q)−1p

)
.

These equations are the local representative of a dynamical system on the constraint manifold M ,
that we call the (Hamiltonian) nonholonomic system (H,M).

Note that it is possible to express the constraint manifold M also in terms of the 1–forms τ .
In fact, the submanifold D of TQ can be (locally) described as the zero–level set of the map
τ̃ = (τ̃1, . . . , τ̃k) : TQ → Rk, where τ̃i : TQ → R is given by τ̃i(vq) := 〈τi(q), vq〉 for all vq ∈ Dq,
q ∈ Q. Therefore

M = τ̂−1(0)

for
τ̂(q, p) := (τ̃ ◦ Λ−1)(q, p) loc= S(q)A(q)−1p ,

see [41].
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2.3 Global Hamiltonian formulation.

A local, coordinate description will not be sufficient for our analysis and we need a geometric
formulation of the equations of motion. In view of this, we preliminarily recall some facts from
symplectic geometry; see e.g. [33, 37] for details on these topics.

Let ω be the canonical symplectic form of T ∗Q. As usual, XF denotes the Hamiltonian vector
field of a smooth function F on T ∗Q, that is, iXF ω = −dF . Similarly, the Hamiltonian vector
field Xτ of a closed 1–form τ is defined by iXτω = −τ . If Em is a subspace of the tangent space
Tm(T ∗Q), m ∈ T ∗Q, then its symplectic orthogonal is defined as

Eωm := {v ∈ TmT ∗Q : ωm(v, u) = 0 ∀u ∈ Em } .

Recall that (Eωm)ω = Em and that Em and Eωm have complementary dimensions. The polar of a
distribution T on T ∗Q is the distribution T ω on T ∗Q whose fibers are the symplectic orthogonals
to the fibers of T .

The Hamiltonian formulation of nonholonomic mechanics requires the introduction of a cer-
tain distribution D on T ∗Q, whose polar is related to the reaction force, see [4, 34, 41, 13, 14].
Specifically, at each point m ∈ T ∗Q, the fiber Dm ⊆ Tm(T ∗Q) of D is the preimage of the fiber
DπQ(m) of the constraint distribution D under the derivative Tπ∗Q of the cotangent bundle projec-
tion π∗Q : T ∗Q→ Q. With reference to the representation (1) of D, the fibers of D are thus given
by

Dm = ker
{

(π∗Q)∗τ1(m), . . . , (π∗Q)∗τk(m)
}

loc=
{

(uq, up) ∈ Rn × Rn : uq ∈ DπQ(m)

} (4)

for all m ∈ T ∗Q. If, as we assume in this work, D has constant rank n − k, then D has constant
rank 2n− k.

The distribution D is defined on all of T ∗Q, but we will need only its restriction to M . On the
points m ∈ M , the fiber Dm is distinct from the tangent space TmM , even though they have the
same dimension. In fact, TmM is the annihilator of the differentials of the k functions τ̂a which,
in Darboux coordinates, are the functions [S(q)A(q)−1p]a. Note also that, while M depends both
on D and Λ, and thus on the kinetic energy T , D and its polar Dω depend only on D.

If, as we assume in this work, the constraints are linear and ideal, then the Hamiltonian
counterpart of the reaction force is a section R of (the restriction toM of) the polar distributionDω,
see e.g. [4, 34, 41, 13, 14]. The distribution Dω has constant rank k and is locally generated by the
vector fields X(π∗Q)∗τ1 , . . . , X(π∗Q)∗τk . Correspondingly, the polar distribution [TmM ]ω has constant
rank k, too, and is locally generated by Xτ̂1 , . . . , Xτ̂k .

As proven in [4, 34] at each point m ∈M the subspaces TmM and Dωm of TmT ∗Q are transversal
and complementary, so that

Tm(T ∗Q) = TmM ⊕D
ω

m ∀m ∈M . (5)

This implies that, at each point m ∈ M , there is a unique splitting u = uTM + uD
ω

of vectors
u ∈ Tm(T ∗Q), where for each subspace E of Tm(T ∗Q), uE ∈ E. Correspondingly, any vector field
X on T ∗Q can be uniquely decomposed on the points of M as

X = XTM +XD
ω

(6)

with XTM a section of TM and XD
ω

a section of Dω.
Splitting (6) is used to write globally the equations of motion of nonholonomic systems [4, 34]. In

fact, a constrained motion t 7→ mt ∈M satisfies ṁ = XH(m)+R(m) = XTM
H (m)+XD

ω

H (m)+R(m).
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Hence, ṁ ∈ TmM and R ∈ Dω if and only if the reaction force satisfies R = −XD
ω

H |M and t 7→ mt

satisfies the equation of motion

ṁ = XTM
H (m) , m ∈M .

The dynamical system on M defined by the vector field XTM
H is the (Hamiltonian) nonholonomic

system (H,M) we mentioned before.
Splitting (5) plays a central role also in the study of constants of motion [18, 41]; we will come

back on this in Section 4.

Remark 1. For completeness, we mention here two facts that we will not use. (1) In the case
of linear constraints, the vector field XTM

H belongs to D as well and is therefore a section of
the distribution H = TM ∩ D along M , see [4, 41]. As proven in [4, 16], the symplectic form
restricted to H is nondegenerate and Tm(T ∗Q) = Hm⊕Hωm for m ∈M . These facts play a central
role in the reduction procedure developed in [4] and in the distributional Hamiltonian aproach to
nonholonomic systems developed in [17, 15]. (2) The nonholonomic dynamics conserves the energy,
that is, XTM

H (H) = 0 in all of M .

3 Weakly Noetherian constants of motion

3.1 Definition.

We introduce now the notion of weakly Noetherian constants of motion and review the case of
gauge momenta. ¿From now on, it is tacitly understood that (H,M) stands for a Hamiltonian
nonholonomic system of the type specified in Section 2, which corresponds to a configuration
manifold Q, a constraint distribution D, a kinetic energy T and a potential energy V .

By a constant of motion of the nonholonomic system (H,M) we mean a smooth function
F : M → R such that the Lie derivative XTM

H (F ) = 0 in all of M . Given an action ΨQ of a Lie
group G on Q, we denote by ΨT∗Q its lift to the cotangent bundle T ∗Q.

Definition 1. Fix the configuration manifold Q, the constraint distribution D on Q, an action
ΨQ of a Lie group G on Q, and a ΨT∗Q–invariant kinetic energy T : T ∗Q → R. Then, a smooth
function F : M → R is said to be a weakly Noetherian constant of motion relative to (T,M,ΨQ) if
it is a constant of motion of all nonholonomic systems (T+V ◦π∗Q,M) with ΨQ–invariant potential
energy V : Q→ R.

The restriction to lifted actions in this Definition is not necessary, but this is the case we will
consider in the sequel.

Remark 2. Notions of Noetherian and of weakly Noetherian constants of motion of nonholonomic
systems were given in [22] in the special case of functions linear in the momenta. The treatment
there was in the Lagrangian context but, since under our hypotheses the Legendre transformation
is a diffeomorphism, everything transfers to the Hamiltonian context. However, there is a subtlety
involved in extending the notion of Noetherianity to nonlinear functions, and this extension cannot
be achieved by just dropping the constancy of the kinetic energy T in the previous Definition. The
fact is that, in a mechanical context, one starts with a given Lagrangian constraint manifold D and
(even assuming that this operation could be done without changing D, which might be unrealistic)
changing the kinetic energy changes the Legendre transformation Λ and hence the Hamiltonian
constraint manifold M = Λ(D). Since M is the natural domain of definition of the constants of
motion, it is not completely clear what should the appropriate definition of Noetherian constant of
motion be, if any. If one considers only functions which are defined in all of T ∗Q, then ‘horizontal
momenta’ (in the sense of the next subsection) are obviously Noetherian [22]. Note that this
difficulty cannot be overcome by simply working in the Lagrangian context, where the constraint
manifold D is fixed, because changing the kinetic energy changes the pull–back of J to TQ.
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3.2 Weakly Noetherian gauge momenta.

In order to give some perspective for the subsequent treatment we review very quickly the properties
of weak Noetherianity of the class of constants of motion which has been more extensively studied,
that formed by momenta and gauge momenta. For motivations, details and examples see [22, 24]
and references therein.

By a ‘linear’ function on M we mean the restriction to M of a function on T ∗Q which is linear
in the momenta, that is, which can be written as

F = p · ξQ|M

with some vector field ξQ on Q. The vector field ξQ is called a generator of F and, since M ⊂ T ∗Q,
it is not unique (see [30, 22, 23] for further details). Fix now an action ΨQ of a Lie group G on Q
and let G denote the distribution on Q whose fibers Gq are the tangent spaces TqOq to the orbits
Oq of ΨQ. A linear function on M is called a gauge momentum relative to the action ΨQ if it has
a generator ξQ with the following two properties: (1) it is a section of G, and (2) its cotangent lift
ξT
∗Q infinitesimally preserves the Hamiltonian in M , namely ξT

∗Q(H)|M = 0. Any such generator
is called a gauge simmetry. (Note that a gauge momentum may have as well generators which
do not satisfy either condition and are not gauge symmetries). If the gauge symmetry ξQ is an
infinitesimal generator of the action ΨQ, then the corresponding gauge momentum is a component
of the momentum map of the lifted action ΨT∗Q and will be called a momentum. Therefore, in
the sequel we refer only to gauge momenta. A gauge momentum is said to be horizontal if it is
generated by a horizontal gauge symmetry, that is, a gauge symmetry which is a section of the
constraint distribution D.

A gauge momentum is a constant of motion of the nonholonomic system (H,M) if and only if it
is generated by a gauge symmetry which is a section of a certain distribution R◦D,T,V on Q [23, 22].
This distribution is called the reaction–annihilator distribution, depends on D, T and V and is
an overdistribution of the constraint distibution D, that is, its fibers contain those of D. This
implies, in particular, the very well known fact that all horizontal momenta and gauge momenta
are constants of motion [32, 3, 16, 8, 13, 5, 35, 7, 19, 15]. This also implies that a gauge momentum
is weakly Noetherian if and only if it is generated by a gauge symmetry ξQ which is a section of the
distribution ∩VR◦D,T,V which is obtained by taking the intersection of all the distributions R◦D,T,V
corresponding to ΨQ–invariant potential energies V .

Since ∩VR◦D,T,V is an overdistribution of D, this implies in particular that horizontal momenta
and horizontal gauge momenta are weakly Noetherian [22]. Moreover, if the action is transitive
on Q, or more generally if G is an overdistribution of D, that is, Gq ⊇ Dq for all q ∈ Q, then
any conserved gauge momentum is horizontal ([22], Proposition 4) and hence weakly Notherian.
However, the class of weakly Noetherian momenta and gauge momenta might be larger than the
horizontal ones, a possibility which might be particularly important in cases such as the generalized
Chaplygin systems, for which Dq ∩ Gq is trivial.

Remark 3. The number of functionally independent horizontal gauge momenta (or, equivalently,
of functionally independent constants of motion identified by the momentum equation [22]) is not
bounded from above by the rank of the distribution with fibers Gq ∩ Dq, unless this rank is either
zero or one. In fact, given two or more vector fields on Q, lifting their linear combinations with
coefficient functions produce vector fields on TQ which need not belong to the span of the lifts
of the given vector fields. For a (holonomic) example of a two–dimensional Lie group with three
indipendent horizontal gauge momenta see Section 6 of [22].
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4 On the number of weakly Noetherian constants of motion.

4.1 First integrals of distributions.

As explained in the Introduction, our aim is to develop a method to compute an upper bound on
the number of functionally independent weakly Noetherian constants of motion. The key will be
regarding these functions as ‘first integrals’ of a certain distribution. We thus begin this analysis
by introducing the notion of first integrals of a distribution and studying some of their properties.

For all notions and properties relative to distributions, and in particular for the definition
of smooth and real analytic distributions, we refer to [33, 37] (which call however generalized
distribution what we call here distribution) and to [31, 12].

Given two distributions T and S on a manifold M , we say that T is an over–distribution of S,
and write T ⊇ S, if their fibers satisfy Tm ⊇ Sm for all m ∈M . We use the term under-distribution
in a similar way.

We say that a smooth function F : M → R is an first integral of a distribution T on a
manifold M if the distribution with fibers ker dF (m) is an over–distribution of T , that is,

ker dF (m) ⊇ Tm ∀m ∈M . (7)

A local first integral of T is an first integral of the restriction of T to some open subset of M .
The notion of first integrals of a distribution generalizes in an obvious way that of first integrals

(or constants of motion) of a vector field. Even though this notion seems to be rather natural,
we have not been able to find any reference to it in the literature; therefore, we collect here a
few properties of these objects. Roughly speaking, the relevant fact is that the first integrals of
a distribution are constant on the (Stefan–Sussmann) orbits of the distribution, which, for non
integrable distributions, have dimensions larger than the rank of the distribution. Thus, first
integrals of a distribution are first integrals of the foliation that it generates, and the dimension of
the orbits puts a bound on the number of functionally independent first integrals which is stricter
than that given by the rank of the distribution. We give now a formal, and computationally more
convenient, ‘infinitesimal’ statement of this fact.

Preliminarily we recall that, given a smooth distribution T , there exists a unique smooth
over–distribution T ∞ of T which is involutive and is minimal among all smooth involutive over–
distribution of T . This distribution is called the involutive closure of T . If T is real analytic,
then T ∞ is real analytic and there is a standard way to compute T ∞, which is based on taking
commutators, see Section 4.3. For some details, see [31, 12] and references therein.

Proposition 1. Let T be a smooth distribution on M and U ⊂M an open set. A smooth function
F : U → R is a first integral of T |U if and only if it is a first integral of T ∞|U .

Proof. We use the following notation: if D is a (not necessarily smooth) distribution, then smt(D)
denotes the largest smooth under–distribution of D [29].

Preliminarily, we prove that (T |U )∞ = T ∞|U . One inclusion is obvious: T ∞|U is a smooth
involutive over–distribution of T |U and hence is an over–distribution of (T |U )∞. Vice–versa, let
B be the distribution on M which coincides with (T |U )∞ on U and has fibers TmM for m /∈ U .
Therefore smt(B)|U = (T |U )∞ because the smoothing operation does not change the fibers of a
smooth distribution. On the other hand, smt(B) is a smooth over–distribution of T which is also
involutive. Hence, smt(B) ⊇ T ∞ and (T |U )∞ = smt(B)|U ⊇ T ∞|U .

We thus write T |∞U for (T |U )∞ = T ∞|U . If F is a first integral of T |∞U then it is a first integral
of T |U ⊆ T |∞U . Conversely, assume that F is a first integral of T |U , that is, ker dF ⊇ T |U . The
distribution ker dF need not be smooth. Nevertheless, since T |U is smooth, ker dF ⊇ smt(ker dF ) ⊇
T |U . Since the commutator of any two smooth sections of ker dF is a smooth section of ker dF , the
distribution smt(ker dF ) is involutive. That ker dF ⊇ T |∞U follows now from the minimality of T |∞U
among the smooth involutive over–distributions of T |U , which implies smt(ker dF ) ⊇ T |∞U .
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For each m ∈M , define
cm(T ∞) := corank T ∞m .

If T is a smooth distribution, so is T ∞ and the set M∞reg of its regular points is open and dense in
M [12] (a point is said to be regular if the the distribution has constant rank in a neighbourhood
of it). Thus, Proposition 1 implies

Proposition 2. If T is a smooth distribution on a manifold M , then each point m ∈ M∞reg has
a neighbourhood in which there exist cm(T ∞), but not cm(T ∞) + 1, functionally independent first
integrals of T .

Proof. In a neighbourhood U of a regular point m of T ∞ the smooth distribution T |∞U has constant
rank and, being involutive, defines a smooth regular foliation of U with leaves of codimension
cm(T ∞); in any set of local coordinates adapted to this foliation, the coordinates transversal to
the leaves are first integrals of the restriction of T ∞ to the coordinate domain.

4.2 On the number of weakly Noetherian constants of motion.

We consider now a nonholonomic Hamiltonian system (H,M) of the type considered so far and,
as a first step, we give a characterization of its constants of motion as first integrals of a certain
distribution on the constraint manifold M . (From now on we shall consider only objects which are
defined on M and we shall therefore work exclusively in M , not anymore in T ∗Q).

We will use the following notation. Given a finite number of smooth vector fields X1, . . . , Xd on
M , 〈X1, . . . , Xd〉m or 〈X1(m), . . . , Xd(m)〉 denotes the subspace of TmM spanned byX1(m), . . . , Xd(m).
Moreover, 〈X1, . . . , Xd〉 denotes the distribution with fibers 〈X1, . . . , Xd〉m.

Proposition 3. A smooth function F : M → R is a constant of motion of a nonholonomic system
(H,M) if and only if

ker dF (m) ⊇
(

ker dH(m) ∩ Dm
)ω ∩ TmM ∀m ∈M . (8)

Proof. A function F on M is a constant of motion of (H,M) if and only if 〈dF,XTM
H 〉 = 0 at all

points of M , that is,
ker dF (m) ⊇

〈
XTM
H

〉
m

∀m ∈M .

Note that the TM–component uTM of a vector u ∈ Tm(T ∗Q) is given by (u+Dωm)∩TmM . Hence,
〈XTM

H 〉m = (〈XH〉m +Dωm) ∩ TmM . Recalling that XH is symplectically orthogonal to ker dH we
thus have 〈XTM

H 〉m = [(ker dH(m))ω +Dωm] ∩ TmM = (ker dH(m) ∩ Dm)ω ∩ TmM .

Remarks 1. (i) Characterization (8) of constants of motion of nonholonomic systems is in a
sense dual to characterizations given in [16, 18, 41]. Since (5) implies Tm(T ∗Q) = (TmM)ω⊕Dm
for all m ∈ M , on the points of M there is a splitting X = XTMω

+ XD of vector fields on T ∗Q
which is dual to (6). As proven in [41], a function F : M → R is a constant of motion of (H,M)
if and only if for one, and therefore any, extension F̃ of F off M ,

XD
F̃

(H)|M = 0 . (9)

Note that this condition is equivalent to

XD
F̃

(m) ∈
(

ker dH(m) ∩ Dm
)

+ TmM
ω ∀m ∈M ,

which can be compared to (8). A reformulation of condition (9) which, like condition (8), avoids
the use of extensions of functions off M can be given in terms of distributional Hamiltonian vector
fields [15].
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(ii) A function F is a constant of motion of a Hamiltonian vector field XH if and only if
either XH(F ) = 0 or, equivalently, XF (H) = 0. Condition (9) is manifestly an analogue of the
latter condition. Instead, (8) is an analogue of condition XH(F ) = 0, that is, ker dF ⊇ 〈XH〉.
In fact, if there are no nonholonomic constraints, then M = T ∗Q, D = T (T ∗Q) and therefore(

ker dH ∩ D
)ω ∩ TM = (ker dH)ω = 〈XH〉.

Based on Proposition 3, we can now give the following characterization of weakly Noetherian
constants of motion:

Proposition 4. Fix the configuration manifold Q, the constraint distribution D on Q, an action
ΨQ of a Lie group G on Q, and a ΨT∗Q–invariant kinetic energy T : T ∗Q→ R. Let IG be the set
of all ΨQ–invariant smooth real functions on Q. For each m ∈M define

Im :=
⋂
V ∈IG

ker
(
dT (m) + d(V ◦ π∗Q)(m)

)
(10)

∆m :=
(
Im ∩ Dm

)ω ∩ TmM . (11)

Then, a smooth function F : M → R is a weakly Noetherian constant of motion relative to
(T,M,ΨQ) if and only if

ker dF (m) ⊇ ∆m ∀m ∈M . (12)

Proof. A function F is a weakly Noetherian constant of motion if and only if, at each point m ∈M ,
inclusion (8) is satisfied for all H = T +V ◦π∗Q with V ∈ IG. Omitting for shortness the indication
of the point m, this is equivalent to (ker dF )ω ⊆

(
ker d(T + V ◦ π∗Q) ∩ D

)
+ TMω for all V ∈ IG,

namely
(ker dF )ω ⊆

⋂
V ∈IG

[(
ker d(T + V ) ∩ D

)
+ TMω

]
.

Since the transversality ofDω and TM implies that ofD and TMω, the subspace
⋂
V ∈IG

[(
ker d(T+

V ) ∩ D
)

+ TMω
]

equals (I ∩ D) + TMω.

Let ∆ be the distribution on M with fibers ∆m ⊆ TmM as in (12). In view of (7), Proposition 4
means that, if ∆ is smooth, then a function F : M → R is a weakly Noetherian constant of motion if
and only if it is a first integral of the distribution ∆. Therefore, if cm(∆∞) denotes the codimension
of the fiber ∆∞m in TmM , that is,

cm(∆∞) = dimM − rank ∆∞m = (2n− k)− rank ∆∞m ,

then by Proposition 2 in a neighbourhood of each regular point m of ∆∞ there exist cm(∆∞),
but not cm(∆∞) + 1, functionally independent weakly Noetherian constants of motion relative to
(T,M,ΨQ). From a dynamical point of view, the existence of local constants of motion of a
dynamical system has no particular significance—the rectification theorem ensures the existence
of the maximal number of them. Thus, this fact cannot be considered as an existence result of
weakly Noetherian constants of motion, but an upper bound on their number:

Theorem 1. Under the hypotheses of Proposition 2, every set of functionally independent global
weakly Noetherian smooth constants of motion relative to (T,M,ΨQ) contains at most c(∆∞) :=
minm∈M cm(∆∞) elements.

In practice, however, the estimate provided by Theorem 1 may be used as a guide for the
search of as many weakly Noetherian constants of motion as possible, including horizontal gauge
momenta.

Of course, the effectiveness of this approach depends on the possibility of constructing the
distribution ∆∞, which in turn requires the knowledge of ∆. As we review in the next subsection,
there is a standard procedure for the construction of ∆∞ if the distribution ∆ is real analytic (see
e.g. Chapter 3 of [12] for details and references). The construction of the distribution ∆ will be
done in Section 5 under suitable assumptions on the actions ΨQ.
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4.3 Construction of ∆∞.

We assume now that, as it happens in typical cases, the distribution ∆ is real analytic. As we
have already mentioned, there a standard way of constructing the involutive closure of a real
analytic distribution [12]. Since any real analytic distribution is locally finitely generated, in any
sufficiently small open set U ⊆ M∞reg there are r = rank ∆ independent vector fields X1, . . . , Xd

such that ∆1 := ∆|U has fibers ∆1
m =

〈
X1, . . . , Xd

〉
m

, that is,

∆1 = 〈X1, . . . , Xd〉 .

Define
∆s+1 := ∆s ∪ [∆s,∆s] , s = 1, . . . , n− 1 ,

where [∆s,∆s] is the distribution whose sections are all the commutators [η, ξ] for η, ξ sections of
∆s, that is,

∆2 = 〈X1, . . . , [X1, X2], . . .〉
∆3 = 〈X1, . . . , [X1, X2], . . . , [X1, [X1, X2]], . . . , [[X1, X2], [X1, X3]], . . .〉

etc. Thus, ∆∞ = ∆s where s is the smallest positive integer such that ∆s is integrable or, in other
words, the smallest positive integer such that ∆s = ∆s+1.

Thus, in order to apply the criterion of Theorem 1 to a specific nonholonomic system with
analytic distribution ∆, it suffices to find a system of generators of ∆ in a neighbourhood of each
of its regular points and then compute sufficiently many Lie brackets of these generators, checking
for linear independence.

This procedure can be implemented in two ways. One is of course that of parameterizing the
constraint manifold M and writing the generators of ∆ using the chosen local coordinates. The
other is that of making all computations using extensions off M of the chosen local generators
X1, . . . , Xd of ∆. In fact, if X̃1, . . . , X̃d are extensions of X1, . . . , Xd off M , then

[X̃a, X̃b]|M = [Xa, Xb] ∀ a, b

for a known property of related vector fields, see e.g. [37]. We will use both methods in the
examples below.

5 The distribution ∆ for free and proper actions

5.1 Determination of ∆.

The determination of the distribution ∆ requires the determination of the distribution I as in (10).
This is an easy task if the action is proper and free, and we limit ourselves to this case.

As above, we denote by G the distribution on Q whose fibers Gq are the tangent spaces TqOq
to the orbits Oq of the action ΨQ. For our purposes it is sufficient to determine ∆ in Darboux
coordinates (q, p). Thus, we identify the tangent spaces T(q,p)T

∗Q with R2n (or with Rn × Rn,
when we want to stress the individual roles of the q– and p–components of the tangent vectors),
we identify the spaces Gq = TqOq and Dq with subspaces of Rn and we identify the spaces T(q,p)M ,
∆(q,p) and I(q,p) with subspaces of R2n. In the sequel, the dot denotes the scalar product in Rn
and, if E is a subspace of Rn, then E⊥ denotes its orthogonal complement in Rn; if v ∈ Rn,
then v⊥ stands for 〈v〉⊥. We will distinguish between row and column vectors only when some
ambiguity might arise. As before, we denote by A(q) the kinetic matrix, so that the kinetic energy
is T (q, p) = 1

2p ·A(q)−1p.
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Lemma 1. In addition to the assumptions of Proposition 4, assume that the action ΨQ is free
and proper. Then, at each point (q, p) ∈M ,

I(q,p) =
{

(vq, vp) ∈ Rn × Rn : vq ∈ Gq , vp ∈ T ′p
⊥ −

vq · T ′q
‖T ′p‖2

T ′p

}
(13)

where
T ′p :=

∂T

∂p
(q, p) = A(q)−1p and T ′q :=

∂T

∂q
(q, p) . (14)

Proof. A vector v = (vq, vp) ∈ I(q,p) if and only if d(T + V )v = 0 for all V ∈ IG, namely if and
only if ∂V

∂q · vq = 0 for all V ∈ IG and T ′q · vq + T ′p · vp = 0. If the action is free and proper, then
the condition

∂V

∂q
· vq = 0 ∀ V ∈ IG

is equivalent to vq ∈ Gq (see e.g. Theorem 2.5.10 of [37]). If p = 0 then T ′p = T ′q = 0 and there
are no conditions on vp; this is consistent with (13) because in this case T ′p

⊥ = Rn and T ′q = 0. If
p 6= 0 then vp ∈ T ′p

⊥ − ‖T ′p‖−2(vq · T ′q)T ′p.

Lemma 2. Under the hypotheses and with the notation of Lemma 1, at any point (q, p) ∈M a
vector (uq, up) ∈ Rn × Rn belongs to

[
I(q,p) ∩ D(q,p)

]ω if and only if

uq ∈ 〈T ′p〉 and up ∈ [Dq ∩ Gq]⊥ −
uq · T ′p
‖T ′p‖2

T ′q (15)

with T ′p and T ′q as in (14).

Proof. Formulas (4) and (13) imply

I(q,p) ∩ D(q,p) =
{

(vq, vp) ∈ Rn × Rn : vq ∈ Dq ∩ Gq, vp ∈ T ′p
⊥ −

T ′q · vq
‖T ′p‖2

T ′p

}
. (16)

Thus, a vector (uq, up) ∈ Rn × Rn is symplectically orthogonal to I(q,p) ∩ D(q,p) if and only if
uq · vp = up · vq for all vq ∈ Dq ∩ Gq and all vp ∈ T ′p

⊥ − (T ′q · vq)‖T ′p‖−2T ′p, that is, if and only if

uq ·
(
T ′p
⊥ −

vq · T ′q
‖T ′p‖2

T ′p

)
= up · vq ∀vq ∈ Dq ∩ Gq . (17)

When vq = 0 this equality reduces to uq · T ′p
⊥ = 0, which gives uq = λT ′p for some λ ∈ R. For this

value of uq, (17) becomes (λT ′q + up) · vq = 0 for all vq ∈ Dq ∩ Gq. This shows that

[I(q,p) ∩ D(q,p)]ω = {(uq, up) : uq = λT ′p , up ∈ [Dq ∩ Gq]⊥ − λT ′q , λ ∈ R} .

Expressing λ in terms of uq and T ′p leads to (15).

We can now complete the characterization of ∆. Note that, since A is an invertible n×n matrix
and S is a k × n matrix with rank k, SA−1ST is an invertible k × k matrix. Note also that, if the
vector subspace

[
Dq ∩ Gq

]⊥ of Rn is k–dimensional and has a basis formed by vectors w1, . . . , wk
of Rn, then the vector subspace

[
I(q,p) ∩ D(q,p)

]ω of R2n is (k + 1)–dimensional and has a basis
formed by the vectors (0, w1), . . . , (0, wk), (T ′p,−T ′q) of R2n.
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Proposition 5. Under the hypotheses and with the notation of Lemma 1, at any point (q, p) ∈M
a vector (uq, up) ∈ Rn × Rn belongs to ∆(q,p) if and only if it satisfies (15) and

up ∈ A(q)Dq − S(q)T
[
S(q)A(q)−1S(q)T

]−1
K(q, p)uq (18)

where K(q, p) is the matrix with components

K(q, p)ai =
∂

∂qi

(
S(q)A(q)−1p

)
a
, a = 1, . . . , k , i = 1, . . . , n .

Proof. Recall that ∆m = [Im∩Dm]ω∩TmM . By Lemma 2, (uq, up) ∈ [Im∩Dm]ω if and only if uq
and up satisfy (15). Since M is (locally) the zero level set of the k functions τ̂a = (S(q)A(q)−1p)a,
a vector (uq, up) ∈ Rn is in T(q,p)M if and only if

uq ·
∂τ̂a
∂q

(q, p) + up ·
∂τ̂a
∂p

(q, p) = 0 ∀a = 1, . . . , k ,

that is, if and only if
S(q)A(q)−1up = −K(q, p)uq . (19)

Given that Dq = kerS(q) it is immediate to verify that this condition is equivalent to up ∈
AD − ST (SA−1ST )−1Kuq.

5.2 Some consequences.

We draw here a few consequences from Proposition 5. First, we have:

Corollary 1. If G acts freely and properly on Q and G is an over–distribution of D, then ∆ has
rank one at all points of M , except on the sumbmanifold p = 0 of M where it has rank zero.

Proof. We shall prove a little bit more, that is, that if the action is free and proper, then the
distribution ∆ satisfies

dim ∆(q,p) = 1 + n− k − dim(Gq ∩ Dq
)

if p 6= 0

dim ∆(q,0) = n− k − dim(Gq ∩ Dq
)
.

This implies the statement because, if Gq ∩ Dq = Dq, then dim(Gq ∩ Dq) = n − k. Let m =
(q, p). Note that dim ∆m = 2n − dim ∆ω

m. From (11) and the transversality of TmM and Dωm it
follows that ∆ω

m =
(
Im ∩Dm

)
⊕ (TmM)ω. Hence dim ∆ω

m = dim(Im ∩Dm) + dim[TmM ]ω, where
dim[TmM ]ω = k. From (16) it follows that, if p 6= 0, then dim(Im∩Dm) = dim (Gq ∩ Dq) + (n−1)
because T ′p

⊥ is a subspace of Rn of dimension n − 1. If instead p = 0, then T ′p
⊥ = Rn and

dim(Im ∩ Dm) = dim (Gq ∩ Dq) + n.

Hence, if the action ΨQ on Q is free and proper, and if the group orbits are sufficiently large,
so that G ⊇ D, then the distribution ∆ has rank one at all points except at p = 0, where its rank
is zero. This implies that ∆ is integrable and ∆∞ = ∆. Therefore, it follows from the statement
at the beginning of the proof of Theorem 1 that, in this case, given any ΨT∗Q–invariant kinetic
energy T on T ∗Q, in a neighbourhood of each point of M there is the maximum number 2n−k−1
of functionally independent local weakly Noetherian constants of motion. Thus, in this case, which
includes the case of transitive actions, our method does not give any new information with respect
to the rectification theorem, but the fact that the local constants of motion can be chosen to be
weakly Noetherian. This is a sort of weakly Noetherian version of the rectification theorem.

If G is not an over–distribution of D, instead, the distribution ∆ has rank greater than one and
may be not integrable. This puts some limitations on the number of (even local) weakly Noetherian
constants of motion.

Next, we have:
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Corollary 2. Given Q, M and T , consider two free and proper actions ΨQ
1 and ΨQ

2 of two Lie
groups G1 and G2 on Q, whose tangent lifts preserve T . If the orbits of the ΨQ

1 –action contain
those of the ΨQ

2 –action, then any weakly Noetherian constant of motion relative to (T,M,ΨQ
2 ) is

also a weakly Noetherian constant of motion relative to (T,M,ΨQ
1 ).

Proof. According to (13) and (18), the fact that a vector tangent to M is in ∆ depends on the
group action only through the tangent space to the group orbits.

In particular, if two different group actions have the same orbits in Q (but possibly different
orbits in TQ), then they have the same weakly Noetherian constants of motion.

6 Example: the rolling vertical disk.

6.1 The system.

As a first test case for the method, and as an illustration of it, we consider here the system formed
by a disk which is constrained to roll without slipping on a horizontal plane, and to stand vertically.
This is a well known system, which has been considered e.g. in [16, 8, 13, 23]. We shall consider
various classes of forces acting on the disk, with various symmetry groups, so as to show how
changing the symmetry group changes the dimension of ∆∞ and thus the bound on the number of
weakly Noetherian constants of motion provided by Theorem 1. We shall then test the optimality
of these bounds by comparison to the actual number of global weakly Noetherian constants of
motion, which in the considered cases can be determined by analyzing the equations of motion.

The holonomic system has configuration manifold Q = R2 × S1 × S1 3 (x, y, θ, ϕ), where
(x, y) ∈ R2 are Cartesian coordinates of the point of contact, ϕ is the angle between the x–axis
and the projection of the disk on the plane, and θ is the angle between a fixed radius of the disk
and the vertical. In order to simplify the notation, we assume that mass and radius of the disk
are both unitary. The nonholonomic no–slipping constraint imposes that the point of the disk
in contact with the plane has zero velocity, that is, ẋ = θ̇ cosϕ and ẏ = θ̇ sinϕ. The rank–two
constraint distribution has fibers

D(x,y,θ,ϕ) =
〈

cosϕ∂x + sinϕ∂y + ∂θ , ∂ϕ
〉

that is, kerS(x,y,θ,ϕ) for

S(x,y,θ,ϕ) =
(

cosϕ sinϕ −1 0
− sinϕ cosϕ 0 0

)
.

The (Lagrangian) kinetic energy is T = 1
2

(
ẋ2 + ẏ2

)
+ 1

2Iθ̇
2 + 1

2Jϕ̇
2, where I and J are the

appropriate moments of inertia. If we write h = 1/I, k = 1/J and if V (x, y, ϕ, θ) is the potential
energy of the forces acting on the disk, then the Hamiltonian is

H(x, y, ϕ, θ, px, py, pθ, pϕ) =
p2
x + p2

y

2
+
h

2
p2
θ +

k

2
p2
ϕ + V (x, y, ϕ, θ) .

The constraint manifold

M =
{

(x, y, θ, ϕ, px, py, pθ, pϕ) : px = kpθ cosϕ , py = kpθ sinϕ
}

is six–dimensional. It is diffeomorphic to R4×T2 and can be globally parameterized with (x, y, θ, ϕ, pθ, pϕ).
Using these coordinates, the equations of motion, which can be computed from (2) and (3), are

ẋ = hpθ cosϕ , ẏ = hpθ sinϕ ,
θ̇ = hpθ , ϕ̇ = kpϕ , (20)

ṗθ = − 1
1 + h

(
V ′θ + V ′x cosϕ+ V ′y sinϕ

)
, ṗϕ = V ′ϕ .
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These equations are simple enough to allow us to interpret the results of the forthcoming analysis,
where increasingly smaller symmetry groups are considered. For simplicity of exposition, we classify
these groups via the corresponding classes of invariant potentials.

6.2 No forces.

If we allow only constant external potentials, then the system is invariant under the group G =
R2 × T2, which acts on Q by translations along the coordinates (x, y, θ, ϕ).

Since this action is transitive, our method gives the existence of sets of five weakly Noetherian
local constants of motion in a neighbourhood of any point of M , see Corollary 1. As we now
show, only four of these constants of motion are globally defined; two of them can be chosen to be
horizontal momenta and the others horizontal gauge momenta.

In order to see this observe that, for constant potentials, the equations of motion (20) become

ẋ = hpθ cosϕ , ẏ = hpθ sinϕ , θ̇ = hpθ , ϕ̇ = kpϕ , ṗθ = 0 , ṗϕ = 0 . (21)

Thus pθ and pϕ are constants of motion, and they are obviously horizontal momenta. Observe
now that each subsystem (θ, pθ) and (ϕ, pϕ) performs uniform rotations on S1 × R, with angular
frequencies hpθ and kpϕ respectively. Since ϕ grows linearly in time and pθ is constant, inte-
grating the first two equations (21) shows that the projection of the motion in the (x, y)–plane is
generically a uniform circular motion, with frequency kpϕ. (The motion is, exceptionally, linear
if pϕ = 0). Thus, motions of the system are generically quasi–periodic on tori of dimension three,
with frequencies hpθ, kpϕ, kpϕ. Since two of the frequencies are equal the closure of all these orbits
is contained in tori of dimension two. But since the ratio hpθ/(kpϕ) varies continuously, the set of
orbits whose closure is a two–dimensional torus forms a dense set. Therefore, there are not more
than 6− 2 = 4 independent constants of motion which are defined in open invariant sets.

A simple computation shows that two other globally defined constants of motion are kxpϕ −
hpθ sinϕ and kypϕ + hpθ cosϕ. They are horizontal gauge momenta because, if the action is
transitive, then any global constant of motion which is linear in the velocities is a horizontal gauge
momentum, see Proposition 4 of [22].

Remark 4. The fifth local integral gives the “slope” of the orbits on the two–dimensional tori. It
can be taken e.g. as hpθϕ−kpϕθ and it is not globally defined on the tori with irrational kpθ/(hpϕ).
Hence, it is not a gauge momentum even though it is locally a linear combination of two horizontal
momenta.

6.3 Potentials V = V (ϕ).

We allow now potential energies which depend on the angle ϕ, thus restricting the symmetry
group to G = R2 × S1, which acts by translations along x, y and θ. We begin by determining the
distribution ∆:

Fact 1. The fibers of ∆ are spanned by the two vector fields

X1(q, p) = ∂pϕ (22)
X2(q, p) = px∂x + py∂y + hpθ∂θ + kpϕ∂ϕ − kpϕpy∂px + kpϕpx∂py . (23)

Proof. The fibers of ∆ are the subpaces of vectors (uq, up) ∈ Rn×Rn which satisfy conditions (15)
and (18). First note that, at a point q = (x, y, θ, ϕ) ∈ Q, the distribution of tangent spaces to the
orbits of the group action has fiber Gq =

〈
∂x, ∂y, ∂θ

〉
and hence

Dq ∩ Gq =
〈

cosϕ∂x + sinϕ∂y + ∂θ
〉
.
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Consider now a point p = (px, py, pθ, pϕ) such that (q, p) ∈ M and fix a vector uq ∈ R4 such that
uq ∈

〈
T ′p
〉

= 〈A−1p〉, that is,
uq = λ

(
px, py, hpθ, kpϕ

)
(24)

for some λ ∈ R. Since the kinetic matrix A is constant, the vector T ′q := ∂T
∂q = 0 and the second

condition (15) reduces to the orthogonality of up to Dq ∩ Gq, that is,

up =
(
α, β,−α cosϕ− β sinϕ, γ

)
(25)

for some α, β, γ ∈ R. Simple computations show that, on the points of M ,

K(q, p) =
(

0 0 0 py cosϕ− px sinϕ
0 0 0 −px cosϕ− py sinϕ

)
=
(

0 0 0 0
0 0 0 −hpθ

)
ST (SA−1ST )Kuq = λ

(
hkpθpϕ sinϕ , −hkpθpϕ cosϕ , 0 , 0

)T
= λ

(
kpypϕ , −kpxpϕ , 0 , 0

)T
,

where the last expressions follow from the constraint equations hpθ cosϕ = px and hpθ sinϕ = py.
Thus, since ADq =

〈
cosϕ∂x + sinϕ∂y + h−1∂θ, k

−1∂ϕ
〉
, condition (18) is

up =
(
µ cosϕ− λkpypϕ , µ sinϕ+ λkpxpϕ , µh

−1 , νk−1
)

(26)

for some µ, ν ∈ R. Together, conditions (25) and (26) demand that µ = 0, α = −λkpypϕ and
β = λkpxpϕ. Thus, we conclude that (uq, up) ∈ ∆(q,p) if and only if

uq = λ
(
px, py, hpθ, kpϕ

)
T and up =

(
− λkpypϕ , λkpxpϕ , 0 , ν

)T
with λ, ν ∈ R. This shows that ∆ =

〈
X1, X2

〉
.

Note that the distribution ∆ has obviously rank two at all points of M , except where pθ =
pϕ = 0, where it has rank 1. Moreover, it is real analytic.

Fact 2. The distribution ∆∞ has rank five at all points of M except where pθ = 0, where it has
rank two.

Proof. The distribution ∆1 := ∆ is not integrable because the vector field

h−1[X1, X2] = ∂θ − py∂px + px∂py =: X3

is linearly independent of X1 and X2 in all of M but where pθ = 0.
We thus investigate the integrability of the distribution ∆2 =

〈
X1, X2, X3

〉
. Note that [X1, X3] =

0 and
[X2, X3] = py∂x − px∂y =: X4 .

A simple computation shows that, in M , X4 is linearly independent of X1, X2, X3 wherever pθ 6= 0.
Therefore, ∆2 =

〈
X1, X2, X3

〉
is not integrable.

The distribution ∆3 is generated by X1, X2, X3 and X4. Note that [X1, X4] = 0,

[X3, X4] = px∂x + py∂y =: X5 ,

and [X2, X4] = kpϕX5. The vector fields X1, X2, X3, X4, X5 are linearly independent at all points
of M except where pθ = 0. Thus, ∆3 is not integrable.

The distribution ∆4 is generated by X1, X2, X3, X4 and X5. Since [X1, X5] = [X4, X5] = 0,
[X3, X5] = −X4 and [X2, X5] = −kpϕX4, ∆4 is integrable. Thus, ∆∞ = ∆4. Computing the
minors of the matrix whose rows are the vector fields X1, X2, X3, X4, X5 one sees that this matrix
has rank five wherever pθ 6= 0, and rank two where pθ = 0.
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Since ∆∞ has rank five in an open dense subset of M and M is six–dimensional we conclude that
the system has at most one weakly Noetherian constant of motion. It is immediate to verify that
the system has indeed one global weakly Noetherian constant of motion, which is the horizontal
momentum pθ. In fact, for potentials depending only on the angle ϕ the equations of motion are

ẋ = hpθ cosϕ , ẏ = hpθ sinϕ , θ̇ = hpθ , ϕ̇ = kpϕ , ṗθ = 0 , ṗϕ = −V ′(ϕ) .

If we compare this situation with that of constant potentials of the previous subsection, we
note that the (ϕ, pϕ) subsystem has still one constant of motion, the energy p2

ϕ/(2k) + V (ϕ),
which however now depends on V and is therefore not weakly Noetherian. On the other hand, the
nonconstancy of ϕ̇ has the consequence that the (x, y) subsystem might not have a global constant
of motion at all—not only a weakly Noetherian one—because of, e.g., the presence of a limit cycle.

6.4 Other cases.

The study of other symmetry groups is computationally very similar to the last one, and we
review very quickly a few cases. Technically, changing the group changes the distribution G, which
determines the p–components of vectors of ∆ through its intersection with D, see (15).

Potentials V = V (x, y). If the group is G = T2 acting by translations of the two angles θ and ϕ,
then the distribution of tangent spaces to the orbits of the group action has fibers Gq =

〈
∂ϕ, ∂θ

〉
and

Dq ∩ Gq =
〈
∂ϕ
〉
.

Correspondingly, the second condition (15), namely up ∈ [Dq ∩ Gp]⊥, imposes that the fourth
component of up is zero. Vectors (uq, up) in ∆(q,p) are thus given by (24) and

up =
(
µ cosϕ− λkpypϕ , µ sinϕ+ λkpxpϕ , µh

−1 , 0
)

for λ, µ ∈ R. Equivalently, ∆ =
〈
X1, X2

〉
with

X1 = cosϕ∂px + sinϕ∂py + ∂pθ (27)

and X2 as in (23). The distribution ∆1 := ∆ has rank two in all of M ′ = M \ {p = 0} and
is not integrable. Its involutive closure is ∆4, which has rank five in M ′. (It is spanned by X1,
X2, [X1, X2], [X2, X3] and [X2, X4]). Therefore, the system has at most one weakly Noetherian
constant of motion. A glance at the equations of motion

ẋ = hpθ cosϕ , ẏ = hpθ sinϕ , θ̇ = hpθ , ϕ̇ = kpϕ ,

ṗθ = h
1−h

(
V ′x cosϕ+ V ′y sinϕ

)
, ṗϕ = 0

shows that the horizontal momentum pϕ is a constant of motion (and that there are no other
constants of motion, except the energy, unless V has special properties).

Potentials V = V (θ, ϕ). Finally, we consider the case of potentials which are invariant under
translations along x and y. The distribution G =

〈
∂ϕ, ∂θ

〉
has trivial intersection with D and there

is no restriction on up from the second condition (15). Vectors (uq, up) in ∆(q,p) are thus given by
(24) and

up =
(
µ cosϕ− λkpypϕ , µ sinϕ+ λkpxpϕ , µh

−1 , νk−1
)

for λ, µ, ν ∈ R. Equivalently, ∆ =
〈
X1, X2, X3

〉
with X1 as in (27), X2 as in (23) and X3 = ∂pθ .

The distribution ∆1 := ∆ has now rank three in all of M \ {p = 0}, is not integrable, and its
involutive closure is ∆4, which has has rank six in M \ {p = 0}. Therefore, the system has no
weakly Noetherian constants of motion.
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7 Example: the ball rolling on a surface of revolution.

7.1 Generalities.

We consider now a second, computationally more challenging example. This is the classical system
formed by a heavy homogeneous ball which is constrained to roll without slipping on a smooth
surface of revolution with vertical axis [39, 36, 28, 44, 21, 11]. The surface, if not convex, is
usually assumed to satisfy a technical condition which amounts to the fact that the ball should be
sufficiently small (see below), but it is otherwise arbitrary.

It is classically known that, whatever the surface, the system has three functionally independent
constants of motion [39, 28]. One is the energy and the other two have been shown to be horizontal
gauge momenta—and hence weakly Noetherian—relatively to a natural action of S1 × SO(3) [5,
38, 40] which corresponds to rotate the ball around its center and to rotate the center around the
surface’s axis. Dynamically this means that, given the surface, these two functions are constants
of motion for all systems obtained by replacing gravity with any other potential which depends
only on the height of the center of the ball.

In the case of gravity, additional independent constants of motion may exist for particular
choices of the surface. For instance, if the surface is convex, then the system is integrable and
there is a total of five functionally independent constants of motion [28, 20]. Known expressions of
the two additional constants of motion [20] involve a property of the solutions, the so–called shift
or phase [28], whose computation is prohibitive but which presumably depends on gravity. Hence,
it is expected that these additional integrals are not weakly Noetherian. Applying our method
we will show that this is indeed the case, under the additional hypothesis of real analyticity of
the surface. More generally, we will show that there are only two weakly Noetherian constants of
motion for any choice of the surface of revolution.

Since the computations involved in the determination of the distributions ∆1, ∆2, . . . and of
their ranks become quickly exceedingly complex to be performed by hand, we have done them
with the aid of a symbolic manipulation package (Mathematica [43]). Even so, the task is complex.
To succeed, we exploit in an essential way two facts. One is the real analyticity of the system,
which greatly simplifies the determination of the ranks of the distribution ∆2, . . . because, if a real
analytic distribution has rank p at one point, then its rank is ≥ p in an open dense set. The other
is the existence of the two weakly Noetherian constants of motion, which ensures that ∆∞ cannot
have rank greater than dimM − 2 = 6 and allows us to arrest the construction of the distributions
∆2,∆3, . . . when rank six is reached.

7.2 The system.

Since Routh [39], this system is usually studied under the hypothesis that the surface of contact
SC on which the ball rolls is such that the center of the ball moves on a smooth surface S, and it
is this latter surface which is regarded as given. Specifically, the embedding of the surface S in the
physical space R3 3 (x, y, z) is given by an equation of the form

z = F(
√
x2 + y2)

with an even, smooth function F : I → R, where I is either the entire real line or an open
interval symmetrical to zero. We will call ‘profile function’ the function F . Note that, under these
hypothesis, the surface S has a smooth minimum or maximum at the origin.

The hypothesis that the center of the ball moves on a smooth surface puts a few conditions on
the geometry of the problem, and we will benefit from one of them. Specifically, we will use the
fact that, at each point of concavity of the profile function, the radius of curvature of the graph of
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the profile function must be greater than the radius r of the ball, namely

|F ′′(x)|
1 + F ′(x)2

≤ 1
r

at each x ∈ I at which F ′′(x) < 0 . (28)

We will assume that the profile function F : I → R is real analytic. For notational simplicity,
we will consider only the case I = R, but all conclusions remain true for I an open interval.

The configuration manifold Q̃ of the system is diffeomorphic to R2×SO(3) 3 (x, y,R), where the
two coordinates (x, y) ∈ R2 parameterize the position

(
x, y, F(

√
x2 + y2)

)
of the center of the ball

and R ∈ SO(3) parameterizes the attitude of the ball. The kinetic energy of the system is invariant
under the tangent lift of the action (a,A).(x, y,R) = (x cos a− y sin a, y cos a+ x sin a,RA) of the
group S1×SO(3) 3 (a,A) on Q (see below the expression of the kinetic energy). Potential energies
which are invariant under this action depend only on the coordinates (x, y) and are constants on
the circles x2 + y2 = const. Our aim is to determine the number of weakly Noetherian constants
of motion relative to this action.

Since ∆∞ will be a real analytic distribution, its rank will take its maximum value in an open
and dense subset of Q̃. Therefore, we may freely exclude from Q̃ any submanifold of positive
codimension. Thus, we begin by excluding from Q̃ the submanifold (x, y) = (0, 0), which contains
points where the considered action is not free. Correspondingly, we resort to (suitably rescaled)
polar coordinates (ρ, γ) ∈ R+ × S1 to parameterize the position of the center of the ball, with

x =

√
J

m
ρ cos γ , y =

√
J

m
ρ sin γ

where m is the mass of the ball and J is its moment of inertia relative to any baricentric axis.
Furthermore, we use Euler angles (ϕ,ψ, ϑ) ∈ S1 × S1 × (0, π) to parameterize SO(3), with the
convention of ref. [2]. The coordinates (ρ, γ, ϕ, ψ, ϑ) are defined in an open and dense submanifold
Q of Q̃, to which we restrict our consideration. This submanifold Q is diffeomorphic to R+×S1×
S1 × S1 × (0, π) 3 (ρ, γ, ϕ, ψ, ϑ), and will be identified with it.

In this way, we are left with a holonomic system with configuration manifold Q. If we define

F (ρ) :=
√
m

J
F

(
ρ

√
J

m

)
and G(ρ) := 1 + F ′(ρ)2 ,

then the Lagrangian kinetic energy may be written as

J

2

[
G(ρ)

(
ρ̇2 + ρ2ϑ̇2

)
+ ϑ̇2 + ϕ̇2 + ψ̇2 + 2ϕ̇ψ̇ cosϑ

]
.

The constraint of rolling without slipping is given by two 1–forms whose kernel defines a rank 3
constraint distribution on Q, see e.g. [39, 28]. The matrix representation of these 1–forms is

S(ρ, γ, ϕ, ψ, ϑ) =
(√

G(ρ) 0 0 kcγϕsϑ ksγϕ
0 ρ

√
G(ρ) kF ′(ρ) k(F ′(ρ)cϑ − sγϕsϑ) kcγϕ

)
where k := r

√
m/J . In order to make formulas more readable, here and in the sequel we use the

following shortands: sϑ = sinϑ, cϑ = cosϑ, sγϕ = sin(γ − ϕ), cγϕ = cos(γ − ϕ), a = pψ − pϕcϑ,
b = pϕ − pψcϑ, c = pϑsϑ, d = pϕsϑ, α = csγϕ + acγϕ and β = ccγϕ − asγϕ.

We note now that, according to formulas (10) and (11), the distribution ∆∞ is invariant under
constant rescalings of the kinetic energy. Therefore, in order to determine this distribution for
the problem at hand, we may ignore the overall factor J in the expression of the kinetic energy.
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Doing so, and passing to the Hamiltonian formulation on T ∗Q via the Legendre transformation,
the kinetic energy becomes

T =
p2
ρ

2G(ρ)
+

p2
γ

2ρ2
+
p2
ϑ

2
+
p2
ϕ + p2

ψ − 2cϑpϕpψ
2s2ϑ

while the constraint manifold M is the eight–dimensional submanifold of T ∗Q given by the equa-
tions

pρ = −k αG
1/2

sϑ
, pγ = k ρ

β + F ′d

sϑG1/2
. (29)

Thus, the constraint manifoldM can be identified with T 3×(0, π)×R+×R3, with global coordinates
(γ, ϕ, ψ, ϑ, ρ, pϕ, pψ, pϑ).

¿From Section 5 we know that ∆∞ depends only on T , on S and on the group action. Hence,
in the case under study, ∆∞ depends on the single parameter k = r

√
m/J > 0. We will also write

j = 1 + k2. Finally note that, in terms of the rescaled profile function F , condition (28) becomes
|F ′′(x)| < G(x)/k wherever F ′′(x) < 0.

7.3 The distributions ∆ and ∆∞.

We will do all the computations which lead to ∆∞ using coordinates on M ⊂ R8 (rather than
extensions to R10). First, we have:

Fact 3. Assume that the profile function F : R → R is an even and real analytic function and
consider any positive value of the parameter k. Then the distribution ∆ has rank 2 in an open
dense subset of M , is real analytic, and is spanned by the two vector fields

X1 = −
[
kρ2G2s2ϑsγϕα

]
∂ρ −

[
kρG2s2ϑsγϕ(β + F ′d)

]
∂γ +

[
bρ2G5/2sϑsγϕ

]
∂ϕ

+
[
aρ2G5/2sϑsγϕ

]
∂ψ +

[
cρ2G5/2s2ϑ

]
∂ϑ −

[
abρ2G5/2sγϕ

]
∂pϑ

− j−1k3αρ2sϑF
′′(βF ′ − d)

([
sγϕF

′] ∂pϕ − [
(sϑ − cϑsγϕF ′)

]
∂pψ

)
X2 = cγϕsϑ∂pψ + sγϕ ∂pϑ .

Proof. To determine ∆ we follow its description given in Proposition 5 and Lemma 2. First, we
determine a set of generators of [I ∩ G]ω, see (15). Since the distribution G on Q is generated by
∂γ , ∂ϕ, ∂ψ and ∂ϑ, the fiber Dq ∩ Gq over a point q = (ρ, γ, ϕ, ψ, ϑ) ∈ Q is spanned by the two
vectors

(0, kF ′,−ρG1/2, 0, 0) , (0, k(sϑ − sγϕcϑF ′), 0, ρsγϕG1/2,−ρcγϕsϑG1/2) .

Hence, a basis for the subspace [Dq ∩ Gq]⊥ of R5 is formed by the three vectors

w1 = (1, 0, 0, 0, 0) , w2 = (0, 0, 0, cγϕsϑ, sγϕ) , (30)

w3 =
(
0, ρsγϕG1/2, ksγϕF

′, k(sγϕcϑF ′ − sϑ), 0
)
. (31)

Fix now a point (q, p) ∈M . Thus, as noticed just before Proposition 5, fixed any point (q, p) ∈M ,
a basis for the subspace

[
I(q,p)∩D(q,p)

]ω of R10 is given by the four vectors (0, w1), (0, w2), (0, w3),
(T ′p,−T ′q) with T ′p and T ′q as in (13), namely,

T ′q =
(
−
p2
γ

ρ3
−
G′p2

ρ

2G2
, 0, 0, 0,

ab

s3ϑ

)
, T ′p =

(pρ
G
,
pγ
ρ2
,
b

s2ϑ
,
a

s2ϑ
, pϑ

)
.
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Next, the space ∆(q,p) consists of those vectors (uq, up) ∈
[
I(q,p) ∩ D(q,p)

]ω which satisfy (18), or
equivalently (19), with

K =

 − pρG
′

2G3/2
kβ
sϑ

−kβsϑ 0 kbcγϕ
s2ϑ

ρG′−2G
2ρ2G1/2 pγ + kF ′′pϕ −kαsϑ

kα
sϑ

0 −kbsγϕ
s2ϑ

 .

Thus, a vector (uq, up) ∈ R10 belongs to ∆(q,p) if and only if it equals (λ4T
′
p, λ1w

1 + λ2w
2 +

λ3w
3 − λ4T

′
q) for some λ1, . . . , λ4 ∈ R and satisfies Sα−1up = −Kuq. Solving these equations

(via computer assisted symbolic computation) gives two vectors of R10 which, after dropping their
pγ– and pρ–components and substituting expressions (29) for pρ and pγ , reduce to X1 and X2. It
follows from their expressions that these two vector fields are real analytic in all of M .

In order to prove that ∆ has rank 2 in an open subset of M we consider the matrix with
columns X1, X2. The restriction of one of its 2 × 2 minors to the submanifold M1 of M where
γ = 0, ϕ = π/4, ϑ = π/2, pψ = 0, pϕ = 0, pϑ = 1 equals 1

2ρ
2G(ρ)5/2, which is everywhere nonzero.

By analiticity, this minor is non–zero in an open and dense subset of M , and X1 and X2 are there
linearly independent.

Fact 4. In addition to the hypotheses of Fact 3, assume that the profile function F satisfies
condition (28). Then ∆∞ has rank 6 in an open and dense subset of M .

Proof. The vector field X3 := [X1, X2] is given by

X3 =
[
kG2ρ2sγϕs

3
ϑ

]
∂ρ +

[
G5/2ρ2cϑs

2
ϑcγϕsγϕ

]
∂ϕ −

[
G5/2ρ2cγϕsγϕs

2
ϑ

]
∂ψ

−
[
G5/2ρ2s2γϕs

3
ϑ

]
∂ϑ −

[
j−1k3ρ2sγϕs

2
ϑ(d− βF ′)F ′F ′′

]
∂pϕ

+ρs2ϑ
[
j−1k3ρ(sϑ − cϑsγϕF ′)(d− βF ′)F ′′ + kG2s2γϕsϑ(β + dF ′)

+ρG5/2sγϕ(bsγϕ + ccγϕcϑ)
]
∂pψ

−ρG2cγϕsγϕsϑ
[
aρG1/2cϑ + ksϑ(β + dF ′)

]
∂pϑ .

The restriction to the submanifold M1 introduced in the proof of Fact 3 of one of the 3× 3 minors
of the matrix with columns X1, X2, X3 equals 1

4ρ
4G(ρ)5 > 0. Hence, ∆ is not integrable and we

proceed to consider the integrability of ∆2 = 〈X1, X2, X3〉.
A computation shows that [X2, X3] = 0. The expression of the vector field X4 := k−1[X1, X3]

is not yet extremely long—but since its inspection would not add much to the comprehension we
do not report it here. However, the restriction to the submanifold M1 of one of the 4 × 4 minors
of the matrix with columns X1, X2, X3, X4 equals

ρ8G7

16
(
G5/2 + j−1k3F ′2F ′′

)
.

Since G ≥ 1, this quantity is positive at each point at which F ′′ ≥ 0. If instead F ′′(x) < 0 then
F ′′(x) > −G(x)/k because of (28). Hence, since k2 < j,

G5/2 +
k3

j
F ′2F ′′ > G2 − k2

j
F ′2G > G(G− F ′2) = G ≥ 1 .

It follows that the distribution ∆2 is not integrable, and we proceed to consider the integrability
of ∆3 = 〈X1, X2, X3, X4〉.

By the Jacobi identity, the commutation of X2 with X3 = k−1[X1, X2] implies that also X2 and
X4 commute. Hence ∆4 = 〈X1, . . . , X6〉 with X5 = [X1, X4] and X6 = [X3, X4]. The expressions
of X5 and X6 are too long to be reported. Proceeding as above, we must now show that at least
one of the 6× 6 minors of the matrix with columns X1, . . . , X6 is nonzero at least at one point.
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One of these 6 × 6 minors is a function which, restricted to the submanifold M1, equals the
function Z : R+ → R given by

Z(ρ) =
1

210kj2
ρ17G(ρ)31/2Z1(ρ)Z2(ρ)

with

Z1 = 2jρG3 − k2(G+ k2)G′ + k3ρG1/2G′F ′

Z2 = k3
(
3ρG3 + k2GG′ + k2ρF ′′

2)
G′F ′ + 2G3/2

(
jρG4 + k4GG′F ′

2

+k2ρ
(

3
4F
′2 + 3

2j − 1
)
G′

2 − jk2ρF ′′
2 − k2ρ(G+ k2)GF ′F ′′′

)
We must prove that Z is nonzero in (at least) one point. Since G ≥ 1, this certainly happens if Z1

and Z2 do not identically vanish in a right neighbourhood of ρ = 0. Now, since we have assumed
that F , and hence F and G, are real analytic functions on the entire real line, the two functions
Z1 and Z2 are also real analytic on the entire real line. Therefore, in order to prove that they are
nonzero in a (right) neighbourhood of ρ = 0 it suffices to check that their first derivatives in ρ = 0
are nonzero. Observing that G(0) = 1, G′(0) = F ′(0) = 0 and G′′(0) = 2F ′′(0)2 one readily finds

Z ′2(0) = 2jZ ′1(0) = 4j2
(
1− k2F ′′(0)2

)
.

This is nonzero, unless kF ′′(0) = ±1. Since condition (28) implies F ′′(0) 6= −1/k, we have proven
that the minor in question does not identically vanish unless F ′′(0) = 1/k.

In order to show that the minor in question does not identically vanish even for this special
value of F ′′(0), we consider the restriction of this minor to the submanifold M2 of M defined by
γ = 0, ϕ = π/4, ϑ = π/2, pψ = 0, pϕ = 1, pϑ = 0. This restriction equals

ρ15G(ρ)31/2

64
√

2 kj2
(kF ′ + ρG1/2)Z3(ρ)Z4(ρ)

with

Z3 = k3ρF ′′ + 2jkG2F ′ + jρG5/2

Z4 = 12jk2G4F ′(G3/2 + kF ′′) + 2k2ρG5/2
(
3jF ′4 + 5k2F ′

2 − 3
)
F ′′

+k3ρ2G′(3G3 + k2F ′′
2)

+2kρG
[
5jG4F ′

2 + k2
(
(2k2 − 8jG)F ′2 − 3G

)
F ′′

2 + 2jk2G2F ′F ′′′
]

+2ρ2G3/2
[
jG4 + k2(7k2 − 4jG)F ′′2

]
F ′ + 2k2ρ2G5/2(1 + jF ′

2)F ′′′ .

Since F ′(0) = 0 and F ′′(0) = 1/k > 0, F ′ is strictly positive in a right neighbourhood of 0 and
hence kF ′(ρ) + ρG1/2(ρ) > 0 for all ρ 6= 0 in that neighbourhood. Proceeding as above, we thus
only have to check that both Z3 and Z4 have nonzero first derivative in ρ = 0 if F ′′(0) = 1/k. In
fact,

Z ′3(0) = j + k(2 + 3k2)F ′′(0)
Z ′4(0) = 6k2(1 + 2k2)

(
1 + kF ′′(0)

)
F ′′(0) .

This proves that, for any value of k > 0 and for any (allowed) choice of the profile function,
the distribution ∆4 has rank 6 at some point of M , and hence in an open dense subset of M . In
turn, this implies that ∆∞ has rank at least six in such a subset. As we have already noticed, the
existence of two gauge integrals implies that rank ∆∞ ≤ 6. Hence, rank ∆∞ = 6 in an open dense
subset of the constraint manifold.

Fact 4 implies that, for any (allowed) choice of the profile function, the system has exactly
two weakly Noetherian constants of motion, which are the two classically known horizontal gauge
momenta.
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8 Conclusions, and some perspectives

In this article we have developed a method to produce an estimate on the number of a certain
type of constants of motion of nonholonomic systems—the weakly Noetherian ones—and we have
shown on examples that this procedure can actually be carried out in practice.

The heart of the method is the fact that the constants of motion of the considered type are first
integrals of a certain smooth distribution ∆, and the number of these first integrals is bounded by
the corank of the involutive closure ∆∞ of ∆. The main limitation of this procedure is that it cannot
distinguish between local and global constants of motion. Geometrically, this is because integrable
distributions give foliations rather than fibrations. Dynamically, this has the consequence that our
method gives only an upper bound on the number of global constants of motion, which are the
only constants of motion of interest from a dynamical point of view. However, the examples of
Sections 6 and 7 indicate that this estimate may be non trivial and informative.

If one is interested to a specific nonholonomic system, with a given symmetry group, then an
estimate on the number of weakly Noetherian constants of motion may have different reasons of
interest. One of them, of course, is to confirm that all constants of motion of this type (including
those of the simplest type—the horizontal gauge momenta) have been determined, or to motivate
the search for more of them. This kind of information may be relevant in the study of a basic
question in this field: which is—if it exists—the ultimate relationship between symmetries and
conservation laws for nonholonomic systems?

It would be of interest, of course, to generalize and/or specialize this approach to other classes of
constants of motion of nonholonomic systems. For instance, one might be interested to determine
the number of conserved gauge momenta or, even more particularly, the number of horizontal
gauge momenta, but new ideas may be necessary for this goal. The extension to more general
cases (affine constraints, non–lifted actions) should instead be a rather standard matter. From this
perspective, it might be also of interest to analyze systems such as those in [25, 26].

Even though the method has been taylored to weakly Noetherian constants of motion of non-
holonomic systems, it is in principle more general and introduces a new idea in the study of
constants of motion of dynamical systems. As pointed out above, the method can be applied to
cases in which conservation laws can be regarded as first integrals of some distribution, and this
is a typical situation in the Hamiltonian and symplectic world. Just to point out another pos-
sible field of application, we thus mention here the search for conservation laws of Hamiltonian
systems linked to non–symplectic actions. Non–symplectic actions do not have a momentum map.
However, they may have ‘gauge–like’ conserved quantities, in a sense which is made precise by the
following Proposition:

Proposition 6. Consider a (not necessarily symplectic) action of a Lie group G on a symplectic
manifold P . For each p ∈ P , let Op be the G–orbit through p.
(i) Assume that a function F : P → R is such that its Hamiltonian vector field XF is tangent to

the G–orbits, that is,
ker dF (p) ⊇ (TpOp)ω ∀ p ∈ P . (32)

Then, F is a constant of motion of all Hamiltonian systems on P with G–invariant Hamilto-
nian H.

(ii) Assume, moreover, that G acts freely and properly. Then, a function F : P → R is a constant
of motion of all Hamiltonian systems on P with G–invariant Hamiltonian H if and only if it
satisfies (32).

Proof. (i) First note that XF (p) ∈ TpOp, namely 〈XF (p)〉 ⊆ TpOp, is equivalent to (32) because
〈XF (p)〉 = (ker dF (p))ω. If H is G–invariant, then ker dH(p) ⊇ TpOp and hence

ker dF (p) = 〈XF (p)〉ω ⊇ (TpOp)ω ⊇ (ker dH(p))ω = 〈XH(p)〉 ,
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so that XH(F ) = 0. (ii) If F is a constant of motion of all Hamiltonian systems with G–invariant
Hamiltonian, then ker dF (p) ⊇

⋃
G−invariant H(ker dH(p))ω and, as we have already remarked in

the proof of Lemma 1, for a free and proper action this union equals (TpOp)ω.

By analogy with the nonholonomic case, let us call here ‘conserved gauge momentum’ any
function F which satisfies (32). Part (ii) of the Proposition characterizes conserved gauge momenta
as first integrals of the distribution (TpOp)ω. Without additional properties on the actions, such
a distribution need not be integrable and the number of independent (local) conserved gauge
momenta can be bounded by computing the corank of the involutive closure of this distribution.

(We note that the polar distribution (TpOp)ω is certainly integrable if the action is Hamiltonian,
in the sense of [33]. The reason is that in that case there is a momentum map J : T ∗Q→ g∗ with
the property that ker dJ(p) = (TpOp)ω and the components of the momentum map are (global)
first integrals of (TpOp)ω. The distribution (TpOp)ω is in fact integrable even if the action is only
symplectic, because in that case all infinitesimal generators of the action are locally Hamiltonian
vector fields [33]; however, these local Hamiltonians provide only local first integrals of (TpOp)ω).
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Note added in proof. The examples of Section 6 illustrate how the number of weakly Noetherian
constants of motion vary with the potential energy, while the kinetic energy is kept fixed. This
number may as well depend on the kinetic energy. One of the referees suggested to investigate the
case of the Chaplygin sleigh, see [7, 27, 10], where the kinetic energy depends on the position of
the center or mass relative to the point of contact. We report here the results of this analysis. The
configuration manifold is Q = R2×S1 3 (x, y, ϕ), where (x, y) is the contact point and ϕ fixes the
orientation of the sleigh. On Q, we consider the R2–action of the translations of the contact point;
its lift leaves in all cases the kinetic energy invariant. If the center of mass of the sleigh coincides
with the contact point then the corank of ∆∞ is one; in this case, the system is known to have
the horizontal gauge momentum px/ cosϕ|M . Otherwise, ∆∞ has full rank; therefore, there are no
(even local) weakly Noetherian constant of motion.
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2006.

[41] (MR1656273) J. Sniatycki, Nonholonomic Noether theorem and reduction of symmetries, Rep.
Math. Phys., 42 (1998), 5–23.

[42] (MR0807817) R.W. Weber, Hamiltonian systems with constraints and their meaning in
mechanics, Arch. Rational Mech. Anal., 91 (1986), 309–335.

26



[43] Wolfram Research, Inc., Mathematica, Version 7.0 (Champaign, IL, 2008).

[44] (MR1361784) D.V. Zenkov, The geometry of the Routh problem, J. Nonlinear Sci., 5 (1995),
503-519.

27


