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Abstract. Since drought is a multifaceted phenomenon,
more than one variable should be considered for a proper
understanding of such an extreme event in order to imple-
ment adequate risk mitigation strategies such as weather or
agricultural indices insurance programmes or disaster risk fi-
nancing tools. This paper proposes a new composite drought
index that accounts for both meteorological and agricultural
drought conditions by combining in a probabilistic frame-
work two consolidated drought indices: the standardized pre-
cipitation index (SPI) and the vegetation health index (VHI).
The new index, called the probabilistic precipitation veg-
etation index (PPVI), is scalable, transferable all over the
globe and can be updated in near real time. Furthermore, it
is a remote-sensing product, since precipitation is retrieved
from satellite data and the VHI is a remote-sensing index. In
addition, a set of rules to objectively identify drought events
is developed and implemented. Both the index and the set
of rules have been applied to Haiti. The performance of the
PPVI has been evaluated by means of a receiver operating
characteristic curve and compared to that of the SPI and VHI
considered separately. The new index outperformed SPI and
VHI both in drought identification and characterization, thus
revealing potential for an effective implementation within
drought early-warning systems.

1 Introduction

Every year droughts affect an increasing number of peo-
ple. In the years from 2014 to 2018, more than 70 drought
events were reported all over the world and about 450 million
people suffered because of drought-related impacts (CRED,

2017). Due to its complexity, various definitions of the phe-
nomenon have been proposed by different institutions, such
as the World Meteorological Organization (WMO), the Food
and Agriculture Organization (FAO), and the United Na-
tions Convention to Combat Desertification (UNCCD). All
the institutions focus their attention on a specific aspect of
drought: the WMO on the lack of precipitation, the FAO on
the decline in crop productivity and the UNCCD on the loss
of arable land.

In addition, the quantification of drought effects is a com-
plicated task, since drought impacts are non-structural,
widespread over large areas, and of different types and mag-
nitudes within the drought-affected area; they also depend
on economic, social and environmental system vulnerabili-
ties (Wilhite, 2000).

Drought identification through an objective and automatic
determination of drought onset, termination and severity
allows for the timely adoption of appropriate risk man-
agement strategies, such as weather index insurance pro-
grammes (Barnett and Mahul, 2007), agricultural index in-
surance programmes (Jensen and Barrett, 2017), disaster fi-
nancing (Guimarães Nobre et al., 2019; Linnerooth-Bayer
and Hochrainer-Stigler, 2015) and early action planning
(Drechsler and Soe, 2016).

Drought features are usually determined through the use of
two instruments: indicators, which are variables and param-
eters used to assess drought conditions (such as precipita-
tion, temperature and others), and indices, which are numer-
ically computed values from meteorological or hydrological
inputs (World Meteorological Organization and Global Wa-
ter Partnership, 2016). More than 100 indices have been de-
veloped by the scientific community (Zargar et al., 2011),
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each one focusing on a specific aspect of drought (meteoro-
logical, hydrological, agricultural and so on). Meteorologi-
cal drought is related to precipitation shortages; hydrologi-
cal drought refers to periods of precipitation shortfall affect-
ing surface water supply (Sheffield and Wood, 2011), while
agricultural drought is conventionally linked to soil moisture
deficit. Insufficient soil moisture leads to crop failure and
consequent yield reduction; therefore the first economic sec-
tor that suffers because of drought is agriculture, particularly
in those areas where it relies on rainfall. A deeper under-
standing of agricultural drought dynamics can promote the
adoption of risk reduction strategies, such as crop insurance
programmes.

In recent years various remote-sensing indices have been
developed and can be employed in agricultural drought mon-
itoring. The most widespread is the normalized difference
vegetation index (NDVI), which uses NOAA AVHRR satel-
lite data to monitor vegetation greenness (Kogan, 1995a).
The main advantages of the NDVI are the very high spatial
resolution and the global coverage. The NDVI has already
been applied in drought monitoring, such as in Gu et al.
(2008). Many products were derived from the NDVI, such
as the vegetation condition index (VCI), which compares the
current NDVI to the range of values observed in the same pe-
riod in previous years (Liu and Kogan, 1996; Kogan, 1995b),
and the standardized vegetation index (SVI), which describes
the probability of vegetation condition deviation from normal
(Peters et al., 2002). A suite of agricultural drought indices is
presented in Table 1.

Since drought is a complex phenomenon, a single index
or indicator can be insufficient to fully characterize drought
severity and extent. The combination of more than one indi-
cator can be invaluable in the evaluation of all the variables
involved in drought monitoring, such as precipitation, soil
moisture and streamflow. Over the past 20 years many com-
posite indicators, relying on two or more drought indices or
indicators, have been proposed to overcome the issues re-
lated to the use of a single variable. Table 2 shows a list of
selected composite indices that can be used in agricultural
drought monitoring since, in their formulation, soil moisture,
vegetation condition or variables related to water availability
for plants are included.

Multiple methods for taking into account the multivari-
ate behaviour of drought have been explored (Hao and
Singh, 2015, 2016). The vegetation drought response index
(VegDRI), for example, uses a data mining approach to
combine multiple inputs such as the SPI, the NDVI and
the Palmer drought severity index (PDSI). A weighted lin-
ear combination of the inputs is quite common; it is ap-
plied to construct the composite drought indicator (CDI) for
Morocco, the vegetation health index (VHI) and the objec-
tive blend of drought indicators (OBDI). The United States
Drought Monitor (USDM) also applies a weighted linear
combination of the inputs but adds an expert judgement to
define the drought class.

In the last few years multiple studies have focused the at-
tention on modelling the joint behaviour of two drought char-
acteristics or indices applying bivariate or multivariate statis-
tical approaches. In various cases bivariate distributions are
developed by means of copulas as in Serinaldi et al. (2009)
and Bonaccorso et al. (2012), where the joint behaviour of
various drought properties is investigated, or in Shiau (2006),
where two-dimensional copulas are employed to study the
joint behaviour of drought duration and severity in Taiwan.
Shiau et al. (2007) also investigate the hydrological droughts
of the Yellow River in China using a bivariate distribution
to model drought duration and severity jointly. A trivariate
Plackett copula is used in Songbai and Singh (2010) to model
drought duration, severity and inter-arrival time jointly.

The use of copulas to quantify the joint behaviour of
drought indices is gaining popularity too. Many drought
indices derived by multivariate distributions have been pro-
posed. For example the multivariate standardized drought
index (MSDI; Hao and Aghakouchak, 2013), which com-
bines the SPI and the standardized soil moisture index (SSI),
uses copulas to form joint probabilities of precipitation and
soil moisture content, while the joint drought index (JDI; Kao
and Govindaraju, 2010) does the same for obtaining the joint
probabilities while considering precipitation and streamflow.
The composite agrometeorological drought index accounting
for seasonality and autocorrelation (AMDI-SA) combines
two drought indices, the modified SPI and the modified SSI,
employing both the copula concept and the Kendall function
(Bateni et al., 2018). The use of copulas seems promising and
is highly effective when dealing with two or more variables.
An advantage of copula functions is the fact that the index
derived from this approach has a probabilistic form.

Both single and composite indices for agricultural drought
monitoring showed some limitations, highlighted in Tables 1
and 2. Single indices often rely on multiple inputs, are avail-
able only for some locations or identify all types of vegeta-
tion stresses. In any case single indices do not account for
the multivariate nature of drought. Composite indices often
rely on relatively new datasets; in many cases a short period
of record is available (for example the VegDRI records start
in 2009) or the index is not available in near real time; some
of them are specifically designed for a well-identified region
(the OBDI and the USDM are available only for the USA, the
Combined Drought Indicator only for Europe); other indices
do not consider the meteorological aspect of drought (tem-
perature vegetation index, TVX, and vegetation temperature
condition index, VTCI, are based on the NDVI and the land
surface temperature); other ones do not have a sufficiently
refined spatial resolution (MSDI). Most of them, with the ex-
ception of the AMDI-SA and MSDI, are not expressed in
probabilistic terms; therefore uncertainty quantification and
evaluation is not an easy task.

In this paper, we propose the following:
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Table 1. An overview of indices used in agricultural drought monitoring; Met is meteorological, Hydro is hydrological, Ag is agricultural.

Index Inputs Drought type Pros Cons Reference

ETDI Modelled (SWAT) Ag Analysis of both actual and po-
tential evapotranspiration

Complex calculations Narasimhan and Srinivasan (2005)

NDVI Near infrared Ag High resolution, global cover-
age, remote sensing

Need for data processing Kogan (1995a)

SMAI Precipitation, temper-
ature, available water
content

Ag Water balance approach Data requirements Bergman et al. (1988)

SMDI Modelled (SWAT) Ag Adaptable to different crop
types

Based upon output from SWAT Narasimhan and Srinivasan (2005)

SSI Soil moisture Ag Uses soil moisture only, stan-
dardized

Based on one variable Hao and Aghakouchak (2013)

SVI VCI Ag Standardized, remote sensing Scarcely employed Peters et al. (2002)
SWS Available water con-

tent, rooting depth, soil
water deficit, soil type

Ag Well-known calculations Poor performance on non-
homogeneous soils

BC Ministry for Agriculture (2015)

TCI Brightness temperature Ag High resolution, global cover-
age, remote sensing

Only brightness temperature is
considered

Kogan (1995a)

VCI NDVI Ag High resolution, global cover-
age, remote sensing

Identifies all vegetation
stresses, not only the ones due
to drought

Liu and Kogan (1996)

CMI Precipitation, tempera-
ture

Ag Weekly temporal resolution Specifically developed for
grain-producing regions in the
USA

Palmer (1968)

CSDI Precipitation, tempera-
ture, wind speed, so-
lar radiation, dew point
temperature, soil pro-
file, plant phenology

Ag Very specific for each crop,
based on plant development

Many inputs with a daily tem-
poral resolution

Meyer et al. (1993)

CWSI Actual and potential
evapotranspiration

Ag Useful for irrigation schedul-
ing, remote sensing

To be computed from MODIS
data

Idso et al. (1981)

NMDI NDVI Ag Uses vegetation condition and
soil water content

Poor performance in areas with
sparse vegetation

Wang and Qu (2007)

RSM Precipitation, temper-
ature, evapotranspira-
tion, soil properties,
crop features, crop
management practice

Ag Computes the water balance
with various methods

Need for multiple inputs Thornthwaite and Mather (1955)

DTx Modelled (water bal-
ance)

Ag Computes an integrated transpi-
ration deficit over a period of
time

Need for multiple inputs Matera et al. (2007)

ADI Precipitation, snow wa-
ter content, streamflow,
reservoir storage, evap-
otranspiration, soil wa-
ter content

Met Hydro Ag Water balance approach Need for multiple inputs Keyantash and Dracup (2004)

1. a new drought index, the probabilistic precipitation veg-
etation index (PPVI), that takes advantage of well-
consolidated indices, the standardized precipitation in-
dex (SPI; Mckee et al., 1993) and the vegetation health
index (VHI; Kogan, 1997), and tries to overcome their
individual limitations by coupling them in a probabilis-
tic framework through the use of a bivariate normal dis-
tribution function;

2. a framework to identify a drought event using the new
index, i.e. a set of rules for the definition of a drought
event; when the set of conditions is verified, a drought
event is identified based on the new index; otherwise,
no drought event is identified.

With respect to the indices already available in the litera-
ture, we will show in this paper that the new index has some
interesting features:

– It is able to identify drought-driven events of vegetation
stress.

– It is parsimonious in terms of number of inputs required.

– It is a remote-sensing product with high spatial and tem-
poral resolution.

– It is based on quasi-near-real-time datasets, with a rela-
tively short latency time (less than 1 week).

– More than 30 years of records are available at global
scale for its calibration.
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Table 2. An overview of aggregate and composite drought indices useful for agricultural drought monitoring; Met is meteorological, Hydro
is hydrological, Ag is agricultural. Input abbreviations not defined in the text are as follows: fraction of absorbed photosynthetically active
radiation (fAPAR), soil moisture anomaly (SMA), evapotranspiration (ET) and land surface temperature (LST).

Index Inputs Drought type Pros Cons Reference

VegDRI SPI, NDVI, PDSI Ag Use of surface and remote-
sensing data

Short period of record,
available only for the con-
tiguous USA

Brown et al. (2008)

VHI VCI, TCI Ag High temporal resolution,
global coverage at a high
spatial resolution, 30+
years of records

Identifies all types of veg-
etation stress, not only the
drought-related ones

Kogan (1990)

MSDI SPI, SSI Met Ag Global coverage, remote
sensing

Grid size may not repre-
sent all areas and climate
regimes equally well, short
period of record

Hao and Aghakouchak (2013)

Combined
Drought
Indicator

SPI3, fAPAR, SMA Met Ag 10 d temporal resolution,
high spatial resolution
(5 km)

Short period of record
(2012), available only in
Europe, hard to replicate

Sepulcre-Canto et al. (2012)

Morocco
CDI

SPI, ET, LST, NDVI Met Ag High spatial resolution
(5km)

Monthly temporal resolu-
tion, available for Morocco
only, short period of record

Bijaber et al. (2018)

Hybrid DI SPI, SWSI, PDSI Met Hydro Ag Function of damage, in-
cludes all types of droughts

Need for detailed informa-
tion on economic damage

Karamouz et al. (2009)

VegOut SPI, NDVI, oceanic in-
dices

Met Ag Combination of climate in-
formation, vegetation con-
dition, oceanic indices and
land cover

Need for a high number of
parameters

Tadesse and Wardlow (2007)

OBDI Precipitation, MPDI,
soil moisture

Met Ag First attempt to combine
and weight various inputs

Specifically designed for
the USA

Dieker et al. (2010)

USDM PDSI, soil moisture,
streamflow, percent of
normal precipitation,
SPI, OBDI

Met Hydro Ag Combines many inputs and
expert knowledge, weekly
temporal resolution

Available only for the USA Svoboda et al. (2002)

TVX NDVI, LST Ag Combination of NDVI and
temperature effects, remote
sensing

To be computed from
NDVI and LST datasets

Lambin and Ehrlich (1995)

VTCI NDVI, LST Ag Combination of NDVI and
temperature effects, remote
sensing

To be computed from
NDVI and LST datasets

Wang et al. (2001)

AMDI-SA Modified SPI, modified
SSI

Met Ag Combination of SPI and
SSI, standardized

Complex calculations Bateni et al. (2018)

The paper is structured as follows: Sect. 2 describes the
datasets employed in the development of the new index and
presents the methodology used to combine the SPI and the
VHI; Sect. 3 illustrates the application to the case study,
shows the validation process of the new index, and compares
the performance of the new index to those of the SPI and
the VHI considered separately; in addition the advantages
related to the adoption of the index and the possible appli-
cations in agricultural drought risk management are summa-
rized.

2 Datasets and methods

2.1 Datasets

Two remote-sensing datasets were used: one for precipitation
and the other for the VHI. Precipitation was retrieved from

the satellite-only Climate Hazards Group Infrared Precipi-
tation (CHIRP) dataset. CHIRP has a quasi-global coverage
(50◦ S–50◦ N); high spatial resolution (0.05◦); and daily, pen-
tadal and monthly temporal resolution. Records start from 1
January 1981. CHIRP was chosen because it has been specif-
ically developed to monitor agricultural drought. The use of
CHIRP instead of CHIRPS (the Climate Hazards Group In-
frared Precipitation with Stations) is related to the data la-
tency time. Since the aim of the work is the development
of an index for near-real-time drought monitoring, the prod-
uct with the shortest latency time was selected. CHIRPS data
have a latency time of about 3 weeks (Funk et al., 2015),
while CHIRP’s latency is about 2 d, as can be checked on
the dataset’s website (Climate Hazard Group, 2015). The de-
velopment and the main characteristics of the dataset are de-
scribed in Funk et al. (2015). In the present study CHIRP
with a daily temporal resolution was used to have the possi-
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bility of computing weekly precipitation. Data are available
on the project website (Climate Hazard Group, 1999).

The vegetation health index was retrieved from the global
vegetation health products (global VHP) of the National
Oceanic and Atmospheric Administration (NOAA) Center
for Satellite Applications and Research (Kogan, 1997). Data
can be retrieved from the NOAA website (NOAA, 2011).
The dataset contains blended VHP derived from VIIRS
(2013–present) and AVHRR (1981–2012) GAC data. The
dataset has 4 km spatial resolution, weekly temporal resolu-
tion and global coverage. Both the selected datasets are freely
available.

2.2 Methods

2.2.1 The standardized precipitation index

As previously mentioned, two consolidate drought indices
were combined: the SPI and the VHI. The SPI was selected
because it is a commonly used index to detect meteorological
drought; it is standardized, and therefore SPI values can be
compared even in different climate regimes; and it is recom-
mended by the WMO (World Meteorological Organization,
2009).

SPI computation is based on a long-term precipitation
record for a desired period. The precipitation record is then
fitted to a probability distribution (in this work a gamma dis-
tribution was used), which is then transformed into a nor-
mal distribution. Traditionally monthly precipitation records
are employed, and the SPI is computed aggregating pre-
cipitation at a predefined time step (for example 1, 3, 6,
9 and 12 months are the aggregation periods suggested by
the WMO; World Meteorological Organization, 2009).

In the present work, weekly precipitation records were
used. The SPI aggregation period was then selected, and the
index, computed over one of the traditional aggregation peri-
ods, was updated every week. The SPI is normally distributed
by definition. Conventionally drought starts when the SPI is
lower than −1 and ends when the SPI comes back to the
value of 0 (Mckee et al., 1993). Drought classification ac-
cording to the SPI, as proposed in Mckee et al. (1993), is
reported in Table 3. The percentages reported in the third col-
umn of Table 3 indicate the probability of SPI values falling
within the range reported in the second column of the same
table.

2.2.2 The vegetation health index

The VHI is a remote-sensing index developed to include the
effects of temperature on vegetation; in fact, it combines
the VCI with the temperature condition index (TCI; Kogan,
1995a), which is another remote-sensing index used to deter-
mine vegetation stress caused by temperature and excessive
wetness. The VHI is based on a linear combination of VCI
and TCI: VHI= αVCI+(1−α)TCI. As suggested by Kogan

Table 3. Drought classification based on SPI according to Mckee
et al. (1993).

Category SPI Probability (%)

Extremely wet 2.00 and above 2.3
Severely wet 1.50 to 1.99 4.4
Moderately wet 1.00 to 1.49 9.2
Near normal −0.99 to 0.99 68.2
Moderately dry −1.49 to −1.00 9.2
Severely dry −1.50 to −1.99 4.4
Extremely dry −2 and below 2.3

Table 4. Drought classification based on VHI according to Dalezios
et al. (2017).

Category VHI

Extremely dry ≤ 10
Severely dry ≤ 20
Moderately dry ≤ 30
Mild dry ≤ 40
Normal > 40

et al. (2016), when VCI and TCI contributions are not known,
α = 0.5. One drawback of the VHI is the impossibility of
identifying the cause of the vegetation stress; in fact, vegeta-
tion can suffer because of various events: excessive wetness,
pests, fires, droughts or other factors. The VCI is a biophysi-
cal indicator of a lack of precipitation but can also be seen as
representing drought impacts on the ground (Bachmair et al.,
2016). It goes from 0, which stands for vegetation in very bad
conditions, to 100, meaning perfectly healthy vegetation. The
classification scheme of the VHI, as proposed in Dalezios
et al. (2017), is presented in Table 4.

The VHI is standardized to make comparisons with the
SPI easier. As mentioned by Peters et al. (2002), all remote-
sensing indices can be expressed as deviations from the
mean; therefore, the standardized variable, VHIst, is com-
puted according to the following equation:

VHIst =
VHI−VHI

σ
, (1)

where VHI is the mean of the distribution and σ its standard
deviation. Thus, the same procedure proposed in Peters et al.
(2002) in the case of the NDVI has been applied to the VHI.
The standardized variable, VHIst, has a distribution with 0
mean and 1 as standard deviation.

2.2.3 The probabilistic precipitation vegetation index
(PPVI)

The probabilistic precipitation vegetation index (PPVI) is
a composite index that takes into account both meteorologi-
cal drought through the SPI and agricultural drought condi-
tions by including the VHI.
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In order to combine the two consolidated indices, the fol-
lowing preparatory steps are performed:

1. extraction of the area under study from both the
datasets;

2. regridding of both precipitation and the VHI to bring
them to the same spatial resolution (0.05◦);

3. aggregation of precipitation at a weekly timescale
(CHIRP has daily temporal resolution);

4. computation and weekly update of the SPI according
to the methodology proposed in USDA Risk Manage-
ment Agency et al. (2006), where precipitation is fit-
ted to a gamma distribution; the goodness of fit to the
gamma distribution has been verified by means of prob-
ability plot;

5. standardization of the VHI, as previously described.

The combination of the SPI and VHI is performed using
a bivariate normal distribution function, as defined by Kotz
et al. (2000). The normality of the SPI and VHIst distribu-
tions has been verified as will be shown in Sect. 3.2. There-
fore it is acceptable to assume that the joint probability of
the two considered distributions takes the form of the bivari-
ate normal for correlated variables:

f (s,v)=
1

2πσsσv
√

1− ρ2
exp

(
−

1
2(1− ρ2)

·

[
(s−µs)

2

σs
+
(v−µv)

2

σv
+

2ρ(s−µs)(v−µv)
σsσv

])
, (2)

where the following notation is adopted. The SPI is identified
as s, and the VHIst is identified as v. The mean and the stan-
dard deviation of the SPI distribution f (s) are respectively,
by construction, µs = 0 and σs = 1, and the mean and stan-
dard deviation of the VHIst distribution f (v) are respectively
µv = 0 and σv = 1. The covariance matrix 6 and the corre-
lation coefficient ρ are defined according to Eqs. (3) and (4)
respectively, where σsv is the covariance between s and v.

6 =

[
σ 2
s ρσsσv

ρσsσv σ 2
v

]
(3)

ρ =
σsv

σsσv
(4)

To check the assumption of normality for the joint distri-
bution, the joint probability values, retrieved from Eq. (2),
are plotted against the bivariate empirical cumulative distri-
bution values (Fig. 1), as performed in Kao and Govindaraju
(2010). The bivariate empirical copula for the random vari-
ables s and v has been evaluated according to Nelsen (2006)
using the following equation:

C

(
i

m
,
j

m

)
=

#(s ≤ s(i),v ≤ v(j))
m

=
m1

m
, (5)

Figure 1. PPVI validation: empirical copula versus bivariate joint
probability function. The red line corresponds to the 45◦ line. Joint
probability values have been computed from Eq. (2), while empiri-
cal copula values according to Eq. (5).

Table 5. Drought classification according to PPVI.

Category PPVI Probability (%)

Extremely wet 1.04 and above 2.3
Severely wet 0.58 to 1.03 4.4
Moderately wet 0.13 to 0.57 9.2
Near normal −1.68 to 0.12 68.2
Moderately dry −2.14 to −1.69 9.2
Severely dry −2.15 to −2.59 4.4
Extremely dry −2.6 and below 2.3

where s(i) and v(j) (1≤ i,j ≤m) are ordered statistics of
the SPI sample of size m and m1 is the number of sam-
ples (s(k),v(k)) satisfying (s(k) ≤ s(i) and v(k) ≤ v(j)) with
1≤ k ≤m. The resulting plot is shown in Fig. 1.

Since the data lie on the 45◦ line, it is fair to assume that
the joint probability f (s,v) is normal. Therefore, a normal-
ization of the index is performed through normal quantile
transformation.

By keeping the same probability intervals of the SPI, we
can compute the PPVI values for the drought classification
as shown in Table 5.

2.2.4 Identification of drought events

Once the index is defined, the set of rules to establish when
a grid cell is in a drought should be identified. In particular,
two parameters have to be identified:

1. a threshold Z of the index that marks the beginning of
a drought in a grid cell

2. a threshold z that marks the end of a drought in the same
grid cell.
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According to the model proposed here, a drought in a grid
cell starts when the index is lower than Z and ends when the
index is above z. Then regional drought events are defined.
Again, two parameters are identified: N and n. A drought
events starts if more than N grid cells are in drought con-
ditions and ends if less than n grid cells are in drought con-
ditions.

2.2.5 Skill assessment

Observations of drought are compared with the model out-
puts for various combinations of thresholds Z, z, N and n.
The receiver operating characteristic (ROC) curve is used
for this comparison. The ROC curve was at first used in sig-
nal detection; its use in meteorological applications is docu-
mented and well described in Joliffe and Stephenson (2012).
The ROC curve is employed to classify instances, as in the
present case. The ROC curve was already employed in var-
ious studies to compare the performance of a model ver-
sus observations with varying thresholds (Zhu et al., 2016;
Khadr, 2016). The contingency matrix (shown in Table 6) is
a 2-by-2 matrix to visualize the disposition of a set of in-
stances. True positives or hits are represented by the weeks
that are reported to be in drought conditions in the obser-
vations and are correctly identified as drought weeks by the
model. True negatives (correct rejections) are represented by
those weeks that are not in drought according to both the ob-
servations and the model. Those weeks that are recorded as
drought according to the observations but are not identified
as drought weeks by the model are considered as false nega-
tives (missing events), while false positives (false alarms) are
represented by the weeks that are not in drought conditions
according to the observations but are identified as drought
weeks by the model. In this paper for each combination of
thresholds Z, z, N and n, probability of detection (POD), or
hit rate, and probability of false detection (POFD), or false
alarm rate, are computed according to Joliffe and Stephen-
son (2012) with the following equations:

POD=
TP

TP+FN
, (6)

POFD=
TN

TN+FP
, (7)

where TP, TN, FP and FN are defined as in Table 6.
The optimal threshold for a ROC curve is the one for

which the distance from the 45◦ line is maximal (Zhu et al.,
2016). The performances of the model based on the PPVI in
identifying drought events have been evaluated on the case
study described in the next section.

2.2.6 Case study

The case study region is Haiti. The country, which has an ex-
tent of 27 750 km2, is located in the Caribbean’s Greater An-
tilles and shares the island of Hispaniola with the Dominican

Figure 2. Map of Haiti departments.

Republic. The climate is predominantly tropical, with daily
temperatures ranging between 19 and 28 ◦C during winter
and between 23 and 33 ◦C during summer. The island topog-
raphy is varied; the central region is mainly mountainous,
while the northern and western regions are near the coastline.
Annual precipitation in the central region averages 1200 mm,
while in the lowlands it is about 550 mm (GFDRR, 2011).
Haiti is subject to the variability associated with El Niño and
La Niña phenomena, with El Niño bringing drier and hotter
conditions and La Niña a colder and wetter climate. Haiti ex-
periences a first rainy season from April to July and a second,
and most important, rainy season from August to the end of
November. The dry season starts in December and goes on
until the end of March (FEWSNET, 2019).

Haiti is divided administratively into 10 departments
(Fig. 2), with people living mainly in Ouest, where the capital
Port-au-Prince is located, and in Artibonite. The total pop-
ulation in 2017 was about 11 million people (World Bank,
2017). Haiti is the poorest country in the Western Hemi-
sphere; the economy is mainly agricultural. Of the country’s
total area, 67 % is devoted to agriculture, but only 4.35 % of
the agricultural area is irrigated (Trading Economics, 2013),
posing a major threat to local production.

Haiti produces over half of the world’s vetiver oil (used
in cosmetics), and mangos and cocoa are the most important
export crops. Two-fifths of all Haitians depend on the agri-
culture sector, mainly small-scale subsistence farming. The
country is prone to all types of natural hazards. Earthquakes,
storms, hurricanes, landslides and droughts have caused huge
damage and losses in recent years. Haiti was ranked as the
third country most affected by extreme weather events in
terms of lives lost and economic damage in the period from
1994 to 2013 (GFDRR, 2011). More than 96 % of the popu-
lation lives in areas at risk of two or more hazards. The most
frequent disasters are floods and storms, but droughts are the
disasters involving the highest number of persons (Fig. 3).
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Table 6. Contingency table for the deterministic estimates of a series of binary events (Joliffe and Stephenson, 2012).

Events Events observed

estimated Yes No Total

Yes TP (true positives or hits) FP (false positives or false alarms) TP+FP
No FN (false negatives or missing) TN (true negatives or correct rejections) FN+TN
Total TP+FN FP+TN TP+FP+FN+TN= T

Figure 3. Number of people affected by natural disasters in Haiti
(1900–2018). Source: CRED (2017).

Droughts threaten the livelihoods of Haitians in many dif-
ferent ways. The scarcity of crops production means a rise in
food prices that brings widespread food insecurity since the
majority of people cannot afford the increase. Unavailability
of drinking water leads to cholera outbreaks among the popu-
lation. Water is also an issue for breeders, who lose livestock
on which they rely for milk production and meat consump-
tion. In the period from 1980 to the present, more than 10
drought events have been reported by the government or the
humanitarian organizations working in Haiti (Table 7). The
worst drought was the one of 2014–2017, affecting more than
3 million inhabitants (about one-third of Haiti’s population).

Effective drought management is crucial for Haiti, but at
present, a reliable early-warning system for drought is still
lacking. Weather stations on the ground are few and data
records are often very short and therefore not useful for
drought monitoring of the entire country. Satellite images can
be an effective and inexpensive tool to improve drought man-
agement and preparedness in the country.

3 Results and discussion

3.1 Correlation analysis

Haiti has been divided into 987 grid cells, accounting for
90 % of the country’s area. A total of 1941 weeks were con-
sidered, starting from week 35 of 1981 and ending with week
52 of 2018. The release date of a new VHI image was con-
sidered as the starting date of a week. In the present study,
four precipitation aggregation periods were considered (1, 2,
3 and 6 months), and the corresponding values of SPI (SPI1,
SPI2, SPI3 and SPI6) were computed in order to select the
SPI aggregation timescale to be used to create the PPVI.

To evaluate the strength of the statistical relationship be-
tween the SPI at various timescales and the VHI, a correla-
tion analysis was then performed. Various studies have al-
ready evaluated the correlation among drought indices or be-
tween drought indices and exogenous variables; for example
Bonaccorso et al. (2015) investigated the correlation between
the SPI and North Atlantic oscillation (NAO), while Hong-
shuo et al. (2014) investigated the correlation between the
SPI (various aggregation periods) and the VHI. The Pearson
correlation coefficient was employed in the present study as
a measure of the statistical relationship between the indices.
The number of significant correlations at 5 % and 1 % was
evaluated for four SPI aggregation timescales (Table 8). The
highest number of significant correlations was found in the
cases of the SPI2 and SPI3, which exhibit very similar per-
formances at a 1 % significant level. This finding is in agree-
ment with previous studies such as those of Hongshuo et al.
(2014), which found that the VHI and SPI3 have the high-
est correlation with croplands, whereas the VHI and 6-month
SPI have the highest correlation with forest in the southwest
of China, and Ma’rufah et al. (2017), which found that signif-
icant correlation coefficient values of the SPI3 and VHI are
common in the southern part of Indonesia. Since the SPI3 has
been used in the literature and the percentage of significant
correlation at the 1 % level is relevant, it has been decided to
aggregate the SPI over a 3-month period and use SPI3 in the
following discussion.

3.2 Normality of SPI and VHI distributions

Before computing PPVI as described in the previous sec-
tions, a test on the normality of the SPI3 and VHIst distri-
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Table 7. Reported drought events in Haiti from 1980 to the present.

Year Department Affected people Population (%) Source

1981 Sud, Grand’Anse, Ouest 103 000 2 Mora-Castro (1986); CIAT
(2017)

1982–1983 Sud, Sud-Est, Nord-Ouest,
Nord-Est

333 000 5.75 Sergio Mora-Castro, personal
communication, 2018

1984–1985 Nord-Ouest 13 500 2 Mora-Castro (1986); CIAT
(2017)

1986 All country Sergio Mora-Castro, personal
communication, 2018

1990–1992 All country 1 000 000 14 Sergio Mora-Castro, personal
communication, 2018

1997 Nord-Ouest, Nord, Nord-Est 50 000 0.64 CIAT (2017)
2000 All country Sergio Mora-Castro, personal

communication, 2018
2003 Nord-Ouest 35 000 0.41 CIAT (2017)
End of 2009 North West CNSA/MARNDR and FEWS-

NET (2009)
2011–2012 Nord, Nord-Ouest, Nord-Est,

Artibonite, Centre
USAID et al. (2011); USAID
and FEWSNET (2012a)

2013 All country > 143000 1.5 NOAA et al. (2013); FEWS-
NET (2013)

2014–2017 All country 3 600 000 33 OXFAM and Action contre la
Faim (2015); NOAA (2017)

Table 8. Number of significant correlations (Pearson correlation co-
efficient) between VHI and various SPI aggregation timescales. Val-
ues are expressed as percentages evaluated with respect to the total
number of grid cells (987).

Significant correlations Significant correlations
at 5 % (%) at 1 % (%)

SPI1 93.52 91.29
SPI2 96.76 95.34
SPI3 96.15 94.83
SPI6 90.07 85.82

butions was performed. The goodness of fit of the SPI3 and
the VHIst distributions was verified through the histograms in
Fig. 4 (panels a and b respectively), where the boxplots rep-
resent the relative frequencies of the SPI3 and VHIst values.
Both the SPI3 and the VHIst data can therefore be considered
normally distributed.

3.3 Selection of threshold values

The PPVI was computed as described in Sect. 2.2, and
its performance in identifying past drought events in Haiti
when used in combination with the set of rules described in
Sect. 2.2.4 was evaluated. To this end, the ROC curve classifi-
cation methodology was applied. The set of rules meant that,
at first, cells in drought conditions were identified: drought
started in a specific grid cell at week W when the PPVI was

Figure 4. (a) Distribution of SPI values and (b) distribution of
VHIst values. The red lines represent the PDFs of the standard nor-
mal distributions; boxplots represent the percentage of values lying
within the range; 12 ranges were considered, starting from −6 and
ending with 6 with a step equal to 1.
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lower than the threshold Z and ended when the PPVI was up
to the threshold z in the same grid cell at a week w (with w
coming after W). Then a regional drought event was iden-
tified: the drought event started when more than N cells at
a specific week W1 were in drought conditions and ended at
a weekW2 when fewer than n grid cells were in drought con-
ditions. The comparison was performed on a weekly basis,
with observations derived from the reported events described
in Table 7.

The ROC curves were computed according to the follow-
ing methodology: at first a combination of the thresholds Z,
z, N and n was selected. On the basis of the set of rules estab-
lished in Sect. 2.2.4, the ability of the selected combination
of thresholds in reproducing the observations was assessed
by computing TP, TN, FP and FN as defined in Table 6, to-
gether with POD and POFD. A couple (POFD, POD) repre-
sents a point in a ROC graph. Then one threshold among Z,
z, N and n was selected. The selected threshold was variable
during the analysis, while the other three were kept constant.
The step of variation was identified according to the thresh-
old maximum and minimum values. For each combination
of the four thresholds (the varying one and the three fixed),
TP, TN, FP, FN, and POD and POFD were computed. The
resulting set of couples (POFD, POD) represented the ROC
curve for the considered set of thresholds.

The analysis was repeated by varying another threshold
among Z, z, N and n. As an example, Fig. 5 shows four ROC
curves for the thresholds in Table 9. Thresholds N and n in
Table 9 are expressed as the percentage of the country’s area
instead of as the number of grid cells. For each of the curves
the best-performing set of thresholds (Z, z, N and n) was se-
lected by identifying the point farthest from the 45◦ line, as
performed by Zhu et al. (2016). The area under the curve
(AUC) was used as a criterion to establish which of the ROC
curves should be preferred (as was performed by Dutra et al.,
2014; Mason and Graham, 2002; Zhu et al., 2012). An AUC
near to 1 indicates good performance, while an AUC of 0.5
indicates the model has no predictive skills. From Fig. 5 it is
clear that the curve corresponding to the parameters defined
as Set 2 in Table 9 should be preferred, since the AUC is the
closest to 1.

3.4 Comparison of drought indices with observed
drought events

The aim of this section is not to validate in absolute terms
the proposed methodology since the data record is too short
to serve both for calibration and for validation. In the present
section, instead, we provide a validation by comparing the
performance of the PPVI in identifying observed drought
events with those of widely recognized and used indices such
as the SPI and VHI.

The performance of the PPVI was then compared to those
of the SPI3 and VHI considered separately. Thresholds anal-
ogous to Z and z were defined for the SPI3 and VHI. Thresh-

Figure 5. ROC curves for the set of thresholds reported in Table 9.

olds ZS and zS mark respectively the beginning and the end
of drought conditions in a grid cell according to the SPI3, and
thresholds ZV and zV do the same in the case of the VHI.
Again the four thresholds Z, z, N, and n were varied in order
to identify the optimal values. As an example, Fig. 6 shows
a comparison among the ROC curves for the three indices. In
each panel of Fig. 6, n and z and zS and zV (for PPVI, SPI3
and VHI) remained constant, while Z, ZS and ZV were vary-
ing; N was fixed in each panel but varied between the panels.
Z varied from −4 to −1.1 with a step equal to 0.1; ZS varied
from−3 to 0 with a step equal to 0.1, and ZV varied from 10
to 40 with a step equal to 5.

It is clear from Fig. 6 that the red curve, representing the
PPVI, is the furthest from the diagonal line in all the panels of
the figure. The area under the curve (AUC) was used as a cri-
terion to establish which index gave the best performances.
AUC values are shown in Fig. 6 for each index and various
configurations of the model. The AUC value of the PPVI was
in line with similar results reported in the literature (Mwangi
et al., 2014). As can be seen from Fig. 6, the new index pro-
vided better results with respect to the ones obtained with
the SPI3 or VHI considered separately. In all the four config-
urations shown in Fig. 6, the AUC for the curve constructed
with the PPVI was larger than the ones for the SPI3 and VHI.
The AUC values are in line with the ones considered good in
the literature for drought predictive skills (see Khadr, 2016).
The optimal thresholds to configure the model when applied
with each of the three considered indices were then deter-
mined by selecting the point farthest from the 45◦ line, as
performed by Zhu et al. (2016). The best configuration pa-
rameters are shown in Table 10. The drought events were
therefore identified using the optimal parameters (Table 10).
A graphical representation of the performance of the model
in reproducing observed drought events is given in Fig. 7.
Only the period from 2000 to 2018 is shown.

The ability of the model in identifying the country area
hit by the drought was also assessed. A visual comparison of
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Table 9. Example of set of thresholds used to draw ROC curves for model calibration. Thresholds N and n are expressed as the percentage
of the country’s area instead of as the number of grid cells.

Z z N n Step of variation

Set 1 −2 varying from −1.9 to 0 25 % 10 % 0.1
Set 2 varying from −3.5 to −1 −1 25 % 10 % 0.1
Set 3 −2 −1 25 % varying from 1 % to 24 % 1 %
Set 4 −2 −1 varying from 11 % to 25 % 10 % 1 %

Figure 6. Comparison between the performances of the SPI3, VHI and PPVI in identifying reported drought events; thresholds Z, ZS and
ZV are varying; z=−1.1; zS = 0, and zV = 40; n= 80, and four cases for N are shown. (a) N = 10%; (b) N = 20%; (c) N = 30%; and
(d) N = 50%.

the areas under drought identified by the three indices was
performed, as was performed by Dutta et al. (2015).

Here some significant weeks are shown. At first, week 45
of 1995 was considered. No drought events were reported in
that period according to the information available in the anal-
ysed documents (see Table 7). Figure 8 shows that, while the
SPI3 identified the whole southern part of the country as dry
areas and the VHI showed vegetation suffering in two depart-
ments (Centre and Ouest), the PPVI did not show signs of
drought, except for in a minor number of grid cells. Figure 9
shows that in 2015, when the whole country was reported
to be in severe drought conditions (see Table 7 and NOAA,
2017; OXFAM and Action contre la Faim, 2015), the PPVI
captured the pattern well; only a few grid cells were not in
drought conditions. The SPI3 was also able to capture the
situation, while for the VHI only 58 % of the county was

in drought. During week 8 of 2012, only the northern part
of the country was in drought (Fig. 10), as highlighted by
USAID and FEWSNET (2012b) (see Table 7). Five depart-
ments were reported to be stressed (Nord, Nord-Ouest, Nord-
Est, Artibonite, Centre; see Table 7). All the three indices
showed the Nord-Ouest as the department most affected by
drought when considering the percentage of the department
area hit by the drought. The PPVI then classified Artibonite,
Nord, Centre and Nord Est as the next most affected, while
the SPI3 identified Sud and Grand’Anse as the second- and
third-most-affected departments and the VHI identified Cen-
tre and Nippes (Table 11).

Severity, duration and mean areal extent of the drought
events identified by the PPVI were computed. Severity was
computed as the sum of all the values identified by the condi-
tion that a grid cell is in a drought condition when the PPVI
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Table 10. Best configuration parameters for the model when applied with the PPVI, SPI3 and VHI.

Z z N n TN FP FN TP POFD POD

PPVI −1.8 −1.1 30 % 8 % 957 379 99 506 0.284 0.836
SPI3 −1.3 0 20 % 8 % 943 393 157 448 0.294 0.749
VHI 22 40 10 % 8 % 935 401 150 455 0.300 0.752

Figure 7. Comparison between observed drought events and drought events identified by the PPVI, SPI3 and VHI when calibrated with the
best-performing parameters shown in Table 10. The comparison is shown for the period from 2000 to 2018.

Figure 8. Comparison of the performance of the SPI3, VHI, and PPVI in identifying the areas hit by drought in week 45 of 1995. Departments
highlighted in red are the ones in drought according to observations (Table 7); red cells are the ones in drought conditions according to the
various indices.

Figure 9. Same as Fig. 8 but for week 33 of 2015. Departments highlighted in red are the ones in drought according to observations; red
cells are the ones in drought conditions according to the various indices.

is lower than −1.8 and exits from drought when the PPVI is
up to −1.1. Duration is expressed in months, and the mean
areal extent is the average percentage of the area in drought
during a specific event. Results are presented in Table 12.

The PPVI showed overall a better capacity in identifying
drought events with respect to the SPI3 and VHI considered
separately. However, some false alarms still remain. This can
be linked to the uncertainty in information on past drought
events for the analysed area. Short-term droughts are often
not reported in text-based documents, and information on
drought start and end dates was retrieved from documents

that mainly described the impacts related to drought. The
PPVI showed a good agreement with reported information
in identifying the areas of the country hit by droughts.

4 Conclusions

The timely identification of drought events is of great im-
portance in agricultural areas, especially when rainfed agri-
culture is practised. At the same time, the evaluation of the
damage caused by drought is a key point to select appropri-
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Figure 10. Same as Fig. 8 but for week 8 of 2012. Departments highlighted in red are the ones in drought according to observations; red
cells are the ones in drought conditions according to the various indices.

Table 11. Performance of the PPVI, SPI3 and VHI in identifying departments hit by drought during week 8 of 2012 and comparison with
observations. Observations are retrieved from the text-based documents reported in Table 7.

Ranking of affected
Reported Areal extent (%) departments

Department as drought PPVI SPI3 VHI PPVI SPI3 VHI

Nord-Ouest Yes 93.1 91.7 47.2 1 1 1
Artibonite Yes 75.1 72.8 34.1 2 7 5
Nord Yes 74.6 82.1 10.4 3 4 9
Centre Yes 67.2 54.3 45.7 4 10 2
Nord-Est Yes 62.1 72.4 34.5 5 8 4
Ouest No 61.8 72.1 32.7 6 9 6
Nippes No 51.2 75.6 36.6 7 5 3
Grand’Anse No 47.8 82.1 10.4 8 3 8
Sud No 32.6 75.3 9 9 6 10
Sud-Est No 30.8 84.6 20 10 2 7

ate risk management strategies, such as weather index insur-
ance programmes, agricultural index insurance, disaster fi-
nancing and early action planning. The new composite index
proposed in this paper, the probabilistic precipitation vege-
tation index, PPVI, is a powerful tool since it can identify
events of vegetation stress and, at the same time, select from
among those the ones actually due to drought, thanks to the
use of both the VHI and the SPI. As such it can be helpful
in agricultural drought monitoring and can be used to iden-
tify drought events affecting a region, their severity and their
duration as was shown in the case of Haiti. In particular, the
PPVI can be invaluable in those areas where rainfed agricul-
ture is of vital importance since people rely on it for food
production for personal consumption.

Among the interesting aspects of the PPVI, there is the fact
that few data are required for its computation: only precipita-
tion and the VHI. This aspect is crucial, since many compos-
ite indicators able to identify agricultural droughts already
exist, but large quantities of data are required to compute
them. For example, the United States Drought Monitor com-
bines more than 40–50 inputs, while other indices specific to
agricultural drought monitoring, such as the VegDRI and the
VegOut, require the use of temperature and oceanic indices.

The number of parameters required to compute the PPVI is
low even with respect to the OBDI, SWS, CDI or CDSI.

A second important advantage is that, since the SPI
was computed starting from satellite precipitation (CHIRP
dataset) and that the VHI is a remote-sensing drought in-
dex, the PPVI is also a remote-sensing product. The use of
datasets with global coverage means that the PPVI is easily
transferable and scalable over the entire globe. In addition,
the PPVI can be a very useful tool in areas with scarce gauge
coverage such as the Caribbean islands. Both precipitation
and the VHI have a very high spatial and temporal resolution,
thus allowing drought monitoring via satellite even in small
areas. The PPVI can be computed even in those regions with
short data records, since the VHI has more than 30 years of
records (data collection began in August 1981) and CHIRP
precipitation is available from January 1981.

Both the SPI and the VHI are updated with a weekly time
step since every week a new VHI image is released, and the
CHIRP precipitation dataset has a daily temporal resolution;
therefore the PPVI can be updated more frequently than other
composite indices, such as the CDI, which is updated ev-
ery 10 d. In addition, due to the relatively short latency time
(less than 1 week) of both the datasets employed to create
the PPVI, the index is available in near real time, therefore
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Table 12. Drought events in Haiti according to the PPVI, duration, severity and mean areal extent.

Event Start date End date Duration Mean Minimum Mean areal
number (months) intensity PPVI PPVI extent (%)

1 22 Apr 1982 21 Jul 1983 15 −8.46 −4.73 32.13
2 27 Dec 1984 7 Nov 1985 11 −7.87 −3.91 49.60
3 18 Sep 1986 16 Apr 1987 7 −7.90 −3.62 41.65
4 16 Nov 1989 18 Oct 1990 11 −8.60 −4.59 35.48
5 7 Feb 1991 11 Feb 1993 25 −8.70 −4.69 44.92
6 16 Sep 1993 27 Jan 1994 4 −8.95 −4.48 36.98
7 11 Aug 1994 10 Nov 1994 3 −8.53 −3.50 50.11
8 20 Mar 1997 20 Nov 1997 8 −8.43 −4.32 46.00
9 30 Mar 2000 21 Oct 2000 6 −8.31 −3.79 74.07
10 30 Nov 2000 19 Apr 2001 5 −7.98 −4.75 24.58
11 9 Aug 2001 6 Dec 2001 4 −7.85 −3.52 30.23
12 4 Apr 2002 8 Aug 2002 4 −8.25 −3.47 26.20
13 19 Dec 2002 30 Oct 2003 11 −7.72 −3.44 29.31
14 15 Apr 2004 22 Jul 2004 3 −7.69 −3.37 17.89
15 2 Dec 2004 26 May 2005 6 −9.00 −4.40 79.00
16 23 Mar 2006 13 Jul 2006 4 −7.46 −3.43 22.97
17 21 Feb 2008 31 Jul 2008 5 −7.95 −3.78 30.07
18 17 Sep 2009 18 Feb 2010 5 −8.58 −3.95 57.48
19 21 Apr 2011 16 Jun 2011 2 −9.32 −4.14 48.28
20 29 Dec 2011 5 Apr 2012 3 −8.12 −3.91 62.52
21 19 Jul 2012 25 Oct 2012 3 −8.33 −3.62 42.16
22 7 Mar 2013 5 May 2016 39 −8.18 −4.00 34.50
23 29 Sep 2016 20 Apr 2017 7 −8.20 −4.06 15.02
24 12 Jul 2018 31 Dec 2018 6 −9.50 −5.58 58.50

allowing for the timely implementation of drought mitiga-
tion strategies. This last feature is of particular interest when
the PPVI is used to implement measures to reduce drought
risk in agriculture, where a timely identification of drought is
crucial to prevent damage to the sector.

Many advantages are also related to the adoption of the set
of rules here proposed to identify drought events. First of all,
these rules enable an objective and standardized identifica-
tion of drought events from the mathematical point of view.
Additionally, they can be adjusted according to the needs and
the objectives of various possible end users of the model,
such as farmers, governments or insurance companies.

The performances of the PPVI in identifying drought
events were tested in a specific case study (Haiti) and com-
pared to the ones of the SPI and VHI considered separately.
The PPVI performed better than the single indices consid-
ered separately in reproducing past drought events. The PPVI
identified drought areas in Haiti better than the SPI and VHI
even from the spatial point of view; thus it is more reliable
than a single index. A comparison of PPVI performances
with respect to the ones of other composite indices was not
performed in the present study due to the unavailability of
composite indices with the same characteristics of the PPVI.
In fact previous composite indices do not include both the
meteorological and the agricultural aspect of drought, are not

available globally, or cannot be computed with only remote-
sensing datasets.
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