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Abstract

Quasi Monte Carlo (QMC) and Global Sensitivity Analysis (GSA) techniques are applied for
pricing and hedging representative financial instruments of increasing complexity. We com-
pare standard Monte Carlo (MC) vs QMC results using Sobol’ low discrepancy sequences,
different sampling strategies, and various analyses of performance.
We find that QMC outperforms MC in most cases, including the highest-dimensional sim-
ulations, showing faster and more stable convergence. Regarding greeks computation, we
compare standard approaches, based on finite differences (FD) approximations, with adjoint
methods (AAD) providing evidences that, when the number of greeks is small, the FD ap-
proach combined with QMC can lead to the same accuracy as AAD, thanks to increased
convergence rate and stability, thus saving a lot of implementation effort while keeping low
computational cost. Using GSA, we are able to fully explain our findings in terms of reduced
effective dimension of QMC simulation, allowed in most cases, but not always, by Brownian
bridge discretization or PCA construction.
We conclude that, beyond pricing, QMC is a very efficient technique also for computing
risk measures, greeks in particular, as it allows to reduce the computational effort of high-
dimensional Monte Carlo simulations typical of modern risk management.
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1 Introduction

Monte Carlo simulation is a common way to tackle problems in finance. However, this method is
rather time consuming and the convergence rate is slow, since the root mean square error decays
as N−1/2, where N is the number of sampled points. Various “variance reduction” techniques
exist, which can improve the efficiency of the simulation, but they don’t modify the convergence
rate [Jac01, Gla03].

Quasi Monte Carlo (QMC) represents a very efficient alternative to standard MC, capable
to achieve, in many cases, a faster convergence rate and, hence, higher accuracy [Jac01, Gla03,
MF99, SK05b, SK05a, Wan09, KFSM11, SAKK12]. QMC methods are based on using instead of
pseudo-random numbers (PRN), low discrepancy sequences (LDS), also known as quasi-random
numbers for sampling points. LDS are designed in such a way that the integration domain is
covered as uniformly as possible, while PRN are known to statistically form clusters and holes
of points. On the contrary, LDS “know” about the positions of previously sampled points and
fill the gaps between them. Among several known LDS, Sobol’ sequences have been proven
to show better performance than others and for this reason they are widely used in Finance
[Jac01, Gla03]. However, it is also known that construction of efficient high-dimensional Sobol’
sequences heavily depends on the so-called initial numbers and therefore very few Sobol’ sequence
generators show good efficiency in practical tests (see e.g. [SAKK12]).

Compared to MC, QMC techniques also have some disadvantages. Firstly, there is no “in
sample” estimation of errors: since LDS are deterministic, there is not a notion of probabilistic
error. There are some techniques, known under the name of randomized QMC, which introduce
appropriate randomizations in the construction of LDS, opening up the possibility of measuring
errors through a confidence interval while preserving the convergence rate of Quasi Monte Carlo
(see e.g. [Gla03]). Secondly, effectiveness of QMC depends on the integrand function, and, most
importantly, the convergence rate can depend on the dimensionality of the problem. However,
it’s been shown that in many financial applications QMC outperforms standard Monte Carlo even
in the presence of very high dimensions [SAKK12, PT95, PP99, CMO97, KMRZ98a, KMRZ98b,
KS07, BKS15]. This fact is usually explained by a reduced effective dimension of the problem,
with respect to its nominal dimension. The concept of effective dimensions was introduced
in [CMO97]. It was suggested that QMC is superior to MC if the effective dimension of an
integrand is not too large. The notion is based on the ANalysis Of VAriances (ANOVA). In
[LO00] it was shown how the ANOVA components are linked to the effectiveness of QMC
integration methods. It is important to measure the effective dimension in order to predict
the efficiency of a Quasi Monte Carlo algorithm. Moreover, various techniques can be used to
reduce effective dimension and, thus, improve efficiency: this is possible because the effective
dimension1 can vary by changing the order in which the variables are sampled. The optimal way
to achieve this can be a hard task, it could depend on the specific model and a general solution
is not known at present. One popular choice in the financial literature on path-dependent option
pricing [CMO97, KS07] is to apply the Brownian bridge discretization to the simulation of the
underlying stochastic process, which is based on the use of conditional distributions. Unlike the
standard discretization, which generates values of the Brownian motion sequentially along the
time horizon, the Brownian bridge discretization first generates the Brownian motion value at
the terminal point, then it fills a midpoint using the value already found at the terminal point and
then subsequent values at the successive midpoints using points already simulated at previous
steps. In terms of QMC sampling, this simulation scheme means that the first coordinate of the
QMC vector is used to simulate the terminal value of the Brownian motion, while subsequent
coordinates are used to generate intermediate points. There are many studies which show

1Actually, the effective dimension in the truncation sense can be reduced in this way. See Section 3 for the
formal definition of effective dimensions.
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that superior performance of the QMC approach with the Brownian bridge discretization in
comparison with the standard discretization using MC or QMC sampling, in application e.g. to
Asian options [CMO97, KS07]. However, it was pointed in [Pap01] that, in some cases, the
Brownian bridge can perform worse than the standard discretization in QMC simulation. The big
question is how to know with certainty which numerical scheme will provide superior efficiency
in QMC simulation. Global Sensitivity Analysis (GSA) can provide this answer.

GSA is a very powerful tool in the analysis of complex models as it offers a comprehensive
approach to model analysis. Traditional sensitivity analysis, within the present context, is ”lo-
cal” since, given a function f(x0) and a point x0 in the function domain, computes the derivative
∂f
∂x at x = x0. GSA instead does not require to specify a particular point x0 in the domain, since
it explores the whole domain (hence the name global). It also quantifies the effect of varying a
given input (or set of inputs) while all other inputs are varied as well, providing a measure of
interactions among variables. GSA is used to identify key parameters whose uncertainty most
affects the output. This information can be used to rank variables, fix unessential variables and
decrease problem dimensionality. Reviews of GSA can be found in [SK05a] and [SAA+10]. The
variance-based method of global sensitivity indices developed by [Sob01] became very popular
among practitioners due to its efficiency and easiness of interpretation. There are two types of
Sobol’ sensitivity indices: the main effect indices, which estimate the individual contribution of
each input parameter to the output variance, and the total sensitivity indices, which measure
the total contribution of a single input factor or a group of inputs.

For modelling and complexity reduction purposes, it is important to distinguish between
the model nominal dimension and its effective dimension. The notions of effective dimension
in the truncation and superposition sense were introduced by [CMO97]. Further, [LO06] added
the notion of “average dimension” which is more practical from the computational point of
view. Definitions and evaluations of effective dimensions are based on the knowledge of Sobol’
sensitivity indices. Quite often complex mathematical models have effective dimensions much
lower than their nominal dimensions. In the context of quantitative finance, GSA can be used
to estimate effective dimensions of a given problem. In particular, it can assess the efficiency
of a particular numerical scheme (such as the Brownian bridge, Principal Component Analy-
sis or standard discretizations along the time direction or Cholesky factorization or Principal
Component Analysis in the risk factor space).

“Greeks” represent the sensitivity of the price of a financial instrument with respect to specific
risk factors and are formally defined as partial derivatives of the price function. They are very
important quantities which need to be computed besides price both on the Front Office side (for
hedging purposes) and on Risk Management (to monitor the risk of a portfolio w.r.t. individual
risk factors). If a simulation approach is used to price the instrument, standard techniques
(Finite Differences, FD) require bumping each risk factor and re-pricing the instrument on each
MC path. The computational cost of computing all the greeks, therefore, increases linearly
with the number of underlying risk factors and becomes particularly expensive e.g. for options
on multiple underlyings. One popular and faster alternative to finite differences is Adjoint
Algorithmic Differentiation (AAD) [GW08, Nau12, GG06, LLS09, CG10, CG12, Cap11, CLP11].
It is based on the “Pathwise Derivative” method: unbiased estimators of the Greeks are obtained
by differentiating the discounted payoff along each MC path, see [BG96, Gla03]. If we want
to compute the gradient of a single output w.r.t. many variables (as in the case of Greeks
of multi-asset options), the adjoint mode of algorithmic differentiation can be employed to
dramatically increase the efficiency of pathwise differentiation. In particular, it can be proven
that the computational cost of evaluating a function and its gradient with AAD is less then
approximately four times the cost of evaluating the function alone, independently of the number
of derivatives to compute. So, the relative computational cost of computing all the greeks with
this approach is constant (and this constant is a small number, say ≤ 4) making AAD favourable
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in presence of many risk factors, such as in the case of multi-asset options. In the present work
we apply adjoints to simple test cases in multi-asset option pricing with both MC and QMC,
and we measure its efficiency w.r.t. finite differences, taking into account the accuracy of the
computation.

The paper is organized as follows: Section 2 contains a brief review on QMC methodology
and on Low Discrepancy Sequences, with particular emphasis on financial applications. Section 3
introduces GSA and the notions of effective dimensions, establishing a link with QMC efficiency.
In Section 4 we present the results of prices and sensitivities (greeks) computation for selected
payoffs: both GSA and convergence analysis are performed, with the purpose to compare MC and
QMC efficiencies via a thorough error analysis. Finally, conclusions and directions of future work
are given in Section 5. In particular we propose to apply our methodology to risk management
issues, where a faster and smoother convergence would represent a great advantage in terms of
both computational effort and budget. A brief review of the AAD methodology is contained in
the Appendix.

2 Monte Carlo and quasi Monte Carlo methods in finance

2.1 General motivation

Let’s consider a generic financial instrument written on Nrf assets S = (S1, . . . , SNrf ) with a
single payment date T . We denote the instrument’s payoff at time T as P(S(t),θ), where S(t)
is the underlying assets’ value at time t ∈ [0, T ], and θ is a set of relevant parameters, including
instrument parameters, such as strikes, barriers, fixing dates of the underlyings, callable dates,
payment dates, etc., described in the contract, and pricing parameters, such as interest rates,
volatilities, correlations, etc., associated with the pricing model.

Using standard no-arbitrage pricing theory, see e.g. [Duf01], the price of the instrument at
time t = 0 is given by

V0(θ) = EQ[D(0, T )P(S(t),θ)|F0], (2.1)

where (Ω,F , Q) is a probability space with risk-neutral probability measure Q and filtration

Ft at time t, EQ[ · ] is the expectation with respect to Q, D(0, T ) = exp
(
−
∫ T
0 r(t)dt

)
is the

stochastic discount factor, and r(t) is the risk-neutral short spot interest rate. Notice that the
values of S at intermediate times t before final payment date T may enter into the definition
of the payoff P. “Greeks” are derivatives of the price V0(θ) w.r.t. specific parameters θ. In the
present work, we will consider in particular the following component greeks:

∆i =
∂V0
∂Si(0)

, Vi =
∂V0
∂σi

, Γij =
∂2V0

∂Si(0)∂Sj(0)
, (2.2)

called delta, vega and gamma respectively. Notice that model parameters σ denote the volatil-
ities of assets S and are assumed to be constant in a Black-Scholes framework.

The underlying assets dynamics is described by a set of stochastic differential equations
(SDE). A generic Wiener diffusion model in Nrf dimensions is generally considered and it is
characterized by the following dynamics:

dS(t) = µ(t,S)dt+ Σ(t,S) dXP (t), (2.3)

with initial conditions S0, where P is the real-world probability measure, µ is the real-world
drift, Σ is the Nrf × Nrf volatility matrix, and XP (t) is a Nrf -dimensional Brownian motion
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under P with correlation matrix R2. In particular, in the Black-Scholes model the underlying
assets S(t) follow a Nrf -dimensional geometric Brownian motion, i.e. in (2.3) µi(t,S) = µiSi(t)
and [Σ(t,S) dXP (t)]i = σiSi(t) dX

P
i (t) for i = 1, . . . , Nrf , with constant drift and volatility

parameters, µ = (µ1, . . . , µNrf ) and σ = (σ1, . . . , σNrf ) respectively. The covariance matrix is
defined as

Σ = D̃RD̃ (2.4)

where D̃ = diag(σ1, . . . , σNrf ). Geometric Brownian motion dynamics can be reformulated in

terms of independent Brownian motions W P (t):

dSi(t) = µi Si(t) dt+ Si(t)

Nrf∑
k=1

Aik dW
P
k (t), (2.5)

where A is a square root of Σ, i.e. any matrix such that AAT = Σ. The solution to equation
(2.5) in a risk-neutral world (under the risk-neutral probability measure Q) is given by3

Si(t) = Si(0) exp

(r − 1

2
σ2i

)
t+

Nrf∑
k=1

AikW
Q
k (t)

. (2.6)

We notice that Y (t) = D̃X(t) = AW (t), appearing in (2.5) and (2.6), is a Nrf -dimensional
Brownian motion with covariance Σ. In this work, we use two different methods in order to find
such matrix A, for any fixed t ∈ [0, T ]. The first one is the Cholesky method, which yields a
triangular matrix thus reducing the number of elementary operations subsequently needed to
compute the Brownian motion. The second one is the Principal Component Analysis (PCA)
construction, which requires a diagonalization of Σ. Let λi and vi be the Nrf eigenvalues and
an orthonormal set of corresponding eigenvectors of the covariance matrix, respectively4. Then,
the covariance matrix can be written as

Σ = V ΛV T , (2.7)

where Λ = diag(λ1, . . . , λNrf ) and V = (v1| · · · |vNrf ). It follows that

A = V Λ1/2 (2.8)

is a square root of Σ. Even though the PCA factorization isn’t faster than the Cholesky method,
it is optimal in the sense that, if the eigenvalues are ordered so that λ1 ≥ λ2 ≥ · · · ≥ λNrf ,
most of the variance of the Brownian motion Y is explained by the first few principal com-
ponents: formally, if Z1, . . . , ZK (K ≤ Nrf ) are independent standard normals, then the er-

ror E
[
‖Y −

∑K
i=1 aiZi‖2

]
is minimized taking ai as the columns of A as given in (2.8) and

Zi = vTi Y /
√
λi, called the ith principal component of Y . This optimality turns out to be

relevant in QMC applications.
The solution to the pricing equation (2.1) requires the knowledge of the values of the un-

derlying assets S at the relevant contract dates {T1, . . . , Tn}. Such values may be obtained by
solving the SDE (2.3). If the SDE cannot be solved explicitly, we must resort to a discretization

2A correlated Nrf -dimensional Brownian motion with correlation matrix R satisfies E[dXi(t)dXk(t)] = ρikdt,
where i, k = 1, . . . , Nrf and ρik are the entries of R, which is a symmetric, positive (semi)definite matrix with
diagonal terms equal to 1.

3We assume a constant interest rate r for simplicity. See e.g. [BM06], appendix B, for a generalization to
stochastic interest rates.

4Since Σ is symmetric and positive semidefinite, it has Nrf real non-negative eigenvalues and, by the spectral
theorem, an orthonormal set of eigenvectors.
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scheme, computing the values of S on a time grid {t1, . . . , tNts}, where t1 < t2 < · · · < tNts ,
and Nts is the number of time steps. Notice that the contract dates must be included in the
time grid, {T1, . . . , Tn} ⊂ {t1, . . . , tNts}. For example, the Euler discretization scheme consists
of approximating the SDE (2.3) by

Si(tj) = Si(tj−1) + µi (tj−1, Si(tj−1)) ∆tj + [Σ (tj−1,S(tj−1)) ∆X(tj)]i, j = 1, . . . , Nts, (2.9)

where ∆tj = tj − tj−1, ∆Xi(tj) = Xi(tj)−Xi(tj−1) and t0 = 0. In particular, the discretization
of Black-Scholes solution (2.6) leads to

Si(tj) = Si(tj−1) exp

(r − σ2i
2

)
∆tj +

Nrf∑
k=1

Aik ∆Wk(tj)

, i = 1, . . . , Nrf , j = 1, . . . , Nts.

(2.10)
where ∆Wi(tj) = Wi(tj)−Wi(tj−1).

Clearly, the price in eq. (2.1) will depend on the discretization scheme adopted. We consider
three discretization schemes in eq. (2.10): standard discretization (SD), Brownian bridge dis-
cretization (BBD) and Principal Component Analysis (PCA). In the SD scheme the Brownian
motion is discretized as follows:

∆Wi(tj) =
√

∆tjZij , i = 1, . . . , Nrf , j = 1, . . . , Nts, (2.11)

where Zij are NtsNrf independent standard normal variates5.
In the BBD scheme the first variate is used to generate the terminal value of the Brownian

motion, while subsequent variates are used to generate intermediate points, conditioned to points
already simulated at earlier and later time steps, according to the following formula,

Wi(t0) = 0,

Wi(tNts) =
√

∆tNts0Zi1,

Wi(tj) =
∆tkj
∆tkh

Wi(th) +
∆tjh
∆tkh

Wi(tk) +

√
∆tkj∆tjh

∆tkh
Zil, th < tj < tk , l = 2, . . . , Nts,

(2.12)

where ∆tab = ta− tb. Unlike the SD scheme, which generates the Brownian motion sequentially
across time steps, the BBD scheme uses different orderings: as a result, the variance in the
stochastic part of (2.12) is smaller than that in (2.11) for the same time steps, so that the first
few points contain most of the variance. It follows that, with the BBD, much of the shape of
the Brownian motions are determined by the first few coordinates of Z. However, in this way,
the points of the Brownian motion where to concentrate the variance are somewhat a priori
determined.

The PCA discretization scheme optimally samples from the gaussian vector so that most of
the variance of the Brownian path is explained by the first few coordinates of Z. It is based
on the PCA factorization of the covariance matrix C of the (discretized) Brownian motion
vector (Wi(t1), . . . ,Wi(tNts)). In the case of a multi-dimensional Brownian motion, when the
covariance matrix Σ of the underlying assets is also factorized by PCA, the optimality of principal
components would be reduced if an independent PCA time discretization were applied to each
component. Therefore, one has to work with the full covariance matrix C⊗Σ of the (discretized)
NtsNrf -dimensional Brownian motion(

Y1(t1), . . . , YNrf (t1), . . . , Y1(tNts), . . . , YNrf (tNts)
)

(2.13)

5Gaussian numbers Zij are usually sampled from a NtsNrf -dimensional gaussian vector using PRN or QRN
generators. As will be discussed in the following sections, the sampling order chosen to fill Z has a relevant impact
when QRN such as Sobol’ sequences are used.
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and then apply a single PCA directly to it. This also reduces the computational effort of the
diagonalization, [Gla03]. As we will discuss in the following sections, QMC sampling shows
different efficiencies for SD, BBD and PCA.

Throughout this work, we will focus on the relative effects of the dimension D and of the
discretization schemes on the MC and QMC simulations. Thus, we will assume a simple Black-
Scholes underlying dynamics for simplicity.

2.2 Pseudo Random Numbers and Low Discrepancy Sequences

The nominal dimension of the computational problem of finding option prices and greeks is
D = NtsNrf , i.e. the product of the number of time steps required in the discretization of the
SDE (2.9) and the number of risk factors (the underlying assets): indeed, the expectation value
in (2.1) is formally an integral of the payoff, regarded as a function of D standard normal6

variables Z1, . . . , ZD. Hence the pricing problem (2.1) can be reduced to the evaluation of
integrals of the following generic form

V =

∫
HD

f(x)dDx, (2.14)

where HD = [0, 1]D is the D−dimensional unit hypercube. This motivates the use of Monte
Carlo techniques. The standard Monte Carlo estimator of (2.14) has the form

VN '
1

N

N∑
k=1

f(xk), (2.15)

where {xk}Nk=1 is a sequence of N random points in HD. Consider an integration error

ε = |V − VN |. (2.16)

By the Central Limit Theorem the root mean square error of the Monte Carlo method is

εMC =
[
E(ε2)

]1/2
=

σf√
N
, (2.17)

where σf is the standard deviation of f(x). Although εMC does not depend on the dimension
D, as in the case of lattice integration on a regular grid, it decreases slowly with increasing
N . Variance reduction techniques, such as antithetic variables [Jac01, Gla03], only affect the
numerator in (2.17).

In order to increase the rate of convergence one has to resort to Low Discrepancy Sequences
(LDS), also called Quasi Random Numbers (QRNs), instead of PRNs. The discrepancy of
a sequence {xk}Nk=1 is a measure of how inhomogeneously the sequence is distributed inside
the unit hypercube HD and is denoted by DDN (x1, . . . ,xN ). A Low Discrepancy Sequence is

a sequence {xk}Nk=1 in HD such that, for any N > 1, the first N points x1, . . . ,xN satisfy
inequality

DDN (x1, . . . ,xN ) ≤ c(D)
lnDN

N
, (2.18)

for some constant c(D) depending only on D, see [Nie88] for details.

6Independent standard gaussian numbers Zj are computed using transformation of uniform variates xj ∼
i.i.d. U(0, 1), Zj = Φ−1(xj), j = 1, . . . , D where Φ−1 is the inverse cumulative distribution function of the
standard normal distribution.
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A QMC estimator of the integral (2.14) is of the form (2.15) with the only difference that
the sequence {xk}Nk=1 is sampled using LDS instead of PRNs. An upper bound for the QMC
integration error is given by the Koksma-Hlawka inequality

εQMC ≤ V (f)DDN = O
(

lnDN

N

)
, (2.19)

where V (f) is the variation of the integrand function in the sense of Hardy and Krause ([Nie88]),
which is finite for functions of bounded variation, see [KFSM11]. The convergence rate of (2.19)
is asymptotically faster than (2.17), but it depends on the dimensionality D. However, eq.
(2.19) is just an upper bound: what is observed in most numerical tests [KFSM11, CMO97] is
a power law

εQMC ∼
c

Nα
, (2.20)

where the value of α depends on the model function. When α > 0.5 the QMC method out-
performs standard MC: this situation turns out to be quite common in financial problems. We
will measure α for some representative financial instruments, showing that its value can be very
close to 1 when the effective dimension of f is low, irrespective of the nominal dimension D.
The concept of effective dimension, and the methodology to compute it, will be introduced in
the following sections.

Since LDS are deterministic, there are no statistical measures like variances associated with
them. Hence, the constant c in (2.20) is not a variance and (2.20) does not have a probabilistic
interpretation as for standard MC. To overcome this limitation, [Owe93] suggested to introduce
randomization into LDS at the same time preserving their superiority to PRN uniformity prop-
erties. Such LDS became known as scrambled (see also [Gla03]). In practice, the root mean
square error (RMSE) for both MC and QMC methods for any fixed N can be estimated by
computing the following error averaged over L independent runs:

εN =

√√√√ 1

L

L∑
`=1

(
V − V (`)

N

)2
, (2.21)

where V is the exact, or estimated at a very large extreme value of N →∞, value of the integral

and V
(`)
N is the simulated value for the `th run, performed using N PRNs, LDS, or scrambled

LDS. For MC and QMC based on scrambled LDS, runs based on different seed points are
statistically independent. In the case of QMC, different runs are obtained using non overlapping
sections of the LDS. Actually, scrambling LDSs weakens the smoothness and stability properties
of the Monte Carlo convergence, as we will see in Section 4.5. Hence, in this paper we will use
the approach based on non-overlapping LDSs, as in [SK05b].

The most known LDS are Halton, Faure, Niederreiter and Sobol’ sequences. Sobol’ sequences,
also called LPτ sequences or (t, s) sequences in base 2, see [Nie88], became the most known and
widely used LDS in finance due to their efficiency [Jac01, Gla03]. As explained e.g. in [Sob67],
Sobol’ sequences were constructed under the following requirements:

1. Best uniformity of distribution as N →∞.

2. Good distribution for fairly small initial sets.

3. A very fast computational algorithm.

The efficiency of Sobol’ LDS depend on the so-called initialisation numbers. In this work we
used SobolSeq8192 generator provided by [BRO]. SobolSeq is an implementation of the 8192-
dimensional Sobol’ sequences with modified initialisation numbers. Sobol’ sequences produced
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by SobolSeq8192 can be up to and including dimension 213, and satisfy additional unifor-
mity properties: Property A for all dimensions and Property A’ for adjacent dimensions (see
[SAKK12] for details7). It has been found in [SAKK12] that SobolSeq generator outperforms
all other known LDS generators both in speed and accuracy.

3 Global sensitivity analysis and effective dimensions

Effective dimension is the key to explain the superior efficiency of QMC w.r.t. MC. Hence, it is
crucial to develop techniques to estimate the effective dimension and to find the most important
variables in a MC simulation.

The variance-based method of global sensitivity indices developed by Sobol’ became very
popular among practitioners due to its efficiency and easiness of interpretation [SK05a, SAA+10].
There are two types of Sobol’ sensitivity indices: the main effect indices, which estimate the
individual contribution of each input parameter to the output variance, and the total sensitivity
indices, which measure the total contribution of a single input factor or a group of inputs. Sobol’
indices can be used to rank variables in order of importance, to identify non-important variables,
which can then be fixed at their nominal values to reduce model complexity, and to analyze the
efficiency of various numerical schemes.

Consider a mathematical model described by an integrable function f(x), where the input
x = (x1, . . . , xD) is taken in a D-dimensional domain Ω and the output is a scalar. Without loss
of generality, we choose Ω to be the unit hypercube HD. The input variables x1, . . . , xD can,
then, be regarded as independent uniform random variables each defined in the unit interval
[0, 1]. The starting point of global sensitivity analysis (GSA) is the analysis of variance (ANOVA)
decomposition of the model function,

f(x) = f0 +
∑
i

fi(xi) +
∑
i<j

fij(xi, xj) + . . .+ f1 2···D(x1, . . . , xD) . (3.1)

The expansion (3.1) is unique, provided that∫ 1

0
fi1···is(xi1 , . . . , xis)dxik = 0 , ∀k = 1, . . . , s . (3.2)

The ANOVA decomposition expands the function f into a sum of terms, each depending on
an increasing number of variables: a generic component fi1···is(xi1 , . . . , xis), depending on s
variables, is called an s-order term. It follows from (3.2) that the ANOVA decomposition is
orthogonal and that its terms can be explicitly found as follows,

f0 =

∫
HD

f(x)dDx,

fi(xi) =

∫
HD−1

f(x)
∏
k 6=i

dxk − f0,

fij(xi, xj) =

∫
HD−2

f(x)
∏
k 6=i,j

dxk − f0 − fi(xi)− fj(xj),

(3.3)

and so on. If f is square-integrable, its variance decomposes into a sum of partial variances:

σ2 =
∑
i

σ2i +
∑
i<j

σ2ij + . . .+ σ212···D, (3.4)

7The most recent generator released by BRODA is SobolSeq65536 which, not only has the highest dimension-
ality available and employs the super fast generation algorithm, but also the generated Sobol’ sequences satisfy
Property A in all dimensions and property A’ for the adjacent dimensions.
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where

σ2i1···is =

∫ 1

0
f2i1···is(xi1 , . . . , xis)dxi1 · · · dxis . (3.5)

Sobol’ sensitivity indices are defined as

Si1···is =
σ2i1···is
σ2

(3.6)

and measure the fraction of total variance accounted by each fi1···is term of the ANOVA decom-
position. From (3.4) it follows that all Sobol’ indices are non negative and normalized to 1. First
order Sobol’ indices Si measure the effect of single variables xi on the output function; second
order Sobol’ indices Sij measure the interactions between pairs of variables, i.e. the fraction
of total variance due to variables xi and xj which cannot be explained by a sum of effects of
single variables; higher order Sobol’ indices Si1···is , with s > 2, measure the interactions among
multiple variables, i.e. the fraction of total variance due to variables xi1 , . . . , xis which cannot
be explained by a sum of effects of single variables or lower order interactions.

The calculation of Sobol’ sensitivity indices in eq. (3.6) requires, in principle, 2D valuations
of the multi-dimensional integrals in eq. (3.5), which is unfeasible if D is large. However, for
practical purposes it is not actually necessary to know all the possible Sobol’ indexes, but just
an appropriate selection of them. It is very useful to introduce Sobol’ indices for subsets of
variables and total Sobol’ indices. Let y = {xi1 , . . . , xim} ⊆ x, 1 ≤ i1 ≤ . . . ,≤ im ≤ D, be a
subset of x, and z = y{ ⊆ x its complementary subset, and define

Sy =

D∑
s=1

∑
(i1<···<is)∈K

Si1···is ,

Stoty = 1− Sz ,

(3.7)

where K = {i1, . . . , im}. Notice that 0 ≤ Sy ≤ Stoty ≤ 1. The quantity Stoty − Sy accounts for all
the interactions between the variables in subsets y and z. It turns out that there exist efficient
formulas which allow to avoid the knowledge of ANOVA components and to compute Sobol’
indices directly from the values of function f [Sob01]. These formulas are based on the following
integrals,

Sy =
1

σ2

∫ 1

0
[f(y′, z′)− f0][f(y′, z)− f(y, z)]dy dz dy′dz′ ,

Stoty =
1

2σ2

∫ 1

0
[f(y, z)− f(y′, z)]2dy dz dy′ ,

σ2 =

∫ 1

0
f2(y, z)dy dz − f20 ,

f0 =

∫ 1

0
f(y, z)dy dz ,

(3.8)

where the integration variables are the components of the vectors y, z, y′, z′, such that x = y∪z,
and the first two integrals depend on the choice of y. Such integrals can be evaluated, in general,
via MC/QMC techniques [KFSM11, Sal02].

Furthermore, usually enough information is already given by the first order indices Si and
by corresponding total effect indices Stoti , linked to a single variable y = {xi}. For these Sobol’
indices, it’s easy to see that

• Stoti = 0: the output function does not depend on xi,
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• Si = 1: the output function depends only on xi,

• Si = Stoti : there is no interaction between xi and other variables.

Notice that just D+2 function evaluations for each MC trial are necessary to compute all Si and
Stoti indices in eqs. (3.8): one function evaluation at point x = {y, z}, one at point x′ = {y′, z′},
and D evaluations at points x′′ = {y′, z} ,∀ y′ = {xi} , i = 1, . . . , D.

Approach presented above is applicable only to the case of independent input variables, which
admits a unique ANOVA decomposition. In the case of dependent (correlated) input variables,
the computation of variance-based global sensitivity indices is more involved. A generalization
of GSA to dependent variables can be found in [KTA12].

We finally come to the notion of effective dimensions, firstly introduced in [CMO97]. Let |y|
be the cardinality of a subset of variables y. The effective dimension in the superposition sense,
for a function f of D variables, is the smallest integer dS such that∑

0<|y|<dS

Sy ≥ 1− ε (3.9)

for some threshold ε (arbitrary and usually chosen to be less than 5%). If a function has an
effective dimension dS in the superposition sense, it can be approximated by a sum of dS-
dimensional terms, with an approximation error below ε.

The effective dimension in the truncation sense is the smallest integer dT such that∑
y⊆{1,2,...,dT }

Sy ≥ 1− ε. (3.10)

The effective dimension dS does not depend on the order of sampling of variables, while dT does.
In general, the following inequality holds,

dS ≤ dT ≤ D. (3.11)

Effective dimensions can be estimated solely from indices Si and Stoti using eqs. (3.8) with
y = i, as described in [KFSM11], where relationships among such indices are used to classify
functions in three categories according to their dependence on variables. For the so-called type
A functions, variables are not all equally important and the effective dimension in the truncation
sense dT is small, such that dS ≤ dT � D. They are characterized by the following relationship

Stoty
|y|
� Stotz
|z|

, (3.12)

where y ⊆ x is a leading subset of variables, z = y{ ⊆ x its complementary subset. Functions
with equally important variables have dT ' D and they can be further divided in two groups:
type B and C functions. Type B functions have dominant low-order interactions and small
effective dimension in the superposition sense dS , such that dS � dT ' D. For such functions,
Sobol’ indices satisfy the following relationships:

Si ' Stoti , ∀ i = 1, . . . , D,

D∑
i=1

Si ' 1. (3.13)

Type C functions have dominant higher-order interactions

Si � Stoti ,
D∑
i=1

Si � 1 (3.14)
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Type Description Relationship between SI Eff. dimensions

A Few important variables Stot
y /|y| � Stot

z /|z| dS ≤ dT � D
B Low-order interactions Si ' Sj , Si ' Stot

i ,∀ i, j dS � dT ' D
C High-order interactions Si ' Sj , Si � Stot

i ,∀ i, j dS ' dT ' D

Table 1: Classification of functions w.r.t. their dependence on variables, based on GSA.

and effective dimensions dS ' dT ' D. This classification is summarized in Table 1.
[Owe03] introduced the notion of the average dimension dA, which can assume fractional

values, defined as

dA :=
∑

0<|y|<D

|y|Sy , (3.15)

and showed that it can be rather straightforwardly computed as

dA =
D∑
i=1

Stoti . (3.16)

It has been suggested in [SS14] that QMC should outperform MC when dA . 3. This is confirmed
in our findings, see Section 4.2.

It has been proved in many works [KFSM11, CMO97, Owe03] that QMC outperforms MC
regardless of the nominal dimension whenever the effective dimension is low in one or more
senses. Hence, in the case of type A and type B functions (we assume that functions are
sufficiently smooth), QMC always outperforms MC, while for type C functions the two methods
are expected to have similar efficiency. Actually, type A and B functions are very common
in financial problems. We also note that the performance of the QMC method for Type A
functions sometimes, but not always, can be greatly improved by using effective dimension
reduction techniques, such as Brownian bridge, which will be demonstrated in the following
section.

4 Numerical results

In this Section we apply MC and QMC techniques to high-dimensional pricing problems. Our
aim is to test the efficiency of QMC with respect to standard MC in computing prices and
greeks (delta, gamma, vega) for selected option payoffs P with increasing degree of complexity
and path-dependency. We will consider both single asset and multi-asset test cases.

4.1 Selected payoffs and test set-up

We selected the following instruments as test cases: the first three payoffs depend on a single
underlying S, while the remaining two payoffs depend on multiple underlyings S.

1. Asian call:

P = max(S̄ −K, 0), S̄ =
1

Nts

Nts∑
j=1

S(tj). (4.1)

2. Double knock-out call:

P = max(S(T )−K, 0)1{minj=1,...,Nts S(tj)>Bl, maxj=1,...,Nts S(tj)<Bu}. (4.2)

13



3. Cliquet:

P = max


Nts∑
j=1

max

[
0,min

(
C,
S(tj)− S(tj−1)

S(tj−1)

)]
, F

 . (4.3)

4. European basket call:

P = max(B(T )−K, 0), B(t) =

Nrf∑
i=1

wi Si(t). (4.4)

5. Asian basket call:

P = max(B̄ −K, 0), B̄ =
1

Nts

Nts∑
j=1

B(tj). (4.5)

In the above definitions, K denotes the strike price, T is the maturity, Bl and Bu are the values
of the lower and upper barrier, respectively, C is a local cap, F is a global floor and wi are the
weights for a basket B composed of Nrf > 1 underlyings. Furthermore, payoffs (4.1, 4.2, 4.3,
4.5) are defined on a schedule (t1, . . . , tNts) of fixing dates.

In all test cases we use the following payoff parameters:

• maturity: T = 1,

• strike: K = 100,

• lower barrier: Bl = 0.5S0,

• upper barrier: Bu = 1.5S0,

• global floor: F = 0.16,

• local cap: C = 0.08,

• number of basket components: Nrf = 5,

• basket weights: wi = 0.2 ∀i = 1, . . . , Nrf .

Such selection guarantees an increasing level of complexity and path-dependency. The Asian
call with arithmetic average is the simplest and most diffused non-European payoff. The double
barrier is another very diffused payoff with stronger path-dependency. The cliquet option is a
typical strongly path-dependent payoff based on the performance of the underlying stock [Wil06].
Finally, basket options allow to test, in addition, the contribution of correlation among different
stocks. Clearly, many other possible payoffs could be added to the test (e.g. autocallable), but
we think that such selection should be complete enough to cover most of the path-dependency
and correlation characteristics relevant in the Monte Carlo simulation.

We assume that the stochastic processes S(t), which govern the evolution of the underlying
assets, follow a Nrf -dimensional geometric Brownian motion as described in Section 2.1, with
the following model parameters:

1. Payoffs (4.1, 4.2, 4.3):

• spot price: S0 = 100,

• volatility: σ = 0.3.
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2. Payoffs (4.4, 4.5)

• spot prices: S0 = (80, 90, 100, 110, 120),

• volatilities: σ = (0.5, 0.4, 0.2, 0.3, 0.6),

• correlations: ρij = ρ, i 6= j , ρ = 0, 0.3, 0.6, 0.9.

Therefore, we assume for simplicity that all assets have the same (constant) correlation ρ and
we let ρ vary from 0 to 1. We notice that the choice of the values of S0 and σ ensures that
the variables associated to different assets have different importance, which is a realistic case
and is crucial in the application of QMC techniques, as will be discussed. The processes S(t)
are discretized across Nts time steps {t1 < · · · < tj < · · · < tNts}, where Nts = 32 for the single
asset cases and Nts = 16 for the multi-asset cases (also for the European basket in order to have
the same dimensionality as for the Asian one). The dimension of the simulation is therefore
D = Nts = 32 for the single asset cases and D = NtsNrf = 80 for the multi-asset cases.

The numerical computations are performed in Matlab using different combinations of sam-
pling techniques8, both in time dimension and in risk-factors space (in parenthesis the factoriza-
tion method of the covariance matrix of the underlying assets, relevant only for the multi-asset
case, is indicated):

• MC + SD (+ CHOL),

• QMC + SD (+ CHOL),

• QMC + SD (+ PCA),

• QMC + BBD (+ CHOL),

• QMC + BBD (+ PCA),

• QMC + PCA (+ CHOL),

• QMC + PCA (+ PCA).

Regarding simulation parameters, we denote by N the number of simulated paths for the un-
derlyings and by L the number of independent runs. Following the specifics of Sobol’ sequences,
we take N = 2p, where p is an integer, since this guarantees the lowest discrepancy proper-
ties. For the MC case, we use Mersenne Twister generator, while in the case of QMC we use
SobolSeq8192 generator.

Simulation errors εN are analyzed by computing the root mean square error (RMSE) as
defined by (2.21), where V is a reference value of prices or greeks simulated with a large number of
MC scenarios (N ≈ 108 ÷ 109 depending on the payoff, according to the necessary accuracy). To
assess and compare performance of MC and QMC methods with different schemes, we compute
the scaling of the RMSE as a function of N by fitting the function εN with a power law cN−α

(2.20). RMSE is obtained with L = 100 independent runs as discussed in Section 2.2.
Finally, greeks for the payoffs above are computed with the following alternative approaches:

• FD: central finite differences with path recycling and with shift parameter ε = 10−3 (see
appendix A for details).

• AAD: hand coded adjoints as described in appendix A, only for multi-asset options and
for first order sensitivities.

Notice that the analysis of the RMSE for FD greeks is, in general, more complex than that for
prices, since the variance of the MC simulation mixes with the bias due to the approximation
of derivatives with finite differences. This issue is discussed in Appendix A.

8Notice that, in contrast to [BKS15], here we use crude MC simulations instead of MC + antithetic variables.
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Payoff Function Si/S
tot
i

∑
i Si dT dS dA Effect of ε

Asian Price 0.54→0.43 0.714 < 32 < 32 1.38 -
Delta 0.32→ 10−2 0.71→0.74 32 < 32 3.5 small

Gamma 10−4 → 10−2 10−4 → 10−2 32 32 31→ 25 high
Vega 0.42→0.01 0.611 < 32 < 32 1.57 no

Double KO Price 0.01→0.15 0.22 32 < 32 8.5 -
Delta 0.01→ 0.12 0.22 32 < 32 7.6 no

Gamma 10−5 → 10−7 10−4 → 10−2 32 32 31.2→ 29.8 high
Vega 10−5 → 10−8 10−4 → 10−2 32 32 28 high

Cliquet Price 1 1 32 1 1 -
Vega 1 1 32 1 1 no

Table 2: Summary of GSA metrics and effective dimensions of prices and greeks for SD scheme. Arrow
“→” in the column for Si/S

tot
i denotes the change in the value with the increase of index i and/or with

the increase of shift parameter ε = 10−4, 10−3, 10−2 (see appendix A); in the column for
∑

i Si it denotes
the change in the value with the increase of shift parameter ε. The numerical computations were obtained
evaluating the D + 2 integrals (3.8) on 217 QMC scenarios for each function (price or greeks). We show
significant digits only.

4.2 Global sensitivity analysis for prices and greeks

Sobol’ indices Si and Stoti are computed for different sampling techniques using eqs. (3.8), where
f is the relevant model function (the instrument payoff or a greek with finite differences9) and
y = {xi}, y′ = {x′i}, z = {x1, . . . , xi−1, xi+1, . . . , xD}, z′ =

{
x′1, . . . , x

′
i−1, x

′
i+1, . . . , x

′
D

}
. Here xi

are the uniform variates used to construct gaussian numbers (see Section 2.2). The integrals in
eqs. (3.8) are computed using QMC simulation.

Effective dimensions are estimated in the following way:

• The effective dimension in the truncation sense dT is computed using inequality (3.12),
looking for a minimal set of variables y = {x1, . . . , xdT } such that the quantity Stotz |y|/Stoty |z|
is smaller than 1%. Since the calculation of dT depends on the order of sampling variables,
the result depends on the sampling techniques.

• The effective dimension in the superposition sense dS is estimated using dimension dT as
an upper bound according to inequality (3.11). In order to distinguish between Type B
and Type C functions, we look at ratios Si/S

tot
i and

∑
i Si according to eqs. (3.13), (3.14).

• The effective average dimension dA is computed using eq. (3.16).

Let’s consider the single-asset payoffs (4.1), (4.2), (4.3) first. The results of GSA for the SD are
shown in Figs. 1-3. Measures based on Sobol’ indices are provided in Table 2. These measures
are used to compute effective dimensions and to classify integrands in (2.14) corresponding to
prices and greeks according to Table 1.

From these results we draw the following conclusions.

1. Asian option (Figure 1): price, and vega are type B functions, while delta and gamma are
type C function.

2. Double KO option (Figure 2): price and all greeks are type C functions.

9Notice that only FD estimators of greeks are considered, since AAD is discussed, here, only with standard
MC, for which GSA is not necessary.
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Figure 1: Asian call option price (a) and greeks (b), (c), (d), SD, D = 32. First order Sobol’ indices Si

and total sensitivity indices Stot
i versus time step i.

3. Cliquet option (Figure 3): price and vega are type B functions with dS = 1 (delta and
gamma for a Cliquet option are null). We recall that dS = 1 means that there are no
interactions among variables.

The analogous results of GSA for BBD are shown in Fig.s 4-6 and in Table 3.
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Figure 2: Double Knock-out call option. Parameters as in Fig. 1.
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Figure 3: Cliquet option. Parameters as in Fig. 1. Delta and gamma are null for Cliquet options.
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Payoff Function Si/S
tot
i

∑
i Si dT dS dA Effect of ε

Asian Price 0.853→0.4 0.875 2 ≤2 1.13 -
Delta 0.733→0.01 0.778 4 ≤4 1.68→ 1.43 small

Gamma 10−2 → 10−4 0.022→ 10−4 32 32 31→ 8 high
Vega 0.802→0.03 0.827 2 ≤2 1.20 no

Double KO Price 0.70→0.01 0.70 ' 2 ≤2 1.63 -
Delta 0.83→0.01 0.83 2 ≤2 1.37 no

Gamma 1 1→ 0.95 1 1 1.0 small
Vega 10−4 → 0.2 10−6 → 10−4 32 32 4.8→ 3.9 high

Cliquet Price 0.978→0.2 0.892 ' 2 ≤ 2 1.19 -
Vega 0.595→0.001 0.32 ' 32 ≤ 32 2.6 no

Table 3: Summary of GSA metrics and effective dimensions of prices and greeks for BBD scheme.
Details as in Table 2.
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Figure 4: Asian call option price (a) and greeks (b), (c), (d), BBD, D = 32. First order Sobol’ indices
Si and total sensitivity indices Stot

i versus time step i.
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Figure 5: Double Knock-out call option. Details as in Fig. 4.
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Figure 6: Cliquet option. Details as in Fig. 4.
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From these results we draw the following conclusions.

1. Asian option (Figure 4): price, delta and vega are type A functions with dS = 1. The
value of sensitivity indexes for the first input, corresponding to the terminal value t = T ,
is ' 1, while the following variables have sensitivity indexes ' 0. Gamma remains a type
C function as for SD.

2. Double KO option (Figure 5): price, delta and gamma are type A functions. Comments
as for the Asian option above. Vega remains a type C function as for SD.

3. Cliquet option (Figure 6): price is a type A function. Similarly to the European option,
the value of sensitivity indexes for the first input, corresponding to the terminal value
t = T , is ' 1, while the following values of Si are ' 0. Vega is a type C function, since the
ratio Si/S

tot
i reaches small values revealing interacting variables. Thus in this case BBD

is much less efficient than SD.

Finally, the results of GSA for PCA are shown in Figs. 7-9 and in Table 4.

Payoff Function Si/S
tot
i

∑
i Si dT dS dA Effect of ε

Asian Price 0.99→0.3 0.993 1 1 1.01 -
Delta 0.93→0.001 0.925 1 1 1.12 small

Gamma 10−2 → 10−4 0.1→ 10−3 32 32 20→ 3 high
Vega 0.99→0.05 0.992 1 1 1.01 no

Double KO Price 0.44→ 10−3 0.49 32 < 32 2.76 -
Delta 0.52→ 10−3 0.56 32 < 32 2.6 small

Gamma 10−3 → 10−4 0.04→ 10−3 32 32 27 high
Vega 0.02→ 10−4 0.08→ 10−3 32 32 36→ 12 high

Cliquet Price 0.98→0.2 0.888 ' 2 ≤ 2 1.43 -
Vega 0.565→0.001 0.33 32 ≤ 32 6.5 small

Table 4: Summary of GSA metrics and effective dimensions of prices and greeks for PCA scheme.
Details as in Table 2.

From these results we draw the following conclusions.

1. Asian option (Figure 7): price, delta and vega are type A functions. Comments as for the
BBD case (actually, PCA results to be more efficient than BBD in this case). Gamma
remains a type C function as for SD.

2. Double KO option (Figure 8): price and delta are type B functions. Gamma and Vega are
type C functions.

3. Cliquet option (Figure 9): price is a type A function. The value of sensitivity indexes
for the first input, corresponding to the terminal value t = T , is ' 1, while the following
values of Si are ' 0. Vega is a type C function, since the ratio Si/S

tot
i reaches small values

revealing interacting variables. Thus in this case, PCA is much less efficient than SD (as
for BBD).

Let’s now move to the multi-asset payoffs (4.4) and (4.5). We have performed the same analysis
as for the single-asset case, computing Sobol’ indices for all possible combinations of the sam-
pling strategies described in Section 2.1 and with zero correlation10: we observed that, when

10This is due to the fact that the GSA approach described in this work assumes that the input variables are
independent. However, based on the numerical results of Section 4.3, we argue that the conclusions should be
similar in the case of non zero correlation. In [KTA12] a possible extension of GSA to models with dependent
variables was discussed, but the interpretation of Sobol’ indexes is less transparent in that approach.
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Figure 7: Asian call option price (a) and greeks (b), (c), (d), PCA, D = 32. First order Sobol’ indices
Si and total sensitivity indices Stot

i versus variate i.

BBD or PCA time discretizations and PCA factorization of the covariance matrix are used and
input variables are appropriately re-arranged, a significant reduction in effective dimensions is
obtained. In Fig. 10 and Table 5 we compare the results for the price of an Asian basket
option with SD+CHOL, BB+PCA and PCA+PCA sampling strategies. In order to highlight
the sensitivity of Sobol’ indexes to the sampling order of the variables, we also re-arranged the
inputs in the following way:

• SD+CHOL: the underlying assets are not sorted, so that spots and volatilities are read in
the original (and, thus, not optimal) order. The input variables xi are used to construct the
Brownian motion in the following order (by risk factors): (W1(t1), . . . ,W1(tNts), . . . ,WNrf (t1), . . . ,WNrf (tNts)).

• BB+PCA: the input variables xi are used to construct the Brownian motion in the fol-
lowing order (by time steps): (WNrf (tNts), . . . ,W1(tNts), . . .).

• PCA+PCA: no particular ordering is applied, since the algorithm does the job by itself.
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Figure 8: Double Knock-out call option. Details as in Fig. 7.
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Figure 9: Cliquet option. Details as in Fig. 7.

Payoff Function Method Si/S
tot
i

∑
i Si dT dS dA

Asian basket Price SD+CHOL 0.7→0.1 0.62 ' 80 < 80 1.3
Price BB+PCA 0.83→0.1 0.85 2 ≤ 2 1.2
Price PCA+PCA 0.99→0.34 0.93 1 1 1.1

Table 5: Summary of GSA metrics and effective dimensions for the price of the Asian basket option with
SD+CHOL, BB+PCA and PCA+PCA schemes. In the first case the variables are ordered by risk factors,
while in the second case by time steps. Nominal dimension is D = 80. The numerical computations were
obtained evaluating the D + 2 integrals (3.8) on 213 QMC scenarios. We show significant digits only.
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Figure 10: Asian basket call option price with different sampling strategies along time and risk fator
directions: standard discretization and Cholesky factorization (a), Brownian bridge and PCA (b), PCA
on both directions (c). Nominal dimension is D = 80. First order Sobol’ indices Si and total sensitivity
indices Stot

i versus variate i.
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From the results it is clear that, with BB+PCA or PCA+PCA, the price of the Asian basket
option is a Type A function, while with SD+CHOL it is a Type B function. In the first case,
the most important variables are in the first places, while in the latter they are placed in the
end of the sampling vector.

In conclusion, prices and FD greeks are predominantly Type A or Type B functions when
BBD or PCA are employed, so that the effective dimension in the truncation sense dT is reduced.

The different efficiency of QMC with BBD or PCA is completely explained by the properties
of Sobol’ low discrepancy sequences. The initial coordinates of Sobol’ LDS are much better
distributed than the later high dimensional coordinates [Gla03, CMO97]. BBD and PCA change
the order in which inputs (linked with time steps) are sampled. As follows from GSA, in most
cases for BBD and PCA the low index variables are much more important than higher index
variables. The BBD uses lower index, well distributed coordinates from each D-dimensional LDS
vector to determine most of the structure of a path, and reserves other coordinates to fill in finer
details. That is, well distributed coordinates are used for important variables and other not so
well distributed coordinates are used for far less important variables. Similar considerations hold
for the PCA construction. This results in a significantly improved accuracy of QMC integration.
However, this technique does not always improve the efficiency of the QMC method as e.g. for
Cliquet options: in this case GSA reveals that for SD all inputs are equally important and,
moreover, there are no interactions among them, which is an ideal case for application of Sobol’
low discrepancy sequences; BBD and PCA, on the other hand, favoring higher index variables
destroys independence of inputs introducing interactions, which leads to higher values of dS and
dA: as a result, we observe degradation in performance of the corresponding QMC methods.

4.3 Convergence analysis

In this Section we compare the relative performances of MC and QMC techniques. This analysis
is crucial to establish if QMC outperforms MC, and in what sense.

Firstly, following the suggestion of [Jac01], Section 14.4, we analyze convergence diagrams
for prices and greeks, showing the dependence of the MC simulation error upon the number of
MC paths. The results for the five payoffs are shown in Figs. 11-15. In the case of multi-asset
options, we plot just delta and vega w.r.t. the fifth asset, for the case of correlation ρ = 0.6.
Similar results hold for other cases.

Next, we analyze the relative performance of QMC vs MC in terms of convergence rate. We
plot in Figs. 16-20 the root mean square error, eq. (2.21), versus the number of MC scenarios
N in Log-Log scale. In all our tests we have chosen an appropriate range for N such that,
in the computation of greeks, the bias term is negligible with respect to the variance term
(see Appendix A for details). Hence, the observed relations are, with good accuracy, linear,
therefore the power law (2.20) is confirmed, and the convergence rates α can be extracted as the
slopes of the regression lines. Furthermore, also the intercepts of regression lines provide useful
information about the efficiency of the QMC and MC methods: in fact, lower intercepts mean
that the simulated value starts closer to the exact value. The resulting slopes and intercepts
from linear regression are presented in tabs. 6-9 for all test cases.
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Figure 11: Asian call option price (a) and greeks (b), (c), (d) convergence diagrams versus number of
simulated paths for MC+SD (solid black line), QMC+SD (solid blue line), QMC+BBD (solid red line)
and QMC+PCA (solid green line). 1% and 0.1% accuracy regions are marked by horizontal black solid
and dashed lines, respectively. Number of dimensions is D = 32. Shift parameter is ε = 10−3.

Payoff Function MC+SD QMC+SD QMC+BBD QMC+PCA

Asian Price -0.3 -0.9 -1.1 -1.1
Delta -1.6 -1.8 -2.1 -2.4

Gamma -1.8 -1.7 -1.8 -1.8
Vega 0.2 -0.2 -0.4 -0.5

Double KO Price -0.3 -0.4 -0.7 -0.7
Delta -1.6 -1.7 -2.1 -2.0

Gamma -1.8 -1.9 -2.7 -1.8
Vega 1.6 1.6 1.6 1.6

Cliquet Price -2.2 -3.3 -2.6 -2.6
Vega -1.8 -3.1 -1.9 -1.8

Table 6: Intercepts from linear regression, for single-asset options with MC+SD, QMC+SD, QMC+BBD
and QMC+PCA, L = 100 runs. Only significant digits are shown, standard error on the estimates is
around 10%. Results are shown for N = 512 paths.
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Figure 12: Double Knock-out call option. Details as in Fig. 11.
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Figure 13: Cliquet option. Details as in Fig. 11.
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Figure 14: European basket call option price (a) and selected greeks (b), (c) convergence diagrams versus
number of simulated paths for different combinations of sampling techniques: MC+SD+CHOL (black),
QMC+SD+CHOL (blue), QMC+SD+PCA (cyan), QMC+BBD+CHOL (red), QMC+BBD+PCA (ma-
genta), QMC+PCA+CHOL (green), QMC+PCA+PCA (yellow). 1% and 0.1% accuracy regions are
marked by horizontal black solid and dashed lines, respectively. Number of dimensions is D = 80,
correlation is ρ = 0.6 and shift parameter is ε = 10−3.

Payoff Function MC+SD QMC+SD QMC+BBD QMC+PCA

Asian Price -0.49 -0.65 -0.76 -0.74
Delta -0.48 -0.55 -0.61 -0.64

Gamma -0.48 -0.53 -0.51 -0.50
Vega -0.49 -0.64 -0.72 -0.74

Double KO Price -0.51 -0.50 -0.60 -0.56
Delta -0.50 -0.51 -0.59 -0.56

Gamma -0.52 -0.48 -0.58 -0.53
Vega -0.52 -0.52 -0.55 -0.53

Cliquet Price -0.50 -1.00 -0.80 -0.55
Vega -0.51 -0.76 -0.61 -0.55

Table 7: Slopes from linear regression for single-asset options, as in Table 6. Standard error on the
estimates is around 5% (20% for the price of the Cliquet with QMC+BBD).
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Figure 15: Asian basket call option. Details as in Fig. 14.
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Correlation Method Slopes Intercepts
Price Delta Vega Price Delta Vega

ρ = 0 MC+STD+CHOL -0.49 -0.50 -0.51 -0.04 -2.00 0.28
QMC+STD+CHOL -0.71 -0.54 -0.67 -0.19 -2.33 0.13

QMC+STD+PCA -0.75 -0.64 -0.74 -0.07 -2.14 0.32
QMC+BB+CHOL -0.91 -0.63 -0.76 -0.47 -2.49 -0.17

QMC+BB+PCA -0.92 -0.65 -0.78 -0.42 -2.51 -0.13
QMC+PCA+CHOL -0.80 -0.58 -0.74 -0.55 -2.45 -0.15

QMC+PCA+PCA -0.75 -0.56 -0.61 -0.51 -2.47 0.07

ρ = 0.3 MC+STD+CHOL -0.50 -0.48 -0.51 0.12 -2.00 0.28
QMC+STD+CHOL -0.71 -0.55 -0.65 -0.01 -2.33 0.21

QMC+STD+PCA -0.75 -0.60 -0.62 0.02 -2.22 0.30
QMC+BB+CHOL -0.92 -0.63 -0.80 -0.36 -2.49 -0.09

QMC+BB+PCA -0.95 -0.65 -0.65 -0.45 -2.57 -0.17
QMC+PCA+CHOL -0.78 -0.54 -0.76 -0.46 -2.49 -0.11

QMC+PCA+PCA -0.82 -0.59 -0.64 -0.53 -2.50 -0.01

ρ = 0.6 MC+STD+CHOL -0.49 -0.48 -0.50 0.21 -2.00 0.27
QMC+STD+CHOL -0.72 -0.60 -0.62 0.12 -2.21 0.25

QMC+STD+PCA -0.79 -0.65 -0.67 0.16 -2.13 0.24
QMC+BB+CHOL -0.93 -0.64 -0.81 -0.28 -2.54 -0.10

QMC+BB+PCA -0.97 -0.67 -0.76 -0.32 -2.67 -0.23
QMC+PCA+CHOL -0.78 -0.60 -0.75 -0.40 -2.45 -0.13

QMC+PCA+PCA -0.80 -0.62 -0.73 -0.51 -2.52 0.06

ρ = 0.9 MC+STD+CHOL -0.49 -0.47 -0.48 0.27 -2.01 0.26
QMC+STD+CHOL -0.78 -0.64 -0.64 0.23 -2.13 0.25

QMC+STD+PCA -0.83 -0.64 -0.74 0.28 -2.16 0.30
QMC+BB+CHOL -0.97 -0.64 -0.83 -0.22 -2.64 -0.09

QMC+BB+PCA -0.95 -0.72 -0.85 -0.25 -2.64 -0.12
QMC+PCA+CHOL -0.86 -0.56 -0.78 -0.29 -2.57 -0.10

QMC+PCA+PCA -0.83 -0.58 -0.74 -0.46 -2.61 -0.02

Table 8: Slopes and intercepts from linear regression, for European basket option with different sampling
techniques and correlation levels, L = 100 runs. Only significant digits are shown, standard error on the
estimates is around 10% for intercepts and 5% for slopes. Results of intercepts are shown for N = 512
paths.
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Correlation Method Slopes Intercepts
Price Delta Vega Price Delta Vega

ρ = 0 MC+STD+CHOL -0.46 -0.47 -0.46 -0.31 -2.13 -0.10
QMC+STD+CHOL -0.70 -0.56 -0.64 -0.57 -2.37 -0.34

QMC+STD+PCA -0.76 -0.56 -0.80 -0.40 -2.31 -0.02
QMC+BB+CHOL -0.76 -0.58 -0.69 -0.75 -2.44 -0.46

QMC+BB+PCA -0.79 -0.58 -0.69 -0.72 -2.47 -0.45
QMC+PCA+CHOL -0.87 -0.65 -0.72 -0.79 -2.43 -0.53

QMC+PCA+PCA -0.84 -0.57 -0.64 -0.74 -2.62 -0.39

ρ = 0.3 MC+STD+CHOL -0.49 -0.48 -0.45 -0.19 -2.14 -0.08
QMC+STD+CHOL -0.71 -0.55 -0.68 -0.37 -2.33 -0.24

QMC+STD+PCA -0.82 -0.59 -0.64 -0.23 -2.32 -0.01
QMC+BB+CHOL -0.76 -0.56 -0.70 -0.66 -2.52 -0.48

QMC+BB+PCA -0.89 -0.54 -0.57 -0.69 -2.57 -0.33
QMC+PCA+CHOL -0.86 -0.57 -0.75 -0.68 -2.53 -0.46

QMC+PCA+PCA -0.93 -0.59 -0.62 -0.81 -2.69 -0.60

ρ = 0.6 MC+STD+CHOL -0.48 -0.46 -0.48 -0.05 -2.14 -0.05
QMC+STD+CHOL -0.74 -0.55 -0.67 -0.21 -2.33 -0.18

QMC+STD+PCA -0.83 -0.57 -0.70 -0.13 -2.35 -0.12
QMC+BB+CHOL -0.81 -0.55 -0.73 -0.56 -2.54 -0.46

QMC+BB+PCA -0.95 -0.61 -0.61 -0.56 -2.49 -0.52
QMC+PCA+CHOL -0.89 -0.59 -0.67 -0.57 -2.60 -0.55

QMC+PCA+PCA -0.97 -0.55 -0.73 -0.65 -2.81 -0.46

ρ = 0.9 MC+STD+CHOL -0.49 -0.48 -0.48 0.01 -2.13 -0.06
QMC+STD+CHOL -0.79 -0.54 -0.76 -0.09 -2.39 -0.09

QMC+STD+PCA -0.84 -0.56 -0.82 -0.05 -2.37 -0.05
QMC+BB+CHOL -0.89 -0.58 -0.77 -0.48 -2.52 -0.50

QMC+BB+PCA -0.94 -0.64 -0.74 -0.49 -2.47 -0.55
QMC+PCA+CHOL -0.92 -0.53 -0.82 -0.52 -2.71 -0.49

QMC+PCA+PCA -0.95 -0.63 -0.74 -0.54 -2.79 -0.53

Table 9: Slopes and intercepts for Asian basket option. Details as in Table 8.
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Figure 16: Asian call option price (a) and greeks (b), (c), (d), Log-Log plots of error εN versus number
of simulated paths N = 2p, p = 9, . . . , 18, D = 32, ε = 10−3, L = 100 runs: MC+SD (black), QMC+SD
(blue), QMC+BBD (red), QMC+PCA (green). Linear regression lines are also shown.
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Figure 17: Double Knock-out call option. Details as in Fig. 16.
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Figure 18: Cliquet option. Details as in Fig. 16.
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Figure 19: European basket call option price (a) and selected greeks (b), (c), Log-Log plots of er-
ror εN versus number of simulated paths, N = 2p, p = 8, . . . , 17, D = 80, ε = 10−3, L = 100 runs::
MC+SD+CHOL (black), QMC+SD+CHOL (blue), QMC+SD+PCA (cyan), QMC+BBD+CHOL (red),
QMC+BBD+PCA (magenta), QMC+PCA+CHOL (green), QMC+PCA+PCA (yellow). Linear regres-
sion lines are also shown. Correlation is ρ = 0.6.
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Figure 20: Asian basket call option. Details as in Fig. 19.
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We observe that, for the Asian call, QMC+PCA outperforms all other methods for price,
delta and vega (for gamma all methods show similar convergence), with QMC+BBD being only
marginally less efficient. Higher α and lower intercepts allow for faster convergence11. Moreover,
convergence appears to be much smoother and more stable. Similar considerations hold for
the double barrier option with QMC+BBD, the Cliquet with QMC+SD, the European basket
option with QMC+BBD+PCA and the basket Asian option with QMC+PCA+PCA. These
results can be explained by the fact that the above mentioned sampling strategies are optimal,
in the sense that they are intrinsically designed to extract initial coordinates of the gaussian
vector Z = (Z1, . . . , ZD) to construct the most important coordinates of the underlying assets’
vector S =

(
S1(t1), . . . , SNrf (t1), . . . , S1(tNts), . . . , SNrf (tNts)

)
.

4.4 Speed-Up analysis

A typical question with Monte Carlo simulation is “how many scenarios are necessary to achieve
a given precision?”. When comparing two numerical simulation methods, the typical question
becomes “how many scenarios may I save using method B instead of method A, preserving the
same precision?”.

A useful measure of the relative computational performance of two numerical methods is the
so called speed-up S∗(a) [KMRZ98a, PT96]. It is defined as

S
(A,B)
∗ (a) =

N
(A)
∗ (a)

N
(B)
∗ (a)

, (4.6)

where N
(A)
∗ (a) is the number of scenarios needed to computational scheme A (which can be any

of the different combinations of random number generator, time discretization and covariance
factorization algorithms) to reach and maintain a given accuracy a w.r.t. exact or almost exact
results12. Thus, the speed-up S∗(a) quantifies the computational gain of method B w.r.t. method
A.

We show in table 10 the Speed-Up computation results for QMC method with optimal
sampling strategies over standard MC, when accuracies of 1% and 0.1% are to be reached. The
simulation methods chosen for the computation of QMC Speed-Up are those which achieved the
highest performance for our test cases, as concluded from Section 4.3.

In general, QMC with BBD or PCA largely outperforms the other methods, with a speed-up
factor close to 103 in some cases. QMC with SD is the best method for Cliquet. We notice in
particular that, in most cases, a ten-fold increase of the accuracy a results in a two-fold increase
of speed-up S∗(a). However, in a few cases (Cliquet and basket options), such an increase can
result in up to ten-folds increase of S∗(a). We notice that the Speed-Up measure actually
makes no reference to the computational time but is rather defined as a ratio of number of
simulations. This, in turn, is proportional to CPU time. Therefore, it is interesting to fix
a given accuracy and compute the CPU time needed to reach it with various combinations of
methods, including FD and AAD. Indeed, even though adjoints allow for big savings, in terms of
computational time, w.r.t. finite differences, the accuracy of the computation is rather given by
the simulation method: fixing a target accuracy a, QMC will reach it with much fewer scenarios

11We stress that slopes and intercepts shown in the previous Figs. 16-20 do not depend on the details of the
simulations, in particular the MC seed or the LDS starting point, since we are averaging over L = 100 runs.

12The thresholds N∗ could be evaluated through direct simulation, but this would be extremely computationally
expensive. Thus we resort to a simpler algorithm: we identify the number of scenarios N

(A)
∗ (a) in eq. (4.6) as

the first number of simulated paths such that, for any N > N∗, V − a ≤ VN ± 3 ε ≤ V + a, where V and VN are
respectively the exact and simulated values of prices or greeks and ε is the standard error. Then, N

(A)
∗ (a) can

be estimated through linear regression results of Section 4.3. Some concern should be given to extrapolation for
finite differences, as discussed in [BKS15].
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Figure 21: European basket option. Absolute CPU time (a) and logarithmic CPU time (b) needed to
compute price and all greeks (deltas and vegas), for different target accuracies: MC+SD+CHOL with
AAD (blue), QMC+BBD+PCA with FD (red), QMC+BBD+PCA with AAD (green). The number of
underlyings is Nrf = 5 and the number of time steps is Nts = 16. Correlation is ρ = 0.3, the other
parameters are as described in Section 4.1
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Figure 22: Asian basket option. Absolute CPU time (a) and logarithmic CPU time (b) needed to
compute price and all greeks (deltas and vegas), for different target accuracies: MC+SD+CHOL with
AAD (blue), QMC+PCA+PCA with FD (red), QMC+PCA+PCA with AAD (green). The number of
underlyings is Nrf = 5 and the number of time steps is Nts = 16. Correlation is ρ = 0.3, the other
parameters are as described in Section 4.1

37



1 2 3 4 5 6 7 8 9 10

0

5

10

15

N
rf

T
im

e 
(s

ec
)

(a) Abslolute CPU time

1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

N
rf

Lo
g 

T
im

e
(b) Log CPU time

Figure 23: European basket option. Absolute CPU time (a) and logarithmic CPU time (b) needed
to compute price and all greeks (deltas and vegas), for increasing number of underlying assets Nrf :
MC+SD+CHOL with AAD (blue), QMC+BBD+PCA with FD (red), QMC+BBD+PCA with AAD
(green). The target accuracy is fixed to 1% and the number of time steps is always Nts = 16. Correlation
is ρ = 0.3, the other parameters are as described in Section 4.1
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Figure 24: Asian basket option. Absolute CPU time (a) and logarithmic CPU time (b) needed
to compute price and all greeks (deltas and vegas), for increasing number of underlying assets Nrf :
MC+SD+CHOL with AAD (blue), QMC+BBD+PCA with FD (red), QMC+BBD+PCA with AAD
(green). The target accuracy is fixed to 1% and the number of time steps is always Nts = 16. Correlation
is ρ = 0.3, the other parameters are as described in Section 4.1
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Payoff Function QMCvsMC Speed-Up
a = 1% a = 0.1%

Asian Price 80 300
Delta 50 150

Gamma 1 -
Vega 60 300

Double KO Price 10 30
Delta 20 30

Gamma 150 300
Vega 3 5

Cliquet Price 30 400
Vega 100 500

European basket Price 110 800
Delta 40 150
Vega 30 80

Asian basket Price 80 700
Delta 20 50
Vega 30 150

Table 10: Speed-Up S∗(a) of optimal QMC vs MC techniques, in order to achieve 1% and 0.1% accuracy
in the computation of prices and FD greeks. The shift ε for finite differences and the correlations are
the same as used in the previous sections. Missing values of S∗ mean that the required accuracy cannot
be reached since it is smaller than the bias. Regarding the QMC simulation, the sampling strategies
considered are: PCA for Asian call, BBD for double knock-out, SD for cliquet, BBD+PCA for European
basket, PCA+PCA for Asian basket.

than MC, as measured by S∗(a). In Figs. 21 and 22 we show absolute CPU times necessary
to evaluate price and all greeks at a given accuracy for MC and optimized QMC, with AAD or
FD, for our test cases of European and Asian basket options with 5 correlated underlyings and
16 time steps, which is quite typical case in real financial applications.

We observe that, while QMC with AAD is of course the best choice, QMC with FD runs in
comparable times as MC with AAD for accuracies up to few percent and is actually faster for
higher accuracies. When the number of underlyings is increased, AAD will become favourable
w.r.t. FD in terms of computational time when the same accuracy is to be reached. Fixing
target accuracy to 1% and increasing the number of underlyings13, we observe from Figs. 23
and 24 that AAD becomes faster than FD starting from Nrf ' 10. We recall that, since we are
using central differences, FD computation of all deltas and vegas requires 4 ·Nrf re-pricings.

It follows from these simple experiments that AAD without QMC is not guaranteed to be
faster than FD if accuracy is concerned. We further comment on this in the Conclusions.

4.5 Stability analysis

We have already observed that QMC convergence is often smoother than MC (see Figs. 11-15):
such monotonicity and stability guarantee better convergence for a given number of paths N . In
order to quantify monotonicity and stability of the various numerical techniques, the following
strategy is used: we divide the range of path simulations N in 10 windows of equal length,
and we compute the sample mean mi and the sample standard deviation (“volatility”) si for
each window i. Then, log-returns log(mi/mi−1) and volatilities si, for i = 2, . . . , 10, are used
as measures of, respectively, monotonicity and stability: “monotonic” convergence will show
non oscillating log-returns converging to zero, “stable” convergence will show low and almost

13For simplicity we assume that S∗(a) is almost constant in the range Nrf = 1, . . . , 10.
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Figure 25: Log-returns (upper plots) and volatilities (lower plots) of Asian call option price (a) and
greeks (b), (c), (d), for D = 32, ε = 10−3, MC+SD (blue), rQMC+BBD (green) and pure QMC+BBD
(red). The number of simulation paths ranges from 100 to 10,000 grouped in 10 windows each containing
10 samples (x-axis).

flat volatility. We performed stability analysis for MC and QMC methods. For QMC we used
two different generators: pure QMC with BRODA generator and randomized Quasi Monte Carlo
(rQMC) with Matlab generator14. As an example, we plot in Fig. 25 the results for the Asian
option comparing the stability of QMC+BBD with MC+SD.

We observe that, in general, QMC+BRODA and rQMC+Matlab are more monotonic and
stable than MC+SD. However, this fact is less evident for Asian delta and gamma, where QMC
lacks monotonicity and stability w.r.t. MC, with QMC+BRODA being slightly more stable than
rQMC+Matlab. As we know from the results of GSA for this case that higher order interactions
are present and the effective dimensions are large (see Table 3).

In order to understand also the effect of dimension D on monotonicity and stability, we
run a similar experiment for an Asian option with D = 252 fixing dates using both QMC and
rQMC with SD and BBD. The results are shown in Fig. 26. We observe that pure QMC with

14Matlab Function sobolset with the MatousekAffineOwen scrambling method was used.
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Figure 26: Asian call option with D = 252, ε = 10−3. Results are shown for rQMC+SD+Matlab (green)
and rQMC+BBD+Matlab (magenta), and QMC+SD+BRODA (blue) and QMC+BBD+Broda (red).

BRODA generator preserves monotonicity and stability much more than randomized QMC based
on Matlab generator for all cases including delta and gamma, with QMC+BBD+BRODA showing
the best stability. It is also interesting to note that the increase in dimension resulted in the
decrease in the effective dimensions for the case of the BBD but not for the SD.

We conclude that good high-dimensional LDS generators are crucial to obtain a smooth
monotonic and stable convergence of the MC Simulation in high effective dimensional problems.

5 Conclusions

In this work we presented an updated overview of the application of QMC and GSA methods
in finance, w.r.t. standard MC methods. In particular, we considered prices and greeks (delta,
gamma, vega) for selected payoffs with increasing degree of complexity and path-dependency
(Arithmetic Asian Call, Double Knock-Out Barrier, Cliquet, European and Asian Basket op-
tions). We compared standard discretization (SD) vs Brownian bridge discretization (BBD)
and Principal Component Analysis (PCA) schemes of the underlying stochastic diffusion pro-
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cess, as well as Cholesky vs PCA factorization of the covariance matrix, and different sampling
of the underlying distribution using pseudo random vs high dimensional Sobol’ low discrepancy
sequences. We applied GSA and performed detailed and systematic analysis of convergence
diagrams, error estimation, performance, speed-up and stability of the different MC and QMC
simulations.

The GSA results in Section 4.2 revealed that effective dimensions associated with BBD and
PCA simulations are generally lower than those associated with SD and Cholesky simulations,
and showed how much such dimension reduction acts for different payoffs and greeks (Figures
1-10 and Tables 2-5). Effective dimensions, being linked with the structure of ANOVA decom-
positions (the number of important inputs, importance of high order interactions) fully explain
the superior efficiency of QMC with BBD and PCA due to the specifics of Sobol’ sequences. An
exception is represented by Cliquet options.

The performance analysis results presented in Section 4.3 confirmed that QMC with BBD
or PCA outperforms MC in most cases, showing faster and more stable convergence to exact or
almost exact results (Figs. 11-15, 16-20, and Tables 6-9).

The speed-up analysis results in Section 4.4 shows that QMC with optimal sampling strate-
gies allows significative reduction of the number of scenarios to achieve a given accuracy, leading
to significative reduction of computational efforts (Table 10). The size of the reduction costs
scales up to almost 103. This fact is very important when the computation of a large number
of price sensitivities (greeks) has to be performed, as in the case of multi-asset options, because
the computational time increases linearly with the number of underlyings if standard (finite
differences, or FD) techniques are employed. We compared the computational efforts needed
by FD and AAD in computing price and all first order greeks with and without QMC, fixing
the desired accuracy. Remarkably, we obtained that QMC with FD runs in comparable times
as MC with AAD for medium sized baskets, while the best choice is clearly QMC with AAD,
which allows for very fast and efficient results as shown in Figs. 21-24. It means that, taking
into account the accuracy of the computation, AAD is not guaranteed to be faster than FD
if it is implemented with standard MC rather than QMC (at least for a modest number of
derivatives to be computed). Since, as discussed in appendix A, AAD requires a considerable
implementation effort, especially in industrial applications, our results suggest that, if a financial
institution doesn’t have AAD implemented, the use of FD coupled with QMC (which is much
easier to implement) remains competitive in many realistic applications. Moreover, if a financial
institution already has AAD, it should use QMC instead of MC: this allows for huge savings in
computational time and achieves high accuracy, in contrast to standard MC.

Finally, the stability analysis results presented in Section 4.5 confirmed that QMC simu-
lations with optimal sampling strategies are generally more stable and monotonic than MC
(Figures 25, 26).

The methodology presented in this paper can be used for more complex problems in finance,
in particular, fair value adjustments (XVAs) and market and counterparty risk measures15,
based on multi-dimensional, multi-step Monte Carlo simulations of large portfolios of trades.
Such simulations can require, in typical real cases, ∼ 102 time simulation steps, ∼ 103 (possibly
correlated) risk factors, ∼ 103 − 104 MC scenarios, ∼ 104 − 105 trades, 60 years maturity, lead-
ing to a nominal dimensionality of the order D ∼ 105, and to a total of 109 − 1011 evaluations.
Moreover, a fraction ∼ 1% of exotic trades may require distinct MC simulations for their eval-
uation, nesting another set of ∼ 103 − 105 MC scenarios, thus leading up to 1014 evaluations.
Finally, hedging CVA/DVA/FVA/KVA/MVA valuation adjustments w.r.t. to their underlying
risk factors (typically credit/funding curves) also requires the computation of their correspond-
ing greeks w.r.t. each term structure node, adding another ∼ 102 simulations. This is the reason

15Some of these metrics, such as EPE/ENE or expected shortfall, are defined as means or conditional means,
while some other metrics, such as VaR or PFE, are defined as quantiles of appropriate distributions.
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why the industry is continuously looking for advanced techniques to reduce computational times:
grid computing, GPU computing, AAD, etc. (see e.g. [She15]).

We argue that, using QMC sampling (instead of MC) to generate the scenarios of the un-
derlying risk factors and to price exotic trades may significantly improve the accuracy, the per-
formance and the stability of such monster-simulations, as shown by preliminary results on real
portfolios in [BKS14]. Furthermore, GSA should suggest how to order the risk factors according
to their relative importance, thus reducing the effective dimensionality. Such applications will
need further research.

Appendices

A FD vs AAD greeks

Complex financial instruments can be priced only resorting to Monte Carlo simulation. The
main drawback of this approach is that it is generally computationally expensive to reach an
acceptable degree of accuracy. This problem becomes even more striking when the computation
of Greeks is concerned: indeed, due to its simplicity, the most widely used technique is to form
finite difference (FD) approximations and then re-price the instrument on bumped scenarios
(i.e. with the relevant parameter shifted by a predefined finite amount). The FD estimator of a
generic greek (say, the sensitivity w.r.t. to parameter θi) is defined as16

∂V0
∂θi

.
=
Y (θi + h)− Y (θi)

h
(A.1)

where Y is the discounted payoff and h the increment on θi, which is chosen to be h = εSi(0), for
deltas and gammas, and h = ε, for vegas, for a given17 “shift parameter” ε. Clearly, the value of
the greek is obtained by averaging (A.1) on many Monte Carlo paths: all that is required for the
computation of the price is thus sufficient for the computation of FD greeks as well, no additional
implementation effort is required. However, this approach has two disadvantages. The first one
concerns with the accuracy of the computation: finite differences are subject to truncation errors,
which can be mitigated by the use of central differences so that the bias of the greek estimator
(A.1) is of second order in the increment. Bias can be decreased by choosing a small increment,
however this would also increase the variance of the estimator, even if path recycling is adopted,
so that a fine tuning is needed. It is often hard to find the optimal increment and, in concrete
applications, the same increment usually has to be applied to many different situations18.The

16For simplicity, here the one-sided forward difference is shown. As it will be discussed, generally central
(two-sided) differences are preferable [Gla03].

17Of course, the shift parameters need not to be the same for delta and vega. They can also be different for
each component greek.

18The choice of the appropriate increment is guided by the following considerations. The MC/QMC root mean
square error estimate of finite differences is given by [Gla03]

ε =

√
c

N2αhβ
+ b2h4 . (A.2)

The first term in the square root is a “statistical” error related to the variance c. It depends on N as well as on
ε. α = 0.5 for MC and, usually, 0.5 < α < 1 for QMC, while β = 1 for first derivatives and β = 3 for second
derivatives. The second term is the systematic error due to the bias of finite differences: it is independent of N

but it depends on ε. The constant b is given by b = 1
6
∂3V
∂θ3

(θ) for central differences of the first order (delta and

vega) and b = 1
12
∂4V
∂θ4

(θ) for central differences of the second order (gamma). The optimal value of h doesn’t vary
too much for reasonable ranges of N and it can be chosen in such a way that the bias term remains negligible so
that (A.2) follows approximately a power law.
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second disadvantage of FD techniques is concerned with computational efforts: indeed, the
instrument has to be re-priced as many times as the number of derivatives to compute (actually
twice as many, if central differences are used). Therefore, the computational cost of evaluating
the price and all greeks, i.e. the gradient of the price function w.r.t. all relevant parameters,
increases linearly with the number of required sensitivities. This becomes particularly expensive
e.g. in the case of options on multiple underlyings, where at least deltas and vegas w.r.t. each
underlying are usually needed.

Both disadvantages of FD techniques can be eliminated by applying Adjoint Algorithmic
Differentiation (AAD), which we briefly review in the following. This method was introduced in
finance in [GG06] and further developed in [LLS09, CG10, CG12, Cap11, CLP11]. Instead of the
FD estimator, let’s introduce the “Pathwise Derivative” estimator of the greeks [BG96, Gla03],

∂V0
∂θi

.
=
∂Y

∂θi
, (A.3)

which is simply the derivative of the discounted payoff. If the pathwise derivative (A.3) exists
with probability 1 and if the payoff function is regular enough (e.g. it is Lipschitz continuous, see
[Gla03] for other sufficient conditions), then (A.3) provides an unbiased estimator of the greeks
since expectation and differentiation can be safely interchanged:

∂V0
∂θi

=
∂E[Y ]

∂θi
= E

[
∂Y

∂θi

]
. (A.4)

In other words, we just need to differentiate the discounted payoff path by path and the value of
the greek is then recovered by a Monte Carlo average as usual. Notice that the pathwise deriva-
tives have to be computed explicitly in order to compute greeks according to this approach, so
that extra implementation effort is required. This can be tedious for complex payoffs. Moreover,
in the limit h→ 0, both the FD and Pathwise Derivative estimators provide the same estimates
with the same Monte Carlo variance, so that the implementation effort required by the latter
seems to be hardly justifiable at first sight. However, the major benefit comes from the fact
that, if one has to compute the gradient of a single output w.r.t. many variables (as in the case
of greeks of multi-asset options), the adjoint mode of algorithmic differentiation dramatically
increases the efficiency of pathwise differentiation.

We now describe the basics ideas behind this methodology. Algorithmic differentiation (AD)
is a set of programming techniques aimed at calculating exact (i.e. free of truncation errors)
derivatives of functions given as computer codes [GW08, Nau12]. Let f : Rn → R , f(X) = Y
be a scalar function of n variables X = (x1, . . . , xn), such as the discounted payoff regarded
as a function of parameters θ. No matter how complicated f might be, it is always given as
the composition of elementary functions and/or basic arithmetic operations. AD exploits the
information on the structure of the code and on the dependencies between its various parts, in
order to optimize the calculation of the derivatives. The main tool which makes AD work is the
chain rule, which is repeatedly used on the arcs connecting the nodes of the computational graph
representing the instructions needed to execute f . Here we discuss only the adjoint mode of
algorithmic differentiation (AAD), which is the most efficient when the derivatives of few outputs
w.r.t. many inputs are needed19. First of all, a forward sweep is performed where, starting from
the values of the inputs, the value of the output is computed recording all necessary information
in intermediate steps. After that, a backward sweep is performed, where the derivatives w.r.t all
the intermediate variables, i.e. the adjoints, are propagated from the output to the inputs until

19The discussion of the tangent mode, useful when the derivatives of many outputs w.r.t. few inputs have to
be computed, is left to the references [GW08, Nau12, Cap11].
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the whole gradient is obtained in a single run.

X → · · · → Ui → Vj → · · · → Y

↓
X̄ ← · · · ← Ūi ← V̄j ← · · · ← Ȳ

In more detail: any intermediate instruction is an intrinsic (unary or binary) operation of the
form

Vj = Vj({Ui}i≺j) (A.5)

whose derivative is known from calculus. Here, the notation means that Ui are the variables on
which Vj explicitly depends. The adjoints are then defined as

Ūi =
∑
j�i

∂Vj
∂Ui

V̄j . (A.6)

Initializing Ȳ = 1 and propagating the adjoints backward through each intermediate step, at
the end of the computation the adjoints of the inputs (i.e. the gradient) are obtained.

It is easy to appreciate that the cost for the propagation of the chain rule back to the inputs
is of the same order as the cost of evaluating the function f itself. Indeed, there’s a precise result
stating that, in the adjoint mode, AD provides the full gradient of f at a cost which is up to 4
times the computational cost of evaluating the function f itself, independently of the number
of variables. This explains the power of AAD, enabling an extremely fast computation of an
arbitrary number of greeks20. In Fig. 27 the relative cost of evaluating the price and all deltas
and vegas of an Asian basket option w.r.t the cost of evaluating just the price is shown for an
increasing number of underlyings and for both FD and AAD techniques. It is easily observed
that, while for FD the relative cost increases linearly with the number of underlyings (or greeks
to be computed), for AAD it remains constant. However, AAD also has some disadvantages
w.r.t FD: first of all, it is harder to implement than finite differences and the implementation
effort within large architectures would be challenging without the availability of automatic tools.
Secondly, it is not always applicable: in particular it cannot handle discontinuous payoffs. One
must regularize the payoff by explicitly smoothing the discontinuity, e.g. approximating a digital
call with a call spread or something smoother, or using conditional expectations, e.g. smoothing
payoffs with barriers [Gla03]. However this introduces a bias and the use of automatic tools is
not straightforward, so that extra effort is needed. Finally, second order Greeks do not have the
benefits of the adjoints for multi-asset options. One usually is forced to use a mixed approach
AAD+FD. Recently, a mixed approach AAD + Likelihood Ratio Method has been proposed
[Cap15]. Furthermore, we want to stress that the results such as those shown in Fig. 27,
typically presented in many works on adjoint methods in finance, solely refer to the speed of
the computation and by no means are indicative of the accuracy of the computation. The latter
is rather given by the details of the simulation method, such as the number of scenarios, the
random number generator, the use of variance reduction techniques, and so forth. Of course, an
optimal use of the simulation technique will increase accuracy. In other words, the same accuracy
can be reached with less scenarios if the simulation details are accurately chosen (e.g. QMC with
BBD): this is, therefore, another source of speed-up of the whole computation, besides the mere

20AAD, being mechanical in nature, can be automated. Indeed, several AD tools have been developed which
automatically implement the adjoint counterpart of a given computer code. These tools typically make use of
source code transformations or operator overloading. The latter are well suited to the object oriented programming
paradigm. The drawback is that the computation of derivatives is slower, since a preliminary step is needed where
all the information of the original code is recorded in a kind of tape, which is a representation of the computational
graph necessary to run the forward and backward sweeps. A lot of memory is also necessary since all intermediate
variables cannot be overwritten. We refer to the literature for further details on AD tools [GW08, Nau12].
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Figure 27: CPU time required to compute price and all greeks (deltas and vegas) divided by CPU
time required to compute only price of an Asian option on a basket of n underlyings, for increasing n.
Monte Carlo simulation with 200,000 scenarios is used. The red curve refers to central finite differences
computation, while the blue curve refers to AAD computation.

use of adjoints instead of finite differences in a MC simulation. These two sources of speed-up
are compared in the present work.
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