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Purpose of review

In this review, we discuss findings from some recent brain imaging studies that shed

new light on our understanding of the role of visual experience on the development of the

brain morphological and functional architecture in humans. To what extent is vision truly

necessary to ‘see’ the world around us?

Recent findings

Congenitally blind and sighted individuals present analogous cognitive and social

performances. Findings from structural and functional brain studies in both sighted and

congenitally blind individuals have shown the existence of supramodal brain regions

able to process external information regardless of the sensory modality through which

such an information has been acquired. This more abstract nature of functional cortical

organization may enable congenitally blind individuals to acquire knowledge, form

mental representations of and interact effectively with an external world that they have

never seen.

Summary

Altogether, findings from both behavioural and imaging studies indicate that the brain

functional organization is to a large extent independent from visual experience and able

to process information in a supramodal fashion. The study of the blind brain is a very

powerful approach to understanding not only the cross-modal plastic, adaptative

modifications that occur in the ‘visual’ regions but primarily the functional architecture of

the human brain itself.
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Introduction

Vision plays a central role in how we represent and

interact with the world around us. Individuals who lack

vision since birth, however, are able to navigate inde-

pendently in space, to recognize objects, to learn how to

use utensils, to catch other people’s intentions and feel-

ings, and to interact socially with others. Blind individuals

very often make us notice some specific sensorial aspects

that we are simply ‘unable to see’: a specific timbre of the

voice that conveys information of one’s feelings, a sudden

mild change of temperature while walking around the

corner, a peculiar scent in front of a grocery store, an

unusual texture of a textile.

These few considerations alone are sufficient to pose

some fundamental questions. How do individuals with

congenital blindness form a representation of a world that

they have never seen? What happens to the ‘visual’ brain

in congenitally blind individuals? How is nonvisual sen-

sory information processed in the brain of sighted and
Copyright © Lippincott Williams & Wilkins. Unaut
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congenitally blind individuals? To what extent is vision

really necessary for the human brain to develop and

function? Recently, novel behavioural and functional

brain studies in sighted and congenitally blind indivi-

duals have begun to shed some new light on our under-

standing of the role of visual experience in brain devel-

opment and function.
How the brain rewires when vision lacks
Since the first evidence of recruitment of the occipital

cortex in congenitally blind individuals during Braille

reading [1], it has become clear that early visual brain

regions that receive information via direct, or indirect,

retinal input undergo a cross-modal plastic functional

reorganization in sight-deprived individuals [2,3��].

Thus, if on one side it is undeniable that the lack of

visual input leads to significant morphological and func-

tional changes in the visual pathway structures in the

brain of blind individuals, including atrophy of grey and

white matter [4,5] and increased glucose metabolism at
horized reproduction of this article is prohibited.
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Key points

� In spite of the predominant role attributed to vision

to acquire a representation of the surrounding

world, individuals who are visually deprived since

birth show cognitive and social abilities that are

comparable to those of sighted individuals.

� Studies in both sighted and congenitally blind indi-

viduals have demonstrated that many cortical

regions are supramodal in nature, that is, they are

able to process external information regardless of

the sensory modality through which such infor-

mation has been acquired, and that vision is not a

mandatory prerequisite for the brain to develop its

sophisticated functional architecture.

� Visual experience, though, leads to a functional

specialization in specific cortical areas and, conver-

sely, lack of vision is followed by cortical functional

rewiring through cross-modal plasticity.

� The supramodal nature of functional cortical organ-

ization may explain how individuals who have never

had any visual experience are able to acquire normal

knowledge about objects and their position in

space, form mental representations of and interact

effectively with the external world.

� The study of blindness is a uniquely enlightening

tool to understand the functional organization of the

human brain.
rest in the occipital areas [6], on the other side a growing

body of evidence indicates that the occipital cortex is

recruited for a variety of nonvisual perceptual and

cognitive tasks, including lexical and phonological pro-

cessing, verbal memory, memory retrieval, repetition

priming, spatial discrimination, object discrimination,

auditory discrimination, selective attention, working

memory and spatial navigation [2,3��,7,8��,9]. Given that

studies in animals show that the loss of a specific sense

leads to the invasion of the deprived cortical area by

inputs originating from other primary cortical regions, as

cross-modal connections between early sensory areas are

physiologically present [8��,10], we can expect that the

human visual cortex may also be capable of rewiring in

order to accommodate nonvisual sensory inputs [3��,9].

Nonetheless, although this functional recruitment of

early visual areas has been found to correlate with specific

cognitive or perceptual performances [2,11,12], the

demonstration of a specialization or segregation of func-

tions, other than an aspecific functional response during

nonvisual tasks (especially for the occipital pericalcarine

cortex) still remains ill-defined. An efficient functioning

of occipital cortex is supported by the observation that

higher cognitive and perceptual level tasks – and not

merely basic sensorimotor tasks – primarily engage occi-

pital regions in blind individuals, as indicated by the fact

that real or ‘virtual’ [via transcranial magnetic stimulation

(TMS)] lesions of occipital cortex impair tactile percep-

tion, verb generation and Braille reading [2].

However, recent studies aimed at interpreting this cross-

modal and across-tasks responsiveness in the early visual

areas of the occipital cortex in visually deprived individ-

uals have reported contrasting findings on the existence

of a functional specialization [11,13�–15�]. Indeed, the

limitation in disentangling the meaning of the differen-

tial combinations of cortical activations/deactivations is

mainly related to the difficulty of exploring more than a

single perceptual/cognitive function or sensory modality

during a single experimental session [2], as well as to

the fact that by having to rely on nonvisual stimulation

paradigms the functional localization of specialized

‘visual’ areas in blind individuals is relatively approxi-

mate. Nonetheless, we cannot exclude that their recruit-

ment may be, at least in part, the result of an aspecific

positive response in congenitally blind individuals, likely

related to the sensory deafferentation occurring in blind-

ness.
The blind brain is the key to prove
supramodality
Visual perception of faces and other object categories

evokes distinct patterns of neural activity in the extra-

striate ventral temporal cortex that are widely distributed
opyright © Lippincott Williams & Wilkins. Unauth
and overlapping. This model, named ‘object form topo-

graphy’ [16], may explain how a limited portion of the

brain, such as the visual cortex in the inferior surface of

the temporal lobe, is capable of distinguishing an infinite

number of object categories. Following these obser-

vations, we designed a functional magnetic resonance

imaging (fMRI) study to test the hypothesis that the

representations of object categories in ventral temporal

cortex are not simply visual but, rather, reflect more

abstract, ‘supramodal’ (or ‘metamodal’) aspects of object

form [17–21]. We also questioned whether visual experi-

ence is a necessary prerequisite for this functional organ-

ization to develop. In line with our hypothesis, others had

shown that both visual and tactile recognition of objects

activate a part of the object-responsive cortex, the dorsal

part of the lateral occipital complex, named LOtv [22].

This study, however, did not assess the relation between

the patterns of neural response elicited by the two

sensory modalities, nor did it rule out that the activations

in visual cortical area during tactile recognition could be

simply due to a visual imagery-based mental representa-

tion of the object explored haptically [22]. In our fMRI

study, we found that both visual and tactile recognition

tasks evoked category-related patterns of response in

ventral extrastriate visual cortex in sighted individuals

(Fig. 1), that were correlated across the two sensory

modalities [21]. Furthermore, blind individuals also

showed category-related patterns of response in these
orized reproduction of this article is prohibited.
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Figure 1 Supramodal organization of the ventral ‘what’ and dorsal ‘where’ cortical pathways

Brain areas that responded during tactile or visual perception in sighted individuals and during tactile perception in blind individuals across different
tasks: (a) object recognition, (b) spatial discrimination and (c) motion perception. Sagittal images from group Z-score maps of activated areas are
shown for the sighted and blind individuals, and the lateral occipital complex (LOC), the posterior parietal cortex (PPar) and the human middle temporal
complex (hMTþ) are indicated. Adapted from [21,23,24] with permission.
‘visual’ areas, implying that these patterns are not due

merely to visual imagery and, furthermore, that visual

experience is not necessary for these category-related

representations to develop (Fig. 1). These findings indi-

cated that a common, more abstract representation of

object form is elicited by these two sensory inputs.

Therefore, the supramodal nature of a specific brain

region relies on a common, more abstract representation

of the perceived stimuli (e.g. of object form for the

inferior temporal-ventral occipital cortex), and does not

depend uniquely on the contribution of a specific sensory

modality, neither to function nor to develop. Indeed, in

line with the existence of a supramodal ‘object form

topography’, a recent brain functional study indicated

that both sighted and congenitally blind individuals show

for aurally presented words of nonliving and living items

the same medial-to-lateral bias in the ventral temporal

extrastriate cortical regions [25]. In addition, auditory

perception of material properties in both sighted and

cortically blind individuals elicits a neural response in

medial regions of the ventral extrastriate pathway, the

same areas recruited for the visual representation of
Copyright © Lippincott Williams & Wilkins. Unaut
object properties [26]. Furthermore, a more abstract

representation of object form in these cortical regions

is supported by the observation that LOtv is activated in

both sighted and congenitally blind individuals when

information on object form, but not object identity,

is conveyed by visual-to-auditory sensory substitution

devices [27–29], and shows robust cross-modal (visuo-

tactile and audio-visual) adaptation during object recog-

nition in sighted individuals [30��,31].
Extending supramodality outside of the
ventral pathway
These findings in the ventral ‘what’ pathway prompted

us to ask whether a similar supramodal functional organ-

ization also existed in the ‘where’ pathway of the dorsal

occipito-parietal stream, involved in spatial processing

and imagery. Although through vision one is able to

obtain distinctive information regarding the representa-

tion of the surroundings and the localization of objects,

blind individuals show spatial discrimination and naviga-

tional skills that are comparable to those of sighted

individuals, even in those cognitive domains that rely
horized reproduction of this article is prohibited.
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Figure 2 The supramodal ‘social’ brain

Auditory mirror voxels (a – adapted with permission from [50]) and brain
areas subserving theory of mind (b – adapted with permission from [49])
in both sighted and congenitally blind individuals are projected onto a
standardized left hemisphere template. Inferior frontal (IF), ventral and
dorsal premotor (vPM and dPM), and middle/superior temporal (MT/ST)
areas, superior and inferior parietal lobules (SPL and IPL), and the
temporo-parietal junction (TPJ) are reported.
indirectly on mental spatial representation, such as num-

ber processing or action planning [7,32–34]. Consistent

with these behavioural findings, tactile and auditory

spatial localization studies in blind individuals showed

a specific recruitment of dorsal occipital and posterior

parietal areas (Fig. 1) [35�,36–38], indicating that the

activations found in sighted individuals in response to

nonvisual spatial discrimination tasks are not merely due

to visual imagery (e.g. [39]). Thus, as in the case of

the ‘what’ pathway in the ventral temporal cortex, also

these cortical areas appear to be supramodal in nature.

Additional evidence in support of this hypothesis comes

from the recruitment of dorsal pathway cortical areas,

whereas both sighted and congenitally blind individuals

perform more complex cognitive tasks that require spatial

representation, such as navigation within large-scale

environments [40�], numerical cognition [41] and action

planning and control [42,43].

The concept of supramodal organization has been

extended much beyond the ‘what’ and ‘where’ pathways

to brain areas associated with other perceptual and

cognitive functions: left parietal cortex for representa-

tion of tools [44], ‘visual’ word form area for letter

reading [45], superior temporal cortex for processing

of vocal stimuli [46], fronto-parietal areas for working

memory [23], frontal eye fields for spatial attention

orientation [47], and medial prefrontal cortex for self-

representation [48].

Furthermore, in line with findings in sighted individuals

indicating modality independent, but emotion-specific

patterns of neural response in medial prefrontal and

superior temporal areas [49], a supramodal organization

has been found recently also in those brain areas that

modulate affective responses and social interactions

[50,51]. Congenitally blind individuals not only showed

a selective amygdala response to fearful and angry as

compared to neutral voices [52��], but also recruited

similar-to-sighted cortical networks that subserve action

and behaviour recognition, and understanding of others’

intentions (Fig. 2). For instance, we found that a left

premotor-temporo-parietal network subserves action

perception through hearing in individuals who have

never had any visual experience, and that this network

overlaps with the left-lateralized ‘mirror system’ that is

activated by visual and auditory stimuli in the sighted

[51]. Similarly, the same bilateral network (temporo-

parietal junction, medial prefrontal, precuneus, and

anterior superior temporal cortex) is recruited in con-

genitally blind and sighted individuals for reasoning

about the mental states of others, that is, for ‘theory of

mind’ processing [50]. Altogether, these findings suggest

that visual experience is not necessary for the develop-

ment of an efficient ‘social’ brain, and that sensory

processing and learning through nonvisual sensory
opyright © Lippincott Williams & Wilkins. Unauth
experience make it possible to acquire an efficient

knowledge and awareness of other persons’ beliefs and

intentions.
When supramodality meets cross-modal
plastic rewiring: the example of motion
perception
Whereas sighted and congenitally blind individuals have

an essentially similar functional organization within

the supramodal cortical areas described above, not sur-

prisingly they also show differences in the extension and

magnitude of the activation in the recruited areas

[3��,7,18,53] and in the correlations across task-related

regions [13�,35�,54,55�]. These differences are the results

of the combined effects of the intrinsic supramodal

nature on one hand and cross-modal plastic reorganiza-

tion on the other hand.

An interesting example to illustrate this issue comes from

the study of the neural correlates of visual and/or tactile

motion discrimination in sighted and congenitally blind

individuals. Both visual and nonvisual motion perception

share fundamental psychophysical aspects [56], and

recruit a specific circuit within the temporo-occipital

cortical regions including the middle temporal complex,

hMTþ, in both sighted [24,57] and congenitally blind

individuals [24,58] (Fig. 1). However, visual experience

in sighted individuals does lead to a functional segre-

gation within hMTþ into a more anterior subregion,

involved in the supramodal representation of motion,
orized reproduction of this article is prohibited.
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and a posterior subregion that processes visual motion

only [24]. In contrast, nonvisual motion activates the

full extent of hMTþ in congenitally blind individuals,

indicating that the whole hMTþ develops to subserve

nonvisual motion perception in the absence of any

visual experience [24,58]. In addition, distinct patterns

of brain functional correlations originate from hMTþ
subregions as a result of supramodal organization and

visual experience: whereas the supramodal portion of

hMTþ in both sighted and congenitally blind indivi-

duals correlates not only within visual occipital cortex

but also with areas of sensory integration, such as sensor-

imotor and posterior parietal regions, the posterior sub-

region behaves differently in the two groups [55�].

Specifically, in the sighted individuals correlations are

restricted within visual cortical areas, whereas in the

congenitally blind individuals this portion of hMTþ
develops functional correlations also with other sensory

integration cortical regions, similarly to what the anterior

supramodal portion does [55�].

The fine supramodal nature of hMTþ is further sup-

ported by the observation that this cortical area is capable

of processing motion-related information per se, even

when motion stimuli are delivered to body structures,

such as the tongue, that are not primarily devoted to the

perception of movement, at least in humans [59]. Also,

repetitive TMS applied on the more anterior portion of

hMTþ led to a significant impairment in accuracy and

reaction times, whereas individuals had to detect motion

speed changes of rotating plastic dots tactilely, indicating

that this cortical area is necessary for nonvisual motion

processing [60].

Which neural pathways may subserve these common

and differential responses in the ‘visual’ cortex of con-

genitally blind individuals? As mentioned before, on

the basis of various anatomical and functional studies in

both animals and humans, we may hypothesize that

nonvisual information reaches the occipital cortex

through cortico-cortical connections, such as the par-

ieto-occipital ones [2,3��]. These anatomical connec-

tions, viable also in physiological conditions as demon-

strated in the brain of blindfolded sighted individuals

who perform nonvisual discrimination tasks [19], may

then undergo also a cross-modal plastic reorganization

and become more robust in those individuals who

lose sight at birth or in the early postnatal period

[3��,9,61–63]. Indeed, brain functional studies reported

a strengthened functional and effective connectivity

between ‘visual’ occipital cortex and the primary non-

visual sensory cortices, via direct or indirect (through

multisensory association areas) pathways [54,64]. None-

theless, a concomitant involvement of subcortical loops

between distinct sensory cortical areas also has been

proposed [65,66].
Copyright © Lippincott Williams & Wilkins. Unaut
Conclusion

Although vision is considered to play a predominant role

in acquiring information to form the representation of the

surrounding world, individuals who are visually deprived

since birth show cognitive and social skills that are sub-

stantially comparable to those in sighted individuals

[2,3��,7]. Behavioural and functional studies in congeni-

tally blind individuals have provided novel and stimulat-

ing insights on many questions regarding not only the

cross-modal plastic rearrangements that take place when

vision is absent, but primarily the functional develop-

ment and organization of the sighted brain itself. The

recruitment of task-related regions in both sighted and

congenitally blind individuals during nonvisual recog-

nition indicates that these different percepts (e.g. object

form, motion, spatial localization, words, actions and

behaviours, etc.) rely on more abstract, supramodal

representations that: (i) are independent from the sensory

modality that conveys information to the brain; (ii) do

not require visual experience nor visually-based mental

imagery to form; and (iii) can be accessed either through

bottom-up mechanisms from distinct direct sensory

inputs, or through top-down mechanisms from regions

subserving higher cognitive functions (as in the case of

working memory, attentional modulation, etc.).

A common abstract representation would favour the

development of a unique, coherent percept through the

integrated processing of distinct pieces of information

conveyed by different sensory modalities. This aspect

requires distinguishing supramodal from multisensory

brain areas. The latter regions mainly refer to cortical

and subcortical structures, such as the superior colliculus,

superior temporal sulcus or intraparietal cortex, that pro-

cess multiple stimuli conveyed by different sensory mod-

alities at once, both in space and time [29,67]. From an

electrophysiological viewpoint, neurons with different

degrees of multisensory responsiveness (from pure uni-

modal to bi/trimodal neurons) have been reported to have a

‘patchy’ distribution within these areas in animals [68].

Recent fMRI data suggest a similar distribution in the

human brain as well [67]. Less is known on the neuronal

characteristics of supramodal cortical areas in humans.

Given that fMRI resolution does not allow measurement

of activity at the level of single neurons [see Cheng,

(pp. 401–408)], overlapping functional activations in a

particular brain region elicited by distinct sensory modal-

ities may reflect identical recruitment of individual supra-

modal neurons, or be due to selective recruitment of uni-

modal neuronal subpopulation within the same cortical

areas. We could certainly accept the idea that, during the

multistepandparallelprocessingofdifferentsensoryinputs

along early sensory areas, as well as higher order association

areas, a continuous interplay and integration may occur

between multisensory percepts and supramodal attributes.
horized reproduction of this article is prohibited.
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How the different pieces of sensory information are

functionally unified into a more abstract representation,

and whether or not the development of this supramodal

functional organization does require a minimal sensory

input of any given sensory modality (i.e. supramodal), or

not (i.e. amodal), is a matter of speculative debate [32,69].

Notably, Held et al. [70��] recently showed that although

congenitally/early blind individuals who gained sight

after eye surgery did not exhibit an immediate transfer

of their tactile shape knowledge to the visual domain, this

ability was acquired after a very short time, suggesting the

existence of a coupling between the representations of

visual and tactile features based on experience.

In summary, the mental representation of the external

world is sustained by a cortical functional organization

that is largely supramodal in nature and independent

from vision. This may explain how individuals who have

never had any visual experience are able to acquire

normal knowledge about objects and their position in

space, and form mental representations of and interact

effectively with the external world.
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