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Abstract 

This paper deals with the problem to derive a marginal condition for the onset of spontaneous thermoacoustic oscillations of a 
gas in a circular tube, subject to a variable shape of the temperature gradient along the side wall, with one end rigidly closed and 
the other closed by a piezoelectric element converter. In this study the acoustic impedance of the piezo element is arbitrary in 
order to achieve marginal conditions between those exhibited with rigidly closed end, and those with end opened onto free 
atmosphere. Moreover, marginal condition is outlined adopting a variable shape of the temperature gradient with respect to the 
position of the stack along the tube. The marginal condition is provided at the same time with respect to variable piezo-impedance 
and variable position of the acoustic driver. The solution includes all dissipative effects related to the compressive and shear 
viscosity and the heat transmission in the boundary layer at the side wall and end wall. The formulation is given in the framework 
of the linear theory and the first order theory in the ratio of a boundary layer thickness to the tube radius. 
© 2013 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of ATI NAZIONALE. 
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1. Introduction. 

This study investigates one of the promising candidates in the field of energy conversion, namely a standing 
waves thermoacoustic engine. In thermoacoustic systems heat is converted into acoustic energy and vice versa. 
These systems use inert gases as a working medium and have no moving parts which makes the thermoacoustics 
technology a serious alternative to produce mechanical or electrical power, cooling power, and heating in a 
sustainable and environmentally friendly way. The experimental results up to present reveal a record performance of 
49% of the Carnot efficiency for a thermoacoustic Stirling engine (see Tijania and Spoelstra [1]).  
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Nomenclature 
pe = p0   value of the uniform pressure related to the equilibrium state, [Pa]; 
Te   local gas temperature in equilibrium conditions, [°C]; 
ρe   local gas density in equilibrium conditions, related to the local temperature , [kg/m3]; 

   kinematic viscosity, related to the local temperature , [m2/s]; 
   local sound speed in equilibrium conditions, related to the local temperature , [m/s]; 
  specific heat capacity at constant volume of working fluid, [kJ/kg°C]; 
  specific heat capacity at constant pressure of working fluid, [kJ/kg°C]; 

TH  temperature at the hot, closed end, [°C]; 
T0  temperature at the cold, open or piezo system mounted end, [°C]; 
γ   cp/cv;  

  Prandtl number; 
;  +Pr; 

   radius of the tube [m]; 
   angular frequency, [1/s] 

ω  angular frequency, [1/s]; 
  dimensionless angular frequency; 

ux  velocity in the axial direction, [m/s]; 
ur  velocity in the radial direction, [m/s]; 

, represent a measure of how is deep the boundary layer respect to the radius R 

   calculated for  at the low end wall temperature and C is a gas constant. 
  frequency equation (21) is obtained in the zero and in the first order by expanding the wave 

perturbed pressure equation with respect to b; 
   imaginary part; 

 (“p” region) domain were the temperature gradient is negative and characterized by a slow slope. 
Quantities are designated by attaching a subscript “p” (e.g. , , ); 

  abscissa at the end wall where is placed the piezo-system converter. The temperature in this point 
is the lowest one and is indicated by ; 

 (“n” region) domain were the temperature gradient is negative and characterized by an high slope. 
Quantities are designated by attaching a subscript “n” (e.g. , , ); 

 abscissa value that localize the position of the end wall resonator respect to the origin of the system 
reference. The temperature in this point is the highest one and is indicated by ; 

  length of the tube, [m]; 
 abscissa value that localize the point where the slope of the temperature gradient changes 

dramatically his value and  is equal to ; 
 is a parameter that governs the magnitude and the sign of the slope of the temperature gradient in 

the “p” region so that ; 

 is a parameter that governs the magnitude and the sign of the slope of the temperature gradient in 
the “n” region so that ; 

;     ; 

;     ; 

 where  is a parameter that governs the volume size of the resonator cavity  
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Literature includes several mathematical models for integrating the engine with a piezoelectric membrane 
generator to obtain a thermoacoustic-piezo system (TAP), distinct among these studies are recent results from 
Smoker and Baz. [2], and Nouh and Baz [3]. In this paper, an attempt is made to provide a preparatory contribution 
in order to develop an optimization tool for piezoelectric element coupled with a thermoacoustic engine as a function 
of piezoelectric impedance and also of the shape of the temperature trend along the tube’s wall. A configuration of 
the system under study is shown in figure 1 

 

 

Figure 1. Schematic of standing-wave thermoacoustic engine  integrated with a piezoelectric membrane (TAP) 
 
Thermoacoustics has attracted much attention over the past few decades from the viewpoint of its potential in 

application to novel heat engines and cooling systems.  
Although such phenomena have been known empirically or experimentally since 19th century (see Rayleigh [4]), 

no analysis of stability was made until the pioneering works started by Kramers [5] (1949) and Rott [5] (1969).  
They attempted to seek a marginal condition for the onset of the Taconis oscillations (see Taconis et al. [6]) in a 

helium-filled tube in cryogenics. Although Kramers failed, Rott succeeded in deriving the conditions, which are 
confirmed experimentally by Yazaki, Tominaga et Al. [7]. Since then, Rott’s linear theory has played a fundamental 
role and has been applied to design experimental devices. 

The right theoretical frame in order to get the marginal condition was derived by Rott [5] [8] [9] and afterwards it 
was completed by Wheatley [10] and Swift [11]. Rott’s works are about quarter wave length tube. The linearized 
problem requires to solve an eigenvalue problem for a second-order differential equation with variable coefficients in 
terms of the excess pressure wave. For smooth temperature distributions, this is a formidable task and, apart the 
excellent Sugimoto’s work, no analytical solutions are available yet.  

Indeed Rott gave up the smooth profile of the temperature and adopted a discontinuous trend, namely a heaviside 
function, thereby imposing a drastic discontinuity, though it is rather difficult to achieve experimentally. In 2001, the 
excellent work of Sugimoto et al [12], shed some light on what happens on the onset of thermoacoustic oscillations. 
Thanks to his work was discovered the mechanism whereby the boundary layer, under an appropriate temperature 
gradient, is able to supply a work to the wave pressure propagation up to exceed dissipative effects of the viscous 
boundary layer. 

This would mean that the sustenance of wave propagation in the axial direction, inside the main flow, is ensured 
by the boundary layer itself and, thanks to the temperature gradient along the direction of propagation, it is in 
conditions to provide the necessary work compensation, up to exceeding the dissipative effects. As a further 
development, starting from a problem having a boundary layer structure, in Sugimoto et al [13] has been found an 
exact solution for the excess pressure wave in the acoustic main flow region. The solutions are given in terms of 
analytical approximation of the full solution through a perturbation expansion, using a renormalization. Sugimoto’s 
work deals with only the case where the temperature increases parabolically from the open end, toward the closed 
end as show in figure 2. 

 
 
 
 
 
 

 
 
Figure 2. Illustration of a quarter – wave length tube of radius R and of length L where the temperature of the wall and the gas Te(x) varies 

along the tube in the form of a heaviside (a) function and of a parabola (b) 
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In what follows, this work adopts the Sugimoto’s approach with only two minor extensions with the aim to offer 
two points of generalization. The first one is related to the boundary condition at one end, because the complex value 
of the piezoelectric impedance is taken into account, and the second effort is about the possibility to build a variable 
shape of temperature gradient by means of a sequence of piecewise parabolic distribution as shown in figure 3.  
 

 
 
Figure 3. Some examples of the shape of the temperature imposed along the tube in stationary conditions. The aim is to investigate the 

behaviour of the marginal condition when the shape goes towards the real temperature distribution inside the resonator. 

2. A problem with a Boundary Layer structure: the main lossless flow and the viscous - thermal boundary 
layer 

Here, we assume that the field of the acoustic flow has a boundary layer structure, which means that the 
influence of viscosity is confined to a thin layer near the wall. The flow is basically divided in a boundary layer 
region and the flow outside of it, namely the main flow. The latter is where the effects of non-linearity and 
dissipation due to viscosity and heat transmission are very small, such that it can be neglected and quasi one 
dimensional propagation can be assumed. Regarding the former region, it is necessary to take into account two 
boundary layer regions: one that is placed on the side wall, along the length of the tube, where viscous effect are 
more predominant than the thermal ones (basically it is a viscous boundary layer), and another one on the end wall, 
mainly due to heat transmission, since there the boundary temperature of the main flow does not match directly with 
the temperature of the end wall. In fact, it is necessary that a thermal boundary layer fills the gap (instead the viscous 
boundary layer plays a secondary role respect to the thermal one), see Chester [14], Chester [15].  
The small deviations from the equilibrium value are designated by attaching a tilde accent, , and by a grave one, , 
according to whether it is considered the boundary layer of the side wall or that of the end wall, respectively.  

An abscissa  parallel to the axis of the tube, is adopted to establish a spatial reference for the main flow region, 
moreover  coupled with a transversal coordinate, , represents a spatial reference for the boundary layer at side 
wall, while with , oriented in the axial direction, is designated as a reference related to the boundary layer at the 
end wall. Reassuming: 

 denotes the boundary layer coordinate taken inward normal to the tube wall surface at r =R, whereas  denotes 
the boundary layer coordinate taken inward normal to the end wall at x=L. In accordance with our previous 
statements it follows: 
 

 

l 
 

The basic equations governing the motion of a fluid are the axial and radial momentum equations, the continuity 
equation, the energy equation and the equation of state. For a perfect gas with constant specific heats cp and cv, 
constant dynamic shear and bulk viscosity μ, μv, and constant heat conductivity λ, due to cylindrical symmetry 
phenomena, become respectively, (see eq (1-5)): 
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ϱ ϱ ϱ          (1) 

ϱ μ μ μ   (2) 

ϱ μ μ μ    (3) 

ϱ λ ϕ        (4) 

where φ is the so called viscous dissipative function, such that: 

ϕ μ μ μ μ     (4.1) 

ϱ
ϱ

γ
           (5) 

See Nomenclature for the meaning of the symbols used throughout in the paper. We start by assuming that all the 
perturbed quantities are related, respect to their equilibrium value, by these order relations: 

 
; 

 
If these inequalities are true, then the framework of the mathematical interpretation of the phenomena is based on 

the small signal approximation namely the linearization of all the conservation equation.  
 

3. Treatment of the acoustic main flow. 

The linearized main flow equations around equilibrium values, when lossless and quasi-one dimensional flow is 
considered, and subsequently on averaging over the whole cross sectional area, yields respectively: 

 
ϱ             (6) 

ϱ ϱ ϱ           (7) 

 
where A(x, t) is the cross-sectional area of the main-flow region and it is both time and “x” dependent, but no 

distinction from the constant cross-sectional area of the tube itself will be considered, because the difference is small 
and of an higher order. The integral is taken along ∂A, namely the cross section boundary of the main flow region, 
“da” being a line element along it. Remark:  
 

 
ϱ μ μ           (8) 

ϱ ϱ λ           (9) 

′ γ ϱ
ϱ

          (10) 
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4. Treatment of the Acoustic Boundary Layer Regions. 

In agreement with what was derived by Sugimoto in [13] and Lighthill in [16], the governing equations of 
continuity, momentum in the axial direction, and the energy balance, with dissipative effects fully taken into 
account, linearized around the steady state value , yields the following equations (11-13): 

4.1 Boundary Layer at the side wall. 

ϱ ϱ ϱ           (11) 

ϱ μ           (12) 

ϱ λ          (13) 

Remark: inside the boundary layer region then   

4.2 Boundary Layer at the end wall 

ϱ ϱ           (14) 

ϱ μ μ μ        (15) 

          (16) 

ϱ λ λ        (17) 

 
Once the governing equations of the boundary layer on the end wall have been linearized, are subsequently also 

averaged over the whole cross section with area  
Contrarily to what happens for the walls placed parallel to the main flow direction, the modifications caused by 

wall oriented perpendicular are mainly assumed by the main flow, while the effects related to the viscous boundary 
layer are almost negligible. In accordance with what we said before this can only apply to viscous effect but is not 
true for the thermal boundary layer. By using the two system of equations regarding the main flow and the boundary 
layer on the side wall, it is possible to write down equation (18); that is a second order differential equation with 
variable coefficients of the axial coordinate “x” involving the Fourier transform “P” of the excess pressure , in the 
main-flow region.  
 

δ δ ω        (18) 
 
whereas the boundary layer equations on the two ends wall of the tube are taken into account in the form of an 
appropriate boundary conditions customized for the main flow region. Equation (18) has been proposed by 
Sugimoto, (see eq. 23 in [13]) and it was used to get the stability analysis for the marginal conditions.  

5. Boundary conditions at the ends wall of the tube.  

When the tube is rigidly closed at one end and open on the other side, the boundary conditions for the main flow 
are well known, namely: 
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γ ν    at the closed end 

     at the opened end.  
 
where the derivative of three and half order is defined by differentiating that of half order once with respect to t, and 
the fractional derivatives of order α (α = −1/2 or 1/2) of a function f(x; t) are defined as (see e.g. Sugimoto [17])  
 

 

 
By using the idea of a renormalization of eq. (18) and in the framework of the first-order theory of the boundary 

layer, the frequency equation is then derived from the boundary conditions at the both ends of the tube when the 
temperature distribution is parabolic, from which the marginal condition, eq. (19), is obtained in closed form, in 
terms of the dimensionless angular frequency, σ ω , as a function of the ratio, TH/T0, of temperature at the hot, 
closed end, TH=Te(x=L), to the one at the cold, open end, T0=Te(x=0), against the tube radius relative to the 
thickness of the boundary layer at the open end:  
 

ψ
ξ ξ

ξ ξ
β β σ         (19) 

 
where β is a parameter that sets the slope of the parabola: 

β  , are the wave-numbers and they are given by: β ψ with ψ σ β . For 
a given value of β the frequency equation gives a complex solution for . If the imaginary part is positive the 
oscillations are stable, if it is negative, they are unstable. The marginal condition is the one for which the imaginary 
part goes to zero. In figure 4 is shown the solution of the angular frequency σ against the temperature ratio TH/T0, for 
the marginally unstable oscillations of air. The solid curve shows the frequency of the neutral oscillations in the 
lossless case, as the magnitude of the thermoviscous effects increases, the value of sigma and temperature ratio 
decreases along the solid curve, but tends to deviate from the lossless trend  
 

 
Figure 4. Sugimoto’s case: marginal curve when a parabolic temperature gradient is imposed along the side wall tube. One end is opened and the 

other is rigidly closed. The curve represented in dashed lines is adopted for lossless case, whereas continuous is referred when loss are 
taken into account. 
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6. New boundary conditions 

The effort of this work is to get new boundary conditions when the tube is rigidly closed at one end and at the 
other side is closed by means of a piezoelectric element with a variable impedance and the side wall is subject to a 
variable shape of the temperature. Equation (20) and (21), in the frequency domain, respectively represent the new 
boundary condition in x=Lp, where piezoelectric element is placed and the Sugimoto’s boundary condition in x=0 
where end wall is rigidly closed. 

 

ωϱ          (20) 

where γ ων ω and ′  is the impedance of the piezoelectric system. 

γ ν          (21) 

 
When Zpiezo goes to ∞ (referred to the physical condition where end wall is rigidly closed) the new boundary 

condition converges just to the previous one, in accordance with Sugimoto et al. [13]. While if Zpiezo goes to zero 
(that physically corresponds to open end) then eq. (20) converges rightly to p’= 0. The new frequency equation, eq. 
(21), is derived by using the boundary layer equation between the piezoelectric element and the main flow region, 
when the temperature distribution is variable as shown in figure 3.  

 
ℓ ℓ

ℓ ℓ

            (22) 
 
Quantities in equation (21) not defined yet, are explained in appendix A.  

A set of marginal curves in the loss case, as a function of the piezo-impedance, and the shape of the temperature 
trend (in terms of L* and Lp) is depicted in figures 5, 6 and 7. 
 

 
Figure 5. Marginal curve when a parabolic temperature gradient is imposed along the side wall tube. One end is opened and the other is closed by 

a piezo-electric element. The acoustic impedance of the piezo-element is arbitrary in order to achieve marginal conditions between those 
exhibited with rigidly closed end, and those with end opened to free atmosphere.  
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Figure 6. Marginal curve when the temperature trend is stretched due to different position of the stack, (L* is different from zero). The curve 

represented in dashed lines is adopted for lossless case, whereas continuous is referred when loss are taken into account. One end is 
opened and the other is closed by a piezo-electric element with its impedance equal to zero.  

 

 
Figure 7 Marginal curve when the temperature trend is stretched due to different length of the tube respect to the position of the stack, (Lp is 

different from zero). The curve represented by dashed lines is for the lossless case, whereas the continuous line is referred when loss are 
taken into account. One end is opened and the other is closed by a piezo-electric element with its impedance equal to zero.  

 

7. Conclusion 

In accordance with what was said before in this work the main improvements to the best of our knowledge are 
summarized below.  

We found an analytical solution for the marginal conditions as a function of the value of the impedance of the 
piezoelectric element placed at the end wall of the tube. This solution is not only limited to the boundary conditions 
of opened and rigidly closed end.  

The shape of the temperature gradient along the axial direction of the tube is variable and it is possible to realize 
changes where the slope is able to approximate at best the real temperature trends, as a function of the position of the 
stack along the tube and its length.  

Based on the shape of the temperature gradient and the impedance of the piezoelectric element it is possible to 
determine the minimum threshold value for the temperature gradient required for the onset of oscillations. 

Thanks to the flexibility of our model it is possible to get a theoretical prediction in order to match the resonant 
frequencies with the temperature ratio as a function of the electric load.  
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Appendix A 
 
Hereafter are listed all quantities that appear explicitly in eq. (21).  

;     ; 

;     ; 

;   ;   ; 

;   ;  ; 

;  ;    ; 

; ;  ; 

;      


